
Chris W Michiels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6085487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-Based Characterization of a Plasmid-Associated Micrococcin P1 Biosynthetic Gene Cluster and Virulence Factors in Mammaliicoccus sciuri IMDO-S72. Applied and Environmental Microbiology, 2022, 88, AEM0208821.	3.1	11
2	Selection and Development of Nontoxic Nonproteolytic Clostridium botulinum Surrogate Strains for Food Challenge Testing. Foods, 2022, 11, 1577.	4.3	6
3	Bacillus weihenstephanensis can readily evolve for increased endospore heat resistance without compromising its thermotype. International Journal of Food Microbiology, 2021, 341, 109072.	4.7	7
4	Microbiological Safety of Ready-to-Eat Foods in Hospital and University Canteens in Hanoi, Vietnam. Journal of Food Protection, 2021, 84, 1915-1921.	1.7	3
5	The Natural Antimicrobial trans-Cinnamaldehyde Interferes with UDP-N-Acetylglucosamine Biosynthesis and Cell Wall Homeostasis in Listeria monocytogenes. Foods, 2021, 10, 1666.	4.3	8
6	AsnB Mediates Amidation of Meso-Diaminopimelic Acid Residues in the Peptidoglycan of Listeria monocytogenes and Affects Bacterial Surface Properties and Host Cell Invasion. Frontiers in Microbiology, 2021, 12, 760253.	3.5	4
7	Directed evolution by UV-C treatment of Bacillus cereus spores. International Journal of Food Microbiology, 2020, 317, 108424.	4.7	11
8	Combination of mild heat and plant essential oil constituents to inactivate resistant variants of Escherichia coli in buffer and in coconut water. Food Microbiology, 2020, 87, 103388.	4.2	13
9	Synthetic reconstruction of extreme high hydrostatic pressure resistance in Escherichia coli. Metabolic Engineering, 2020, 62, 287-297.	7.0	4
10	Evaluation of factors influencing the growth of non-toxigenic Clostridium botulinum type E and Clostridium sp. in high-pressure processed and conditioned tender coconut water from Thailand. Food Research International, 2020, 134, 109278.	6.2	14
11	Exploring the Ambiguous Status of Coagulase-Negative Staphylococci in the Biosafety of Fermented Meats: The Case of Antibacterial Activity Versus Biogenic Amine Formation. Microorganisms, 2020, 8, 167.	3.6	21
12	Identification of novel genes involved in high hydrostatic pressure resistance of Escherichia coli. Food Microbiology, 2019, 78, 171-178.	4.2	18
13	Influence of meat source, pH and production time on zinc protoporphyrin IX formation as natural colouring agent in nitrite-free dry fermented sausages. Meat Science, 2018, 135, 46-53.	5.5	21
14	In Vitro Zinc Protoporphyrin IX Formation in Different Meat Sources Related to Potentially Important Intrinsic Parameters. Food and Bioprocess Technology, 2017, 10, 131-142.	4.7	12
15	Membrane fatty acid composition as a determinant of Listeria monocytogenes sensitivity to trans-cinnamaldehyde. Research in Microbiology, 2017, 168, 536-546.	2.1	26
16	RpoS-independent evolution reveals the importance of attenuated cAMP/CRP regulation in high hydrostatic pressure resistance acquisition in E. coli. Scientific Reports, 2017, 7, 8600.	3.3	14
17	Canonical germinant receptor is dispensable for spore germination in Clostridium botulinum group II strain NCTC 11219. Scientific Reports, 2017, 7, 15426.	3.3	9
18	Cross-protection between controlled acid-adaptation and thermal inactivation for 48 Escherichia coli strains. International Journal of Food Microbiology, 2017, 241, 206-214.	4.7	40

#	Article	IF	CITATIONS
19	Identification of Genes Required for Growth of Escherichia coli MG1655 at Moderately Low pH. Frontiers in Microbiology, 2016, 7, 1672.	3.5	31
20	A Protein Interaction Map of the Kalimantacin Biosynthesis Assembly Line. Frontiers in Microbiology, 2016, 7, 1726.	3.5	3
21	Severely Heat Injured Survivors of E. coli O157:H7 ATCC 43888 Display Variable and Heterogeneous Stress Resistance Behavior. Frontiers in Microbiology, 2016, 7, 1845.	3.5	12
22	Spoilage potential of <i>Vagococcus salmoninarum</i> in preservative-free, MAP-stored brown shrimp and differentiation from <i>Brochothrix thermosphacta</i> on streptomycin thallous acetate actidione agar. Journal of Applied Microbiology, 2016, 120, 1302-1312.	3.1	7
23	Polydopamine imprinted magnetic nanoparticles as a method to purify and detect class II hydrophobins from heterogeneous mixtures. Talanta, 2016, 160, 761-767.	5.5	12
24	Stress-Induced Evolution of Heat Resistance and Resuscitation Speed in Escherichia coli O157:H7 ATCC 43888. Applied and Environmental Microbiology, 2016, 82, 6656-6663.	3.1	15
25	Inhibition of nutrient- and high pressure-induced germination of Bacillus cereus spores by plant essential oils. Innovative Food Science and Emerging Technologies, 2016, 34, 250-258.	5.6	9
26	Systematic analysis of the kalimantacin assembly line <scp>NRPS</scp> module using an adapted targeted mutagenesis approach. MicrobiologyOpen, 2016, 5, 279-286.	3.0	5
27	Construction of Nontoxigenic Mutants of Nonproteolytic Clostridium botulinum NCTC 11219 by Insertional Mutagenesis and Gene Replacement. Applied and Environmental Microbiology, 2016, 82, 3100-3108.	3.1	10
28	Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages. Meat Science, 2016, 114, 1-7.	5.5	20
29	Assessment throughout a whole fishing year of the dominant microbiota of peeled brown shrimp (Crangon crangon) stored for 7 days under modified atmosphere packaging at 4°C without preservatives. Food Microbiology, 2016, 54, 60-71.	4.2	21
30	Two Complete and One Draft Genome Sequence of Nonproteolytic Clostridium botulinum Type E Strains NCTC 8266, NCTC 8550, and NCTC 11219. Genome Announcements, 2015, 3, .	0.8	3
31	Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores. International Journal of Food Microbiology, 2015, 197, 45-52.	4.7	20
32	Role of 1-acyl-sn-glycerol-3-phosphate acyltransferase in psychrotrophy and stress tolerance of Serratia plymuthica RVH1. Research in Microbiology, 2015, 166, 28-37.	2.1	9
33	The structure of the proteinaceous inhibitor Plil from <i>Aeromonas hydrophila</i> in complex with its target lysozyme. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 344-351.	2.5	6
34	An integrated fingerprinting and kinetic approach to accelerated shelf-life testing of chemical changes in thermally treated carrot puree. Food Chemistry, 2015, 179, 94-102.	8.2	26
35	Thiol-reactive natural antimicrobials and high pressure treatment synergistically enhance bacterial inactivation. Innovative Food Science and Emerging Technologies, 2015, 27, 26-34.	5.6	28
36	The Zeamine Antibiotics Affect the Integrity of Bacterial Membranes. Applied and Environmental Microbiology, 2015, 81, 1139-1146.	3.1	28

#	Article	IF	CITATIONS
37	Investigating chemical changes during shelf-life of thermal and high-pressure high-temperature sterilised carrot purees: A †fingerprinting kinetics' approach. Food Chemistry, 2015, 185, 119-126.	8.2	13
38	Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria. Frontiers in Microbiology, 2015, 6, 150.	3.5	22
39	Recombinant kiwi pectin methylesterase inhibitor: Purification and characterization of the interaction with plant pectin methylesterase during thermal and high-pressure processing. Innovative Food Science and Emerging Technologies, 2015, 29, 295-301.	5.6	3
40	Effect of a magnetic field on dispersion of a hop extract and the influence on gushing of beer. Journal of Food Engineering, 2015, 145, 10-18.	5.2	7
41	Variability in growth/no growth boundaries of 188 different Escherichia coli strains reveals that approximately 75 % have a higher growth probability under low pH conditions than E.Âcoli O157:H7 strain ATCC 43888. Food Microbiology, 2015, 45, 222-230.	4.2	16
42	Chemical changes of thermally sterilized broccoli puree during shelf-life: Investigation of the volatile fraction by fingerprinting-kinetics. Food Research International, 2015, 67, 264-271.	6.2	27
43	A combination of polyunsaturated fatty acid, nonribosomal peptide and polyketide biosynthetic machinery is used to assemble the zeamine antibiotics. Chemical Science, 2015, 6, 923-929.	7.4	28
44	Metabolite profiling and peptidoglycan analysis of transient cell wallâ€deficient bacteria in a new <scp><i>E</i></scp> <i>scherichia coli</i> model system. Environmental Microbiology, 2015, 17, 1586-1599.	3.8	17
45	Comparative genome sequencing to assess the genetic diversity and virulence attributes of 15 <i><scp>V</scp>ibrio anguillarum</i> isolates. Journal of Fish Diseases, 2015, 38, 795-807.	1.9	18
46	High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology. , 2014, , 1-17.		10
47	Genome Sequence of Serratia plymuthica RVH1, Isolated from a Raw Vegetable-Processing Line. Genome Announcements, 2014, 2, .	0.8	7
48	The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiology Reviews, 2014, 38, 119-141.	8.6	142
49	Kinetic study of Bacillus cereus spore inactivation by high pressure high temperature treatment. Innovative Food Science and Emerging Technologies, 2014, 26, 12-17.	5.6	24
50	Thermal inactivation parameters of spores from different phylogenetic groups of Bacillus cereus. International Journal of Food Microbiology, 2014, 189, 183-188.	4.7	60
51	Acetoin Synthesis Acquisition Favors Escherichia coli Growth at Low pH. Applied and Environmental Microbiology, 2014, 80, 6054-6061.	3.1	19
52	2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge. International Journal of Food Microbiology, 2014, 175, 36-44.	4.7	22
53	Isolation and Validation of an Endogenous Fluorescent Nucleoid Reporter in Salmonella Typhimurium. PLoS ONE, 2014, 9, e93785.	2.5	5
54	Structural basis of bacterial defense against g-type lysozyme-based innate immunity. Cellular and Molecular Life Sciences, 2013, 70, 1113-1122.	5.4	26

#	Article	IF	CITATIONS
55	Enzyme characterisation and gene expression profiling of Atlantic salmon chicken- and goose-type lysozymes. Developmental and Comparative Immunology, 2013, 40, 11-19.	2.3	31
56	Loss of cAMP/CRP regulation confers extreme high hydrostatic pressure resistance in Escherichia coli O157:H7. International Journal of Food Microbiology, 2013, 166, 65-71.	4.7	18
57	Exposure to high hydrostatic pressure rapidly selects for increased RpoS activity and general stress-resistance in Escherichia coli O157:H7. International Journal of Food Microbiology, 2013, 163, 28-33.	4.7	35
58	Does Virulence Assessment of Vibrio anguillarum Using Sea Bass (Dicentrarchus labrax) Larvae Correspond with Genotypic and Phenotypic Characterization?. PLoS ONE, 2013, 8, e70477.	2.5	21
59	A PKS/NRPS/FAS Hybrid Gene Cluster from Serratia plymuthica RVH1 Encoding the Biosynthesis of Three Broad Spectrum, Zeamine-Related Antibiotics. PLoS ONE, 2013, 8, e54143.	2.5	75
60	Emergence and Stability of High-Pressure Resistance in Different Food-Borne Pathogens. Applied and Environmental Microbiology, 2012, 78, 3234-3241.	3.1	52
61	Combined Modeling and Biophysical Characterisation of CO ₂ Interaction with Class II Hydrophobins: New Insight into the Mechanism Underpinning Primary Gushing. Journal of the American Society of Brewing Chemists, 2012, 70, 249-256.	1.1	23
62	Structural characterization of the PliG lysozyme inhibitor family. Journal of Structural Biology, 2012, 180, 235-242.	2.8	12
63	High pressure pasteurization of apple pieces in syrup: Microbiological shelf-life and quality evolution during refrigerated storage. Innovative Food Science and Emerging Technologies, 2012, 16, 259-266.	5.6	15
64	Guards of the great wall: bacterial lysozyme inhibitors. Trends in Microbiology, 2012, 20, 501-510.	7.7	90
65	Variability of the tandem repeat region of the Escherichia coli tolA gene. Research in Microbiology, 2012, 163, 316-322.	2.1	7
66	Role of Lysozyme Inhibitors in the Virulence of Avian Pathogenic Escherichia coli. PLoS ONE, 2012, 7, e45954.	2.5	22
67	Invertebrate lysozymes: Diversity and distribution, molecular mechanism and in vivo function. Journal of Biosciences, 2012, 37, 327-348.	1.1	82
68	Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. International Journal of Food Microbiology, 2012, 152, 162-167.	4.7	76
69	Variation of Intragenic Tandem Repeat Tract of tolA Modulates Escherichia coli Stress Tolerance. PLoS ONE, 2012, 7, e47766.	2.5	6
70	Piezophysiology of the Model Bacterium Escherichia coli. , 2011, , 671-686.		2
71	Structure based discovery of small molecule suppressors targeting bacterial lysozyme inhibitors. Biochemical and Biophysical Research Communications, 2011, 405, 527-532.	2.1	18
72	Shelf-life extension of cooked ham model product by high hydrostatic pressure and natural preservatives. Innovative Food Science and Emerging Technologies, 2011, 12, 407-415.	5.6	55

#	Article	IF	CITATIONS
73	Molecular Basis of Bacterial Defense against Host Lysozymes: X-ray Structures of Periplasmic Lysozyme Inhibitors Plil and PliC. Journal of Molecular Biology, 2011, 405, 1233-1245.	4.2	28
74	Effect of Egg Washing on the Cuticle Quality of Brown and White Table Eggs. Journal of Food Protection, 2011, 74, 1649-1654.	1.7	51
75	Dynamic Light Scattering (DLS) as a Tool to Detect CO2-Hydrophobin Structures and Study the Primary Gushing Potential of Beer. Journal of the American Society of Brewing Chemists, 2011, 69, 144-149.	1.1	23
76	Survival of Mycobacterium avium ssp. paratuberculosis in yoghurt and in commercial fermented milk products containing probiotic cultures. Journal of Applied Microbiology, 2011, 110, 1252-1261.	3.1	26
77	<i>Vibrio anguillarum</i> as a fish pathogen: virulence factors, diagnosis and prevention. Journal of Fish Diseases, 2011, 34, 643-661.	1.9	399
78	Effects on Salmonella shell contamination and trans-shell penetration of coating hens' eggs with chitosan. International Journal of Food Microbiology, 2011, 145, 43-48.	4.7	51
79	Identification of a bacterial inhibitor against g-type lysozyme. Cellular and Molecular Life Sciences, 2011, 68, 1053-1064.	5.4	48
80	Food applications of bacterial cell wall hydrolases. Current Opinion in Biotechnology, 2011, 22, 164-171.	6.6	79
81	Development of a DNA Array for the Simultaneous Detection and Identification of Sugar Thick Juice Bacterial Contaminants. Food Analytical Methods, 2011, 4, 173-185.	2.6	6
82	Integrated Regulation of Acetoin Fermentation by Quorum Sensing and pH in Serratia plymuthica RVH1. Applied and Environmental Microbiology, 2011, 77, 3422-3427.	3.1	55
83	Goose-Type Lysozyme Inhibitor (PliG) Enhances Survival of Escherichia coli in Goose Egg Albumen. Applied and Environmental Microbiology, 2011, 77, 4697-4699.	3.1	6
84	Evidence for an evolutionary antagonism between Mrr and Type III modification systems. Nucleic Acids Research, 2011, 39, 5991-6001.	14.5	21
85	Rapid Acquisition of Gigapascal-High-Pressure Resistance by Escherichia coli. MBio, 2011, 2, e00130-10.	4.1	86
86	Lysozyme inhibitor conferring bacterial tolerance to invertebrate type lysozyme. Cellular and Molecular Life Sciences, 2010, 67, 1177-1188.	5.4	39
87	Lysozymes in the animal kingdom. Journal of Biosciences, 2010, 35, 127-160.	1.1	580
88	Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 2010, 109, 1117-1131.	3.1	533
89	Biological Approach to Modeling of <i>Staphylococcus aureus</i> High-Hydrostatic-Pressure Inactivation Kinetics. Applied and Environmental Microbiology, 2010, 76, 6982-6990.	3.1	30
90	Localization of Mycobacterium avium subspecies paratuberculosis in artificially inoculated milk and colostrum by fractionation. Journal of Dairy Science, 2010, 93, 4722-4729.	3.4	6

#	Article	IF	CITATIONS
91	The Rcs Two-Component System Regulates Expression of Lysozyme Inhibitors and Is Induced by Exposure to Lysozyme. Journal of Bacteriology, 2009, 191, 1979-1981.	2.2	53
92	Biotechnology under high pressure: applications and implications. Trends in Biotechnology, 2009, 27, 434-441.	9.3	173
93	Quorum sensing and butanediol fermentation affect colonization and spoilage of carrot slices by Serratia plymuthica. International Journal of Food Microbiology, 2009, 134, 63-69.	4.7	23
94	Bacterial interactions in biofilms. Critical Reviews in Microbiology, 2009, 35, 157-168.	6.1	186
95	Effects of dietary inclusion of xylooligo―saccharides, arabinoxylooligosaccha―rides and soluble arabinoxylan on the microbial composition of caecal contents of chickens. Journal of the Science of Food and Agriculture, 2008, 88, 2517-2522.	3.5	71
96	Analysis of outer membrane permeability of <i>Pseudomonas aeruginosa</i> and bactericidal activity of endolysins KZ144 and EL188 under high hydrostatic pressure. FEMS Microbiology Letters, 2008, 280, 113-119.	1.8	42
97	Predominance of Tetragenococcus halophilus as the cause of sugar thick juice degradation. Food Microbiology, 2008, 25, 413-421.	4.2	19
98	Present knowledge of the bacterial microflora in the extreme environment of sugar thick juice. Food Microbiology, 2008, 25, 831-836.	4.2	20
99	Activation of the Salmonella Typhimurium Mrr protein. Biochemical and Biophysical Research Communications, 2008, 367, 435-439.	2.1	19
100	Mutational analysis and a structural model of methyl-directed restriction enzyme Mrr. Biochemical and Biophysical Research Communications, 2008, 377, 862-866.	2.1	12
101	Role of the Lysozyme Inhibitor Ivy in Growth or Survival of Escherichia coli and Pseudomonas aeruginosa Bacteria in Hen Egg White and in Human Saliva and Breast Milk. Applied and Environmental Microbiology, 2008, 74, 4434-4439.	3.1	48
102	A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria. PLoS Pathogens, 2008, 4, e1000019.	4.7	101
103	Detection of a Lysozyme Inhibitor in <i>Proteus mirabilis</i> by a New Reverse Zymogram Method. Applied and Environmental Microbiology, 2008, 74, 4978-4981.	3.1	13
104	Genetic and physiological diversity of Tetragenococcus halophilus strains isolated from sugar- and salt-rich environments. Microbiology (United Kingdom), 2008, 154, 2600-2610.	1.8	39
105	Using Mild High-pressure Shock to Generate Bacterial Ghosts of Escherichia coli. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 765-768.	0.7	6
106	Modelling of high-pressure inactivation of microorganisms in foods. , 2007, , 161-197.		4
107	Characterization of a luxl/luxR-type quorum sensing system and N-acyl-homoserine lactone-dependent regulation of exo-enzyme and antibacterial component production in Serratia plymuthica RVH1. Research in Microbiology, 2007, 158, 150-158.	2.1	59
108	Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Research in Microbiology, 2007, 158, 379-385.	2.1	51

#	Article	IF	CITATIONS
109	The high-pressure shock response inEscherichia coli: a short survey. High Pressure Research, 2007, 27, 121-124.	1.2	1
110	Characterization of a luxI/luxR-type quorum sensing system and N-acyl homoserine lactone-dependent regulation of exo-enzyme and antibacterial component production in Serratia plymuthica RVH1. Research in Microbiology, 2007, , .	2.1	1
111	Model based process design of the combined high pressure and mild heat treatment ensuring safety and quality of a carrot simulant system. Journal of Food Engineering, 2007, 78, 1010-1021.	5.2	30
112	Muralytic activity and modular structure of the endolysins of <i>Pseudomonas aeruginosa</i> bacteriophages I†KZ and EL. Molecular Microbiology, 2007, 65, 1334-1344.	2.5	150
113	Inactivation of Salmonella Senftenberg strain W 775 during composting of biowastes and garden wastes. Journal of Applied Microbiology, 2007, 103, 53-64.	3.1	42
114	Protective effect of hop ?-acids on microbial degradation of thick juice during storage. Journal of Applied Microbiology, 2007, 104, 070915215109010-???.	3.1	18
115	Quorum sensing inSerratia. FEMS Microbiology Reviews, 2007, 31, 407-424.	8.6	166
116	High-Pressure Homogenization as a Non-Thermal Technique for the Inactivation of Microorganisms. Critical Reviews in Microbiology, 2006, 32, 201-216.	6.1	186
117	Upstream of the SOS response: figure out the trigger. Trends in Microbiology, 2006, 14, 421-423.	7.7	33
118	N-acyl-l-homoserine lactone signal interception byEscherichia coli. FEMS Microbiology Letters, 2006, 256, 83-89.	1.8	115
119	Cell wall substrate specificity of six different lysozymes and lysozyme inhibitory activity of bacterial extracts. FEMS Microbiology Letters, 2006, 259, 41-46.	1.8	58
120	Isolation and functional analysis ofluxSinSerratia plymuthicaRVH1. FEMS Microbiology Letters, 2006, 262, 201-209.	1.8	19
121	Inactivation of Escherichia coli and Shigella in acidic fruit and vegetable juices by peroxidase systems. Journal of Applied Microbiology, 2006, 101, 242-250.	3.1	21
122	Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure. International Journal of Food Microbiology, 2006, 108, 355-63.	4.7	56
123	Validation of predictive growth models describing superatmospheric oxygen effects on Pseudomonas fluorescens and Listeria innocua on fresh-cut lettuce. International Journal of Food Microbiology, 2006, 111, 48-58.	4.7	28
124	Inactivation of gram-negative bacteria in milk and banana juice by hen egg white and lambda lysozyme under high hydrostatic pressure. International Journal of Food Microbiology, 2006, 112, 19-25.	4.7	44
125	<i>N</i> -Acyl- <scp>l</scp> -Homoserine Lactone Quorum Sensing Controls Butanediol Fermentation in <i>Serratia plymuthica</i> RVH1 and <i>Serratia marcescens</i> MG1. Journal of Bacteriology, 2006, 188, 4570-4572.	2.2	72
126	Role of Quorum Sensing and Antimicrobial Component Production by Serratia plymuthica in Formation of Biofilms, Including Mixed Biofilms with Escherichia coli. Applied and Environmental Microbiology, 2006, 72, 7294-7300.	3.1	60

#	Article	IF	CITATIONS
127	Purification of Ivy, a lysozyme inhibitor from Escherichia coli, and characterisation of its specificity for various lysozymes. Enzyme and Microbial Technology, 2005, 37, 205-211.	3.2	29
128	Screening forBacillus subtilismutants deficient in pressure induced spore germination: identification of ykvUas a novel germination gene. FEMS Microbiology Letters, 2005, 243, 385-391.	1.8	14
129	Construction and use of anstx1transcriptional fusion togfp. FEMS Microbiology Letters, 2005, 245, 73-77.	1.8	7
130	Mrr instigates the SOS response after high pressure stress in Escherichia coli. Molecular Microbiology, 2005, 58, 1381-1391.	2.5	71
131	Predictive modelling and validation of Pseudomonas fluorescens growth at superatmospheric oxygen and carbon dioxide concentrations. Food Microbiology, 2005, 22, 149-158.	4.2	35
132	Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. International Journal of Food Microbiology, 2005, 98, 179-191.	4.7	63
133	Inactivation of Escherichia coli by high-pressure homogenisation is influenced by fluid viscosity but not by water activity and product composition. International Journal of Food Microbiology, 2005, 101, 281-291.	4.7	89
134	Predictive modelling and validation of Listeria innocua growth at superatmospheric oxygen and carbon dioxide concentrations. International Journal of Food Microbiology, 2005, 105, 333-345.	4.7	21
135	Sensitisation of Escherichia coli to antibacterial peptides and enzymes by high-pressure homogenisation. International Journal of Food Microbiology, 2005, 105, 165-175.	4.7	54
136	Genotypic and phenotypic characterization of a biofilm-formingSerratia plymuthicaisolate from a raw vegetable processing line. FEMS Microbiology Letters, 2005, 246, 265-272.	1.8	35
137	Investigation into the resistance of lactoperoxidase tolerantEscherichia colimutants to different forms of oxidative stress. FEMS Microbiology Letters, 2005, 252, 315-319.	1.8	8
138	CorA Affects Tolerance of Escherichia coli and Salmonella enterica Serovar Typhimurium to the Lactoperoxidase Enzyme System but Not to Other Forms of Oxidative Stress. Applied and Environmental Microbiology, 2005, 71, 6515-6523.	3.1	17
139	Induction of Oxidative Stress by High Hydrostatic Pressure in Escherichia coli. Applied and Environmental Microbiology, 2005, 71, 2226-2231.	3.1	104
140	Role of Porins in Sensitivity of Escherichia coli to Antibacterial Activity of the Lactoperoxidase Enzyme System. Applied and Environmental Microbiology, 2005, 71, 3512-3518.	3.1	25
141	Induction of Shiga Toxin-Converting Prophage in Escherichia coli by High Hydrostatic Pressure. Applied and Environmental Microbiology, 2005, 71, 1155-1162.	3.1	55
142	Unique stress response to the lactoperoxidase-thiocyanate enzyme system in Escherichia coli. Research in Microbiology, 2005, 156, 225-232.	2.1	24
143	SulA-dependent hypersensitivity to high pressure and hyperfilamentation after high-pressure treatment of Escherichia coli lon mutants. Research in Microbiology, 2005, 156, 233-237.	2.1	25
144	Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology, 2005, 156, 626-633.	2.1	344

#	Article	IF	CITATIONS
145	Diversify or Die: Generation of Diversity in Response to Stress. Critical Reviews in Microbiology, 2005, 31, 69-78.	6.1	63
146	Heat Shock Protein-Mediated Resistance to High Hydrostatic Pressure in Escherichia coli. Applied and Environmental Microbiology, 2004, 70, 2660-2666.	3.1	130
147	An SOS Response Induced by High Pressure in Escherichia coli. Journal of Bacteriology, 2004, 186, 6133-6141.	2.2	112
148	Source of tryptone in growth medium affects oxidative stress resistance in Escherichia coli. Journal of Applied Microbiology, 2004, 97, 124-133.	3.1	31
149	Moderate Temperatures Affect Escherichia coli Inactivation by High-Pressure Homogenization Only through Fluid Viscosity. Biotechnology Progress, 2004, 20, 1512-1517.	2.6	41
150	Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. International Journal of Food Microbiology, 2004, 92, 227-234.	4.7	92
151	Generation of bactericidal and mutagenic components by pulsed electric field treatment. International Journal of Food Microbiology, 2004, 93, 165-173.	4.7	38
152	Periplasmic lysozyme inhibitor contributes to lysozyme resistance in Escherichia coli. Cellular and Molecular Life Sciences, 2004, 61, 1229-1237.	5.4	62
153	Biofilm formation and cell-to-cell signalling in Gram-negative bacteria isolated from a food processing environment. Journal of Applied Microbiology, 2004, 96, 177-184.	3.1	85
154	Stress and How Bacteria Cope with Death and Survival. Critical Reviews in Microbiology, 2004, 30, 263-273.	6.1	146
155	Na + -mediated piezoprotection in Rhodotorula rubra. Extremophiles, 2003, 7, 499-504.	2.3	3
156	Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biology and Technology, 2003, 28, 455-461.	6.0	113
157	The lactoperoxidase system increases efficacy of high-pressure inactivation of foodborne bacteria. International Journal of Food Microbiology, 2003, 81, 211-221.	4.7	58
158	Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. International Journal of Food Microbiology, 2003, 85, 185-196.	4.7	108
159	Modelling inactivation of Staphylococcus aureus and Yersinia enterocolitica by high-pressure homogenisation at different temperatures. International Journal of Food Microbiology, 2003, 87, 55-62.	4.7	64
160	High sucrose concentration protects E. coli against high pressure inactivation but not against high pressure sensitization to the lactoperoxidase system. International Journal of Food Microbiology, 2003, 88, 1-9.	4.7	73
161	Antimicrobial Properties of Lysozyme in Relation to Foodborne Vegetative Bacteria. Critical Reviews in Microbiology, 2003, 29, 191-214.	6.1	353
162	Decontamination of Seeds for Seed Sprout Production by High Hydrostatic Pressure. Journal of Food Protection, 2003, 66, 918-923.	1.7	49

#	Article	IF	CITATIONS
163	Comparison of Sublethal Injury Induced in Salmonella enterica Serovar Typhimurium by Heat and by Different Nonthermal Treatments. Journal of Food Protection, 2003, 66, 31-37.	1.7	170
164	Sensitization of Outer-Membrane Mutants of Salmonella Typhimurium and Pseudomonas aeruginosa to Antimicrobial Peptides under High Pressure. Journal of Food Protection, 2003, 66, 1360-1367.	1.7	20
165	Antimicrobial Compounds of Low Molecular Mass are Constitutively Present in Insects: Characterisation of β-Alanyl-Tyrosine. Current Pharmaceutical Design, 2003, 9, 159-174.	1.9	40
166	Lytic and Nonlytic Mechanism of Inactivation of Gram-Positive Bacteria by Lysozyme under Atmospheric and High Hydrostatic Pressure. Journal of Food Protection, 2002, 65, 1916-1923.	1.7	66
167	Expression of a P-type Ca2+-transport ATPase in Bacillus subtilis during sporulation. Cell Calcium, 2002, 32, 93-103.	2.4	46
168	Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. International Journal of Food Microbiology, 2002, 73, 187-196.	4.7	120
169	Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment. International Journal of Food Microbiology, 2002, 74, 27-35.	4.7	86
170	Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. International Journal of Food Microbiology, 2002, 77, 205-212.	4.7	235
171	A study on the effects of high pressure and heat on Bacillus subtilis spores at low pH. International Journal of Food Microbiology, 2001, 64, 333-341.	4.7	75
172	Improvement of Malt Modification by Use ofRhizopusVII as Starter Culture. Journal of Agricultural and Food Chemistry, 2001, 49, 3718-3724.	5.2	8
173	Degradation of Starchy Endosperm Cell Walls in Nongerminating Sterilized Barley by Fungi. Journal of Agricultural and Food Chemistry, 2001, 49, 975-981.	5.2	9
174	Heterologous expression of the Bacillus pumilus endo-β-xylanase (xynA) gene in the yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2001, 56, 431-434.	3.6	21
175	High pressure increases bactericidal activity and spectrum of lactoferrin, lactoferricin and nisin. International Journal of Food Microbiology, 2001, 64, 325-332.	4.7	106
176	Decrease in Cell Surface Galactose Residues of Schizosaccharomyces pombe Enhances Its Coflocculation with Pediococcus damnosus. Applied and Environmental Microbiology, 2001, 67, 3413-3417.	3.1	13
177	Inactivation of Gram-Negative Bacteria by Lysozyme, Denatured Lysozyme, and Lysozyme-Derived Peptides under High Hydrostatic Pressure. Applied and Environmental Microbiology, 2001, 67, 339-344.	3.1	135
178	Kinetic analysis and modelling of combined high-pressure–temperature inactivation of the yeast Zygosaccharomyces bailii. International Journal of Food Microbiology, 2000, 56, 199-210.	4.7	86
179	Inactivation of Escherichia coli and Listeria innocua in Milk by Combined Treatment with High Hydrostatic Pressure and the Lactoperoxidase System. Applied and Environmental Microbiology, 2000, 66, 4173-4179.	3.1	90
180	Comparative Study of Pressure- and Nutrient-Induced Germination of <i>Bacillus subtilis</i> Spores. Applied and Environmental Microbiology, 2000, 66, 257-261.	3.1	121

4

#	Article	IF	CITATIONS
181	Inactivation of Escherichia coli in Milk by High-Hydrostatic-Pressure Treatment in Combination with Antimicrobial Peptides. Journal of Food Protection, 1999, 62, 1248-1254.	1.7	158
182	From Field Barley to Malt: Detection and Specification of Microbial Activity for Quality Aspects. Critical Reviews in Microbiology, 1999, 25, 121-153.	6.1	122
183	Protective effect of calcium on inactivation ofEscherichia coliby high hydrostatic pressure. Journal of Applied Microbiology, 1998, 85, 678-684.	3.1	77
184	High-Pressure Inactivation and Sublethal Injury of Pressure-Resistant <i>Escherichia coli</i> Mutants in Fruit Juices. Applied and Environmental Microbiology, 1998, 64, 1566-1568.	3.1	147
185	Comparative Study of Pressure-Induced Germination of Bacillus subtilis Spores at Low and High Pressures. Applied and Environmental Microbiology, 1998, 64, 3220-3224.	3.1	182
186	Molecular and Metabolic Typing of Resident and Transient Fluorescent Pseudomonad Flora from a Meat Mincer. Journal of Food Protection, 1997, 60, 1515-1519.	1.7	16
187	Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Applied and Environmental Microbiology, 1997, 63, 945-950.	3.1	203
188	High-Pressure Transient Sensitization of Escherichia coli to Lysozyme and Nisin by Disruption of Outer-Membrane Permeability. Journal of Food Protection, 1996, 59, 350-355.	1.7	196
189	Differential gene expression in Azospirillum spp. by plant root exudates: Analysis of protein profiles by two-dimensional polyacrylamide gel electrophoresis. FEMS Microbiology Letters, 1993, 112, 335-341.	1.8	6
190	<i>Azospirillum brasilense</i> Indole-3-Acetic Acid Biosynthesis: Evidence for a Non-Tryptophan Dependent Pathway. Molecular Plant-Microbe Interactions, 1993, 6, 609.	2.6	152
191	Phosphonylation of purified human, canine and porcine cholinesterase by soman. Biochemical Pharmacology, 1991, 41, 955-959.	4.4	7
192	Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid, 1991, 26, 83-93.	1.4	54
193	Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants that are affected in flocculation. Journal of Applied Bacteriology, 1990, 69, 705-711.	1.1	49
194	Construction of an Azospirillum brasilense Sp7 recA mutant. Molecular Genetics and Genomics, 1990, 223, 152-155.	2.4	9
195	Plasmid localization and mapping of two Azospirillum brasilense loci that affect exopolysaccharide synthesis. Plasmid, 1989, 21, 142-146.	1.4	34
196	Nucleotide sequence of the T-DNA region encoding transcripts 6a and 6b of the pTiT37 nopaline Ti plasmid. Plant Molecular Biology, 1986, 7, 33-41.	3.9	8
197	Nucleotide sequence of an insertion sequence (IS) element identified in the T-DNA region of a spontaneous variant of the Ti-plasmid pTiT37. Nucleic Acids Research, 1986, 14, 6699-6709.	14.5	28

198 Factors Affecting Inactivation of Food-Borne Bacteria by High Pressure. , 0, , 181-193.

#	Article	IF	CITATIONS
199	Effects of High Pressure on Bacterial Spores. , 0, , 35-52.		4
200	Inactivation of <i>Escherichia coli</i> by High Pressure. , 0, , 53-85.		13
201	Cellular Impact of Sublethal Pressures on <i>Escherichia coli</i> ., 0, , 87-100.		4
202	<i>Listeria monocytogenes</i> High Hydrostatic Pressure Resistance and Survival Strategies. , 0, , 101-115.		1
203	Effects of Pressure on Lactic Acid Bacteria. , 0, , 117-144.		1