List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6085733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis. Immunity, 2014, 40, 128-139.	14.3	1,654
2	GCN2 Kinase in T Cells Mediates Proliferative Arrest and Anergy Induction in Response to Indoleamine 2,3-Dioxygenase. Immunity, 2005, 22, 633-642.	14.3	1,077
3	Potential Regulatory Function of Human Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase. Science, 2002, 297, 1867-1870.	12.6	946
4	Indoleamine 2,3-dioxygenase and tumor-induced tolerance. Journal of Clinical Investigation, 2007, 117, 1147-1154.	8.2	917
5	Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends in Immunology, 2013, 34, 137-143.	6.8	827
6	IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends in Immunology, 2016, 37, 193-207.	6.8	767
7	Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. Journal of Clinical Investigation, 2004, 114, 280-290.	8.2	632
8	Ligation of B7-1/B7-2 by Human CD4+ T Cells Triggers Indoleamine 2,3-Dioxygenase Activity in Dendritic Cells. Journal of Immunology, 2004, 172, 4100-4110.	0.8	426
9	Prevention of T cell–driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nature Immunology, 2001, 2, 64-68.	14.5	398
10	IDO and tolerance to tumors. Trends in Molecular Medicine, 2004, 10, 15-18.	6.7	237
11	The tumor-draining lymph node as an immune-privileged site. Immunological Reviews, 2006, 213, 146-158.	6.0	229
12	Increased T follicular helper cells and germinal center B cells are required for cGVHD and bronchiolitis obliterans. Blood, 2014, 123, 3988-3998.	1.4	179
13	The PTEN pathway in T _{regs} is a critical driver of the suppressive tumor microenvironment. Science Advances, 2015, 1, e1500845.	10.3	167
14	Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Current Opinion in Immunology, 2006, 18, 220-225.	5.5	166
15	Apoptotic cell–induced AhR activity is required for immunological tolerance and suppression of systemic lupus erythematosus in mice and humans. Nature Immunology, 2018, 19, 571-582.	14.5	137
16	The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma. , 2014, 2, 21.		132
17	CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nature Communications, 2020, 11, 515.	12.8	117
18	Immunosuppressive Myeloid Cells Induced by Chemotherapy Attenuate Antitumor CD4+ T-Cell Responses through the PD-1–PD-L1 Axis. Cancer Research, 2014, 74, 3441-3453.	0.9	115

#	Article	IF	CITATIONS
19	Canonical Wnt Signaling in Dendritic Cells Regulates Th1/Th17 Responses and Suppresses Autoimmune Neuroinflammation. Journal of Immunology, 2015, 194, 3295-3304.	0.8	101
20	Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner. Blood, 2016, 128, 1013-1017.	1.4	95
21	Activation of p53 in Immature Myeloid Precursor Cells Controls Differentiation into Ly6c+CD103+ Monocytic Antigen-Presenting Cells in Tumors. Immunity, 2018, 48, 91-106.e6.	14.3	95
22	β-Catenin Promotes Regulatory T-cell Responses in Tumors by Inducing Vitamin A Metabolism in Dendritic Cells. Cancer Research, 2015, 75, 656-665.	0.9	94
23	Activation of the STING Adaptor Attenuates Experimental Autoimmune Encephalitis. Journal of Immunology, 2014, 192, 5571-5578.	0.8	92
24	GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment. Science Immunology, 2019, 4, .	11.9	85
25	Blocking IDO activity to enhance anti-tumor immunity. Frontiers in Bioscience - Elite, 2012, E4, 734.	1.8	85
26	Polyfunctional CD4+ T cells are essential for eradicating advanced B-cell lymphoma after chemotherapy. Blood, 2012, 120, 2229-2239.	1.4	74
27	Deletion of LRP5 and LRP6 in dendritic cells enhances antitumor immunity. Oncolmmunology, 2016, 5, e1115941.	4.6	72
28	miR-146b antagomir–treated human Tregs acquire increased GVHD inhibitory potency. Blood, 2016, 128, 1424-1435.	1.4	70
29	TLR2-Dependent Activation of β-Catenin Pathway in Dendritic Cells Induces Regulatory Responses and Attenuates Autoimmune Inflammation. Journal of Immunology, 2014, 193, 4203-4213.	0.8	68
30	B7-H3 expression in donor T cells and host cells negatively regulates acute graft-versus-host disease lethality. Blood, 2015, 125, 3335-3346.	1.4	55
31	Alteration of Tumor Metabolism by CD4+ T Cells Leads to TNF-α-Dependent Intensification of Oxidative Stress and Tumor Cell Death. Cell Metabolism, 2018, 28, 228-242.e6.	16.2	54
32	Advanced Age Increases Immunosuppression in the Brain and Decreases Immunotherapeutic Efficacy in Subjects with Glioblastoma. Clinical Cancer Research, 2020, 26, 5232-5245.	7.0	52
33	Virus Infections Incite Pain Hypersensitivity by Inducing Indoleamine 2,3 Dioxygenase. PLoS Pathogens, 2016, 12, e1005615.	4.7	47
34	Persistent STAT5 activation reprograms the epigenetic landscape in CD4 ⁺ T cells to drive polyfunctionality and antitumor immunity. Science Immunology, 2020, 5, .	11.9	40
35	Inhibition of the BTK-IDO-mTOR axis promotes differentiation of monocyte-lineage dendritic cells and enhances anti-tumor TÂcell immunity. Immunity, 2021, 54, 2354-2371.e8.	14.3	34
36	IDO, PTEN-expressing Tregs and control of antigen-presentation in the murine tumor microenvironment. Cancer Immunology, Immunotherapy, 2017, 66, 1049-1058.	4.2	32

#	Article	IF	CITATIONS
37	The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease. Journal of Clinical Investigation, 2018, 128, 4604-4621.	8.2	32
38	Adjuvant IL-7 potentiates adoptive T cell therapy by amplifying and sustaining polyfunctional antitumor CD4+ T cells. Scientific Reports, 2017, 7, 12168.	3.3	31
39	Th17 cells in ovarian cancer. Blood, 2009, 114, 1134-1135.	1.4	26
40	Chemo-Immunotherapy: Role of Indoleamine 2,3-Dioxygenase in Defining Immunogenic Versus Tolerogenic Cell Death in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1036, 91-104.	1.6	26
41	Immune privilege: a recurrent theme in immunoregulation?. Immunological Reviews, 2006, 213, 5-11.	6.0	21
42	Macrophages and the Regulation of Self-Reactive T Cells. Current Pharmaceutical Design, 2003, 9, 257-264.	1.9	21
43	IL-7 signaling imparts polyfunctionality and stemness potential to CD4 ⁺ T cells. Oncolmmunology, 2016, 5, e1171445.	4.6	20
44	Macrophage Suppression of T Cell Activation: A Potential Mechanism of Peripheral Tolerance. International Reviews of Immunology, 1999, 18, 515-525.	3.3	19
45	Tolerogenic Antigenâ€Presenting Cells. Annals of the New York Academy of Sciences, 2002, 961, 343-345.	3.8	12
46	p50 suppresses cytotoxic T lymphocyte effector function to regulate tumor immune escape and response to immunotherapy. , 2020, 8, e001365.		12
47	Dendritic Cell Expression of Retinal Aldehyde Dehydrogenase-2 Controls Graft-versus-Host Disease Lethality. Journal of Immunology, 2019, 202, 2795-2805.	0.8	10
48	Targeting PI3Kδ function for amelioration of murine chronic graft-versus-host disease. American Journal of Transplantation, 2019, 19, 1820-1830.	4.7	9
49	Donor and host B7-H4 expression negatively regulates acute graft-versus-host disease lethality. JCI Insight, 2019, 4, .	5.0	8
50	Indoximod Combined with Standard Induction Chemotherapy Is Well Tolerated and Induces a High Rate of Complete Remission with MRD-Negativity in Patients with Newly Diagnosed AML: Results from a Phase 1 Trial. Blood, 2018, 132, 332-332.	1.4	7
51	Lineageâ€specific transcription factors in unexpected places. European Journal of Immunology, 2010, 40, 315-317.	2.9	5
52	Antibody-independent phagocytosis of tumor cells by human monocyte-derived macrophages cultured in recombinant macrophage colony-stimulating factor. Cancer Immunology, Immunotherapy, 1995, 41, 46-52.	4.2	5
53	Host Indoleamine 2,3-Dioxygenase Is a Critical Regulator of Acute GVHD Lethality Blood, 2007, 110, 352-352.	1.4	4
54	The Indoleamine 2,3-Dioxygenase Pathway Is Essential for Human Plasmacytoid Dendritic Cell-Induced Adaptive T Regulatory Cell Generation Blood, 2007, 110, 1344-1344.	1.4	2

#	Article	IF	CITATIONS
55	In Vitro Induction of Human Regulatory T-Cells (iTregs) Using Conditions of Low Tryptophan Plus Kynurenines. Blood, 2016, 128, 1229-1229.	1.4	1
56	A cautionary tale. Blood, 2005, 105, 3761-3762.	1.4	0
57	Costimulatory blockade: act II. Blood, 2005, 106, 2926-2927.	1.4	0
58	Mature Conventional Human Dendritic Cells Express Indoleamine 2,3-Dioxygenase and Support the Relative Expansion of Autologous Regulatory T Cells Blood, 2007, 110, 1804-1804.	1.4	0
59	Regulatory T Cells Expanded by Autologous Mature Human Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase Are Potent Suppressors of T Cell Proliferation Blood, 2008, 112, 1553-1553.	1.4	0
60	Inducing the Tryptophan Catabolic Pathway, Indoleamine 2,3-Dioxygenase (IDO), for Suppression of Graft-Versus-Host Disease (GVHD) Lethality Blood, 2009, 114, 3547-3547.	1.4	0
61	Genome-Wide DNA Methylation Landscape Defines IGHV Mutated and Unmutated B Cell Chronic Lymphocytic Leukemias. Blood, 2012, 120, 526-526.	1.4	0
62	Protein Kinase C-Theta Interacts with mTORC2 and Vimentin to Limit Regulatory T-Cell Function. Blood, 2015, 126, 849-849.	1.4	0
63	Loss of Programmed Death Ligand-1 Expression on Donor T Cells Lessens Acute Graft-Versus-Host Disease Lethality. Blood, 2015, 126, 147-147.	1.4	ο