
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6084324/publications.pdf Version: 2024-02-01



ΔΙΔΝ Ρ ΤΔΙΙ

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | TTC39B destabilizes retinoblastoma protein promoting hepatic lipogenesis in a sex-specific fashion.<br>Journal of Hepatology, 2022, 76, 383-393.                                                            | 3.7  | 4         |
| 2  | Addressing dyslipidemic risk beyond LDL-cholesterol. Journal of Clinical Investigation, 2022, 132, .                                                                                                        | 8.2  | 51        |
| 3  | Clonal hematopoiesis in cardiovascular disease and therapeutic implications. , 2022, 1, 116-124.                                                                                                            |      | 32        |
| 4  | New insights into cholesterol efflux via ABCA1. , 2022, 1, 198-199.                                                                                                                                         |      | 1         |
| 5  | Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nature Metabolism, 2022, 4, 444-457.                                                        | 11.9 | 56        |
| 6  | Myeloid LXR (Liver X Receptor) Deficiency Induces Inflammatory Gene Expression in Foamy Macrophages and Accelerates Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 719-731. | 2.4  | 31        |
| 7  | Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. Journal of Clinical Investigation, 2022, 132, .                                     | 8.2  | 30        |
| 8  | Macular Degeneration and CETP Inhibition. JAMA Cardiology, 2022, 7, 774.                                                                                                                                    | 6.1  | 7         |
| 9  | HDL in Morbidity and Mortality: A 40+ Year Perspective. Clinical Chemistry, 2021, 67, 19-23.                                                                                                                | 3.2  | 13        |
| 10 | Lipid and metabolic syndrome traits in coronary artery disease: a Mendelian randomization study.<br>Journal of Lipid Research, 2021, 62, 100044.                                                            | 4.2  | 32        |
| 11 | The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature, 2021, 592, 296-301.                                                                                                     | 27.8 | 236       |
| 12 | Cholesterol efflux pathways, inflammation, and atherosclerosis. Critical Reviews in Biochemistry and<br>Molecular Biology, 2021, 56, 426-439.                                                               | 5.2  | 63        |
| 13 | Oxidized Phospholipids Promote NETosis and Arterial Thrombosis in LNK(SH2B3) Deficiency.<br>Circulation, 2021, 144, 1940-1954.                                                                              | 1.6  | 33        |
| 14 | Modulation of the NLRP3 inflammasome by Sars-CoV-2 Envelope protein. Scientific Reports, 2021, 11, 24432.                                                                                                   | 3.3  | 51        |
| 15 | Liver X receptors are required for thymic resilience and T cell output. Journal of Experimental Medicine, 2020, 217, .                                                                                      | 8.5  | 20        |
| 16 | PPARÎ <sup>3</sup> Deacetylation Confers the Antiatherogenic Effect and Improves Endothelial Function in Diabetes<br>Treatment. Diabetes, 2020, 69, 1793-1803.                                              | 0.6  | 19        |
| 17 | A new pathway of macrophage cholesterol efflux. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11853-11855.                                                    | 7.1  | 6         |
| 18 | ABCA1 Exerts Tumor-Suppressor Function in Myeloproliferative Neoplasms. Cell Reports, 2020, 30, 3397-3410.e5.                                                                                               | 6.4  | 18        |

| #  | Article                                                                                                                                                                                                                        | IF                | CITATIONS         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 19 | Cholesterol mass efflux capacity and risk of peripheral artery disease: The Multi-Ethnic Study of<br>Atherosclerosis. Atherosclerosis, 2020, 297, 81-86.                                                                       | 0.8               | 8                 |
| 20 | Inhibition of JAK2 Suppresses Myelopoiesis and Atherosclerosis in Apoeâ^'/â^' Mice. Cardiovascular Drugs<br>and Therapy, 2020, 34, 145-152.                                                                                    | 2.6               | 32                |
| 21 | Antisense oligonucleotide treatment produces a type I interferon response that protects against diet-induced obesity. Molecular Metabolism, 2020, 34, 146-156.                                                                 | 6.5               | 14                |
| 22 | Response by Fotakis et al to Letter Regarding Article, "Anti-Inflammatory Effects of HDL (High-Density) Tj ET<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e33-e34.                                        | Qq0 0 0 rg<br>2.4 | BT /Overlock<br>2 |
| 23 | Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over<br>Proinflammatory Effects in Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular<br>Biology, 2019, 39, e253-e272. | 2.4               | 86                |
| 24 | Leducq Transatlantic Network on Clonal Hematopoiesis and Atherosclerosis. Circulation Research, 2019, 124, 481-483.                                                                                                            | 4.5               | 5                 |
| 25 | Inflammasomes, neutrophil extracellular traps, and cholesterol. Journal of Lipid Research, 2019, 60,<br>721-727.                                                                                                               | 4.2               | 92                |
| 26 | Cholesterol Mass Efflux Capacity, Incident Cardiovascular Disease, and Progression of Carotid Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 89-96.                                                     | 2.4               | 91                |
| 27 | Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis.<br>Circulation, 2018, 138, 898-912.                                                                                                  | 1.6               | 208               |
| 28 | Trials and Tribulations of CETP Inhibitors. Circulation Research, 2018, 122, 106-112.                                                                                                                                          | 4.5               | 210               |
| 29 | Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in <i>Jak2</i> <sup> <i>V617F</i> </sup> Mice. Circulation Research, 2018, 123, e35-e47.                                                         | 4.5               | 173               |
| 30 | LXR Suppresses Inflammatory Gene Expression and Neutrophil Migration through cis-Repression and Cholesterol Efflux. Cell Reports, 2018, 25, 3774-3785.e4.                                                                      | 6.4               | 64                |
| 31 | Plasma high density lipoproteins: Therapeutic targeting and links to atherogenic inflammation.<br>Atherosclerosis, 2018, 276, 39-43.                                                                                           | 0.8               | 45                |
| 32 | Commonality with cancer. Nature, 2017, 543, 45-47.                                                                                                                                                                             | 27.8              | 22                |
| 33 | A New Approach to PCSK9 Therapeutics. Circulation Research, 2017, 120, 1063-1065.                                                                                                                                              | 4.5               | 16                |
| 34 | Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. Journal of Molecular and Cellular Cardiology, 2017, 112, 114-122.                                       | 1.9               | 31                |
| 35 | Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity. Cell Metabolism, 2017, 25, 1294-1304.e6.                                                                                              | 16.2              | 153               |
| 36 | Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. New England Journal of<br>Medicine, 2017, 376, 1933-1942.                                                                                               | 27.0              | 593               |

| #  | Article                                                                                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Mitochondrial Oxidative Stress Promotes Atherosclerosis and Neutrophil Extracellular Traps in Aged<br>Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e99-e107.                                                                                                                                                                         | 2.4  | 79        |
| 38 | Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.                                                                                                                                                                                                                                                | 21.4 | 470       |
| 39 | A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels. Nature Medicine, 2017, 23, 1086-1094.                                                                                                                                                                                  | 30.7 | 88        |
| 40 | Association of Highâ€Density Lipoproteinâ€Cholesterol Versus Apolipoprotein Aâ€I With Risk of Coronary<br>Heart Disease: The European Prospective Investigation Into Cancerâ€Norfolk Prospective Population<br>Study, the Atherosclerosis Risk in Communities Study, and the Women's Health Study. Journal of the<br>American Heart Association, 2017, 6, . | 3.7  | 13        |
| 41 | CAMKIIÎ <sup>3</sup> suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. Journal of Clinical Investigation, 2017, 127, 4075-4089.                                                                                                                                                                              | 8.2  | 81        |
| 42 | Myeloid-specific genetic ablation of ATP-binding cassette transporter ABCA1 is protective against cancer. Oncotarget, 2017, 8, 71965-71980.                                                                                                                                                                                                                 | 1.8  | 26        |
| 43 | TTC39B deficiency stabilizes LXR reducing both atherosclerosis and steatohepatitis. Nature, 2016, 535, 303-307.                                                                                                                                                                                                                                             | 27.8 | 72        |
| 44 | Enhanced Megakaryopoiesis and Platelet Activity in Hypercholesterolemic, B6-Ldlr â^'/â^' , Cdkn2a<br>-Deficient Mice. Circulation: Cardiovascular Genetics, 2016, 9, 213-222.                                                                                                                                                                               | 5.1  | 9         |
| 45 | Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates<br>Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1328-1337.                                                                                                                                                             | 2.4  | 92        |
| 46 | Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle<br>Metabolism. Diabetes, 2016, 65, 3610-3620.                                                                                                                                                                                                           | 0.6  | 28        |
| 47 | Cholesterol in platelet biogenesis and activation. Blood, 2016, 127, 1949-1953.                                                                                                                                                                                                                                                                             | 1.4  | 82        |
| 48 | LNK/SH2B3 Loss of Function Promotes Atherosclerosis and Thrombosis. Circulation Research, 2016, 119, e91-e103.                                                                                                                                                                                                                                              | 4.5  | 61        |
| 49 | Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Science<br>Translational Medicine, 2016, 8, 333ra50.                                                                                                                                                                                                                         | 12.4 | 271       |
| 50 | High-Density Lipoproteins, Endothelial Function, and Mendelian Randomization. Circulation Research, 2016, 119, 13-15.                                                                                                                                                                                                                                       | 4.5  | 7         |
| 51 | Disordered haematopoiesis and athero-thrombosis. European Heart Journal, 2016, 37, 1113-1121.                                                                                                                                                                                                                                                               | 2.2  | 86        |
| 52 | Atherosclerosis. Circulation Research, 2016, 118, 531-534.                                                                                                                                                                                                                                                                                                  | 4.5  | 245       |
| 53 | Dysfunctional HDL and atherosclerotic cardiovascular disease. Nature Reviews Cardiology, 2016, 13, 48-60.                                                                                                                                                                                                                                                   | 13.7 | 547       |
| 54 | JAK2V617F Promotes Atherosclerosis. Blood, 2016, 128, 706-706.                                                                                                                                                                                                                                                                                              | 1.4  | 1         |

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cholesterol, inflammation and innate immunity. Nature Reviews Immunology, 2015, 15, 104-116.                                                                                                                                                                                   | 22.7 | 1,020     |
| 56 | SORTILIN. Circulation Research, 2015, 116, 764-766.                                                                                                                                                                                                                            | 4.5  | 12        |
| 57 | Increased Systemic and Plaque Inflammation in <i>ABCA1</i> Mutation Carriers With Attenuation by Statins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1663-1669.                                                                                             | 2.4  | 50        |
| 58 | SH2B3/LNK Loss of Function Promotes Atherosclerosis and Thrombosis. Blood, 2015, 126, 3443-3443.                                                                                                                                                                               | 1.4  | 1         |
| 59 | Abstract 523: Regulation of Pancreatic $\hat{l}^2$ -cell Gene Expression and Function by ABCA1 and ABCG1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .                                                                                                      | 2.4  | 0         |
| 60 | Adipose Tissue Macrophages Promote Myelopoiesis and Monocytosis in Obesity. Cell Metabolism, 2014,<br>19, 821-835.                                                                                                                                                             | 16.2 | 395       |
| 61 | Activation of Liver X Receptor Decreases Atherosclerosis in <i>Ldlr</i> <sup> <i>â^'/â^'</i> </sup> Mice in the Absence of ATP-Binding Cassette Transporters A1 and G1 in Myeloid Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 279-284.                | 2.4  | 72        |
| 62 | ATP-Binding Cassette Transporters, Atherosclerosis, and Inflammation. Circulation Research, 2014, 114, 157-170.                                                                                                                                                                | 4.5  | 206       |
| 63 | Interleukin-3/Granulocyte Macrophage Colony–Stimulating Factor Receptor Promotes Stem Cell<br>Expansion, Monocytosis, and Atheroma Macrophage Burden in Mice With Hematopoietic <i>ApoE</i> Deficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 976-984. | 2.4  | 65        |
| 64 | Abstract 20416: Ttc39b Deficiency Has a Beneficial Role on Cholesterol and Triglyceride Absorption in Enterocytes. Circulation, 2014, 130, .                                                                                                                                   | 1.6  | 0         |
| 65 | Abstract 64: Pancreatic ß-CellSpecific Deletion of ABCA1 and ABCG1 Perturbs Glucose Metabolism and<br>Increases Adiposity in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .                                                                             | 2.4  | 0         |
| 66 | Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis.<br>Nature Medicine, 2013, 19, 586-594.                                                                                                                                      | 30.7 | 162       |
| 67 | Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice. Circulation Research, 2013, 112, 1456-1465.                                                                                           | 4.5  | 253       |
| 68 | Pegylation of High-Density Lipoprotein Decreases Plasma Clearance and Enhances Antiatherogenic<br>Activity. Circulation Research, 2013, 113, e1-e9.                                                                                                                            | 4.5  | 43        |
| 69 | Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2547-2552.                                                                                                                                                                                   | 2.4  | 63        |
| 70 | Is it time to revise the HDL cholesterol hypothesis?. Nature Medicine, 2012, 18, 1344-1346.                                                                                                                                                                                    | 30.7 | 241       |
| 71 | Regulation of Hematopoietic Stem and Progenitor Cell Mobilization by Cholesterol Efflux Pathways.<br>Cell Stem Cell, 2012, 11, 195-206.                                                                                                                                        | 11.1 | 217       |
| 72 | Cholesterol Efflux and Atheroprotection. Circulation, 2012, 125, 1905-1919.                                                                                                                                                                                                    | 1.6  | 772       |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Sorting Out Sortilin. Circulation Research, 2011, 108, 158-160.                                                                                                                                                            | 4.5  | 20        |
| 74 | ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. Journal of Clinical Investigation, 2011, 121, 4138-4149.                                  | 8.2  | 431       |
| 75 | ABCA1 and ABCG1 Protect Against Oxidative Stress–Induced Macrophage Apoptosis During<br>Efferocytosis. Circulation Research, 2010, 106, 1861-1869.                                                                         | 4.5  | 160       |
| 76 | ATP-Binding Cassette Transporters and HDL Suppress Hematopoietic Stem Cell Proliferation. Science, 2010, 328, 1689-1693.                                                                                                   | 12.6 | 624       |
| 77 | The Effects of Cholesterol Ester Transfer Protein Inhibition on Cholesterol Efflux. American Journal of Cardiology, 2009, 104, 39E-45E.                                                                                    | 1.6  | 33        |
| 78 | HDL, ABC Transporters, and Cholesterol Efflux: Implications for the Treatment of Atherosclerosis.<br>Cell Metabolism, 2008, 7, 365-375.                                                                                    | 16.2 | 483       |
| 79 | Increased Inflammatory Gene Expression in ABC Transporter–Deficient Macrophages. Circulation, 2008, 118, 1837-1847.                                                                                                        | 1.6  | 392       |
| 80 | Effects of Torcetrapib in Patients at High Risk for Coronary Events. New England Journal of Medicine, 2007, 357, 2109-2122.                                                                                                | 27.0 | 2,811     |
| 81 | Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. Journal of Clinical Investigation, 2007, 117, 3900-8.                                                      | 8.2  | 424       |
| 82 | LXR-Induced Redistribution of ABCG1 to Plasma Membrane in Macrophages Enhances Cholesterol Mass<br>Efflux to HDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1310-1316.                                 | 2.4  | 196       |
| 83 | Cell Surface Localization of ABCG1 Does Not Require LXR Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, .                                                                                        | 2.4  | 0         |
| 84 | Properties of ApoA-I Milano. Nature Reviews Drug Discovery, 2005, 4, 698-698.                                                                                                                                              | 46.4 | 0         |
| 85 | Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice FASEB Journal, 2005, 19, 1-16.                                                                               | 0.5  | 106       |
| 86 | ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density<br>lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2004,<br>101, 9774-9779. | 7.1  | 939       |
| 87 | Cholesteryl Ester Transfer Protein. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 160-167.                                                                                                                 | 2.4  | 780       |
| 88 | ATVB In Focus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 710-711.                                                                                                                                      | 2.4  | 48        |
| 89 | MIghty Mouse. Circulation Research, 2002, 90, 244-245.                                                                                                                                                                     | 4.5  | 3         |
| 90 | Regulation and mechanisms of macrophage cholesterol efflux. Journal of Clinical Investigation, 2002, 110, 899-904.                                                                                                         | 8.2  | 82        |

| #   | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Therapeutic modulation of cellular cholesterol efflux. Current Atherosclerosis Reports, 2001, 3, 345-347.                                                                                                     | 4.8  | 3         |
| 92  | Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency. Nature Medicine, 2001, 7, 847-852.                                                        | 30.7 | 243       |
| 93  | â€~Orphans' meet cholesterol. Nature Medicine, 2000, 6, 1104-1105.                                                                                                                                            | 30.7 | 16        |
| 94  | Perspectives for vascular genomics. Nature, 2000, 407, 265-269.                                                                                                                                               | 27.8 | 49        |
| 95  | Specific Binding of ApoA-I, Enhanced Cholesterol Efflux, and Altered Plasma Membrane Morphology in<br>Cells Expressing ABC1. Journal of Biological Chemistry, 2000, 275, 33053-33058.                         | 3.4  | 520       |
| 96  | Sterol-dependent Transactivation of theABC1 Promoter by the Liver X Receptor/Retinoid X Receptor.<br>Journal of Biological Chemistry, 2000, 275, 28240-28245.                                                 | 3.4  | 874       |
| 97  | 1999 George Lyman Duff Memorial Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1185-1188.                                                                                             | 2.4  | 116       |
| 98  | Receptors and Lipid Transfer Proteins in HDL Metabolism. Annals of the New York Academy of Sciences, 2000, 902, 103-112.                                                                                      | 3.8  | 41        |
| 99  | Macrophage-Specific Expression of Human Collagenase (MMP-1) in Transgenic Mice. Annals of the New<br>York Academy of Sciences, 1999, 878, 736-739.                                                            | 3.8  | 7         |
| 100 | Remodeling of HDL by CETP in vivo and by CETP and hepatic lipase in vitro results in enhanced uptake of<br>HDL CE by cells expressing scavenger receptor B-I. Journal of Lipid Research, 1999, 40, 1185-1193. | 4.2  | 109       |
| 101 | PLASMA LIPID TRANSFER PROTEINS, HIGH-DENSITY LIPOPROTEINS, AND REVERSE CHOLESTEROL TRANSPORT.<br>Annual Review of Nutrition, 1998, 18, 297-330.                                                               | 10.1 | 242       |
| 102 | Increased High-Density Lipoprotein Levels Caused by a Common Cholesteryl-Ester Transfer Protein<br>Gene Mutation. New England Journal of Medicine, 1990, 323, 1234-1238.                                      | 27.0 | 802       |
| 103 | Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature, 1989, 342, 448-451.                                                                        | 27.8 | 476       |
| 104 | Absence of liquid crystalline transitions of cholesterol esters in reconstituted low density lipoproteins. FEBS Letters, 1979, 107, 222-226.                                                                  | 2.8  | 11        |