Ding Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6083807/publications.pdf

Version: 2024-02-01

141	3,373	32	49
papers	citations	h-index	g-index
143	143	143	3289
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Enhancing the tribological properties and corrosion resistance of graphene-based lubricating grease via ultrasonic-assisted ball milling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127889.	2.3	12
2	Fe,N-modulated carbon fibers aerogel as freestanding cathode catalyst for rechargeable Zn–Air battery. Carbon, 2022, 187, 196-206.	5.4	31
3	Highly Dispersive Co@Nâ€C Catalyst as Freestanding Bifunctional Cathode for Flexible and Rechargeable Zinc–air Batteries. Energy and Environmental Materials, 2022, 5, 543-554.	7.3	11
4	Synthesis of MOFs for RhB Adsorption from Wastewater. Inorganics, 2022, 10, 27.	1.2	17
5	Preparation of metal–organic frameworks by microwave-assisted ball milling for the removal of CR from wastewater. Green Processing and Synthesis, 2022, 11, 595-603.	1.3	13
6	Mesoporous VCN Nanobelts for High-Performance Flexible Zn-Ion Batteries. Energies, 2022, 15, 4932.	1.6	4
7	Structural limiting factors of mixed-valent tin oxides in photoelectrochemical application: A comparative exploration. Journal of Energy Chemistry, 2021, 56, 504-511.	7.1	6
8	Ultralight and robust carbon nanofiber aerogels for advanced energy storage. Journal of Materials Chemistry A, 2021, 9, 900-907.	5.2	23
9	Preparation of Zn-MOFs by microwave-assisted ball milling for removal of tetracycline hydrochloride and Congo red from wastewater. Green Processing and Synthesis, 2021, 10, 125-133.	1.3	27
10	Synergistic promotion of photoelectrochemical water splitting efficiency of TiO ₂ nanorod arrays by doping and surface modification. Journal of Materials Chemistry C, 2021, 9, 12263-12272.	2.7	24
11	A comparison study of the yield surface exponent of the Barlat yield function on the forming limit curve prediction of zirconium alloys with M-K method. International Journal of Material Forming, 2021, 14, 467-484.	0.9	6
12	Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader. ACS Nano, 2021, 15, 6489-6498.	7.3	191
13	Influence of Cr and Al to FeCoNiCr <i>_x</i> Al _{2-<i>x</i>} alloys synthesised by mechanochemistry. Materials Science and Technology, 2021, 37, 545-551.	0.8	3
14	High energy density and extremely stable supercapacitors based on carbon aerogels with 100% capacitance retention up to $65,000$ cycles. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	36
15	Soft and Selfâ€Adhesive Thermal Interface Materials Based on Vertically Aligned, Covalently Bonded Graphene Nanowalls for Efficient Microelectronic Cooling. Advanced Functional Materials, 2021, 31, 2104062.	7.8	95
16	Removal of organic contaminants from wastewater with GO/MOFs composites. PLoS ONE, 2021, 16, e0253500.	1.1	19
17	High temperature nano-indentation on the mechanical properties of Zr and Zr–Fe alloys: Experimental and theoretical analysis. Mechanics of Materials, 2021, 162, 104053.	1.7	8
18	Crack prediction in sheet forming of zirconium alloys used in nuclear fuel assembly by support vector machine method. Energy Reports, 2021, 7, 5922-5932.	2.5	8

#	Article	IF	Citations
19	Removal of tetracycline hydrochloride from wastewater by Zr/Fe-MOFs/GO composites. RSC Advances, 2021, 11, 9977-9984.	1.7	40
20	Synthesis and Characterization of Cobalt Metal Organic Frameworks Prepared by Ultrasonic Wave-Assisted Ball Milling for Adsorptive Removal of Congo Red Dye from Aqueous Solutions. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1231-1240.	1.9	11
21	Preparation of chemically functionalized graphene with excellent dispersibility and tribological properties as lubricant additives by microwave-assisted ball milling. Journal of Molecular Liquids, 2021, 344, 117929.	2.3	7
22	Adsorptive and Photocatalytic Dye Removal from Wastewater Using Metal-Organic Frameworks. IOP Conference Series: Materials Science and Engineering, 2020, 782, 052002.	0.3	0
23	Numerical investigations of water droplet dynamics in micro-channels considering contact angle hysteresis. Journal of Power Sources, 2020, 479, 229104.	4.0	4
24	Dispersion stability and tribological properties of additives introduced by ultrasonic and microwave assisted ball milling in oil. RSC Advances, 2020, 10, 25177-25185.	1.7	13
25	Formation of Cu2O Solid Solution via High-Frequency Electromagnetic Field-Assisted Ball Milling: The Reaction Mechanism. Materials, 2020, 13, 618.	1.3	6
26	Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect. Journal of Materials Chemistry A, 2020, 8, 10310-10317.	5.2	28
27	Numerical analysis on the performance of an SCR monolith reactor. Korean Journal of Chemical Engineering, 2020, 37, 604-613.	1.2	4
28	Effect of Chemical Bonding on the Thermal Stability of Cu–Zr-Rich Cu–Zr–Al Bulk Metallic Glasses. Physics of Metals and Metallography, 2019, 120, 667-671.	0.3	4
29	Preparation of FeOOH/Cu with High Catalytic Activity for Degradation of Organic Dyes. Materials, 2019, 12, 338.	1.3	7
30	Synthesis of Graphene Oxide/Metalâ€Organic Frameworks Composite Materials for Removal of Congo Red from Wastewater. ChemistrySelect, 2019, 4, 5755-5762.	0.7	29
31	Hydrogenated TiO ₂ Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19167-19175.	4.0	122
32	The N and P co-doping-induced giant negative piezoresistance behaviors of SiC nanowires. Journal of Materials Chemistry C, 2019, 7, 3181-3189.	2.7	17
33	Preparation of Fe(III)-MOFs by microwave-assisted ball for efficiently removing organic dyes in aqueous solutions under natural light. Chemical Engineering and Processing: Process Intensification, 2019, 135, 63-67.	1.8	42
34	Synthesis of Mn ₃ O ₄ Nanoparticles for Catalytic Application via Ultrasoundâ€Assisted Ball Milling. ChemistrySelect, 2018, 3, 3904-3908.	0.7	8
35	Development of non-flammable high strength extruded Mg-Al-Ca-Mn alloys with high Ca/Al ratio. Journal of Materials Science and Technology, 2018, 34, 2063-2068.	5.6	44
36	Degradation of p-Nitrophenol by Nanoscale Zero-Valent Iron Produced by Microwave-Assisted Ball Milling. Journal of Environmental Engineering, ASCE, 2018, 144, .	0.7	7

#	Article	IF	CITATIONS
37	Synthesis of graphene oxide/metal–organic frameworks hybrid materials for enhanced removal of Methylene blue in acidic and alkaline solutions. Journal of Chemical Technology and Biotechnology, 2018, 93, 698-709.	1.6	46
38	Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters. Applied Surface Science, 2018, 435, 809-814.	3.1	77
39	Synthesis of Cuâ€BTC Metalâ€Organic Framework by Ultrasonic Waveâ€Assisted Ball Milling with Enhanced Congo Red Removal Property. ChemistrySelect, 2018, 3, 11435-11440.	0.7	15
40	Effect of Ceramic Rolling and Annealing on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys. Journal of Materials Engineering and Performance, 2018, 27, 3566-3573.	1.2	17
41	Comparison Study on the Adsorption Capacity of Rhodamine B, Congo Red, and Orange II on Fe-MOFs. Nanomaterials, 2018, 8, 248.	1.9	45
42	Investigation on the Static Fatigue Mechanism and Effect of Specimen Thickness on the Static Fatigue Lifetime in WC–Co Cemented Carbides. Journal of Superhard Materials, 2018, 40, 118-126.	0.5	1
43	Boosting the photoelectrochemical activities of all-inorganic perovskite SrTiO ₃ nanofibers by engineering homo/hetero junctions. Journal of Materials Chemistry A, 2018, 6, 17530-17539.	5.2	13
44	Effect of structures on the adsorption performance of Cobalt Metal Organic Framework obtained by microwave-assisted ball milling. Chemical Physics Letters, 2018, 705, 23-30.	1.2	22
45	Removal of hexavalent chromium from contaminated waters by ultrasound-assisted aqueous solution ball milling. Journal of Environmental Sciences, 2017, 52, 276-283.	3.2	16
46	High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. Journal of Materials Chemistry C, 2017, 5, 1880-1884.	2.7	54
47	Synthesis and catalytic performance of antimony trioxide nanoparticles by ultrasonic-assisted solid-liquid reaction ball milling. Advanced Powder Technology, 2017, 28, 1136-1140.	2.0	5
48	The decolorization and mineralization of orange II by microwave-assisted ball milling. Water Science and Technology, 2017, 75, 2784-2790.	1.2	0
49	Synthesis and characterization of metal–organic frameworks fabricated by microwave-assisted ball milling for adsorptive removal of Congo red from aqueous solutions. RSC Advances, 2017, 7, 46520-46528.	1.7	63
50	High-Quality Monolithic Graphene Films via Laterally Stitched Growth and Structural Repair of Isolated Flakes for Transparent Electronics. Chemistry of Materials, 2017, 29, 7808-7815.	3.2	38
51	Effect of Al-Zr clusters on the thermal stability of Cu-Zr-rich Cu-Zr-Al bulk metallic glasses. Philosophical Magazine Letters, 2017, 97, 393-398.	0.5	1
52	Preparation of Fe-MOFs by microwave-assisted ball milling for reducing Cr(<scp>vi</scp>) in wastewater. Dalton Transactions, 2017, 46, 16525-16531.	1.6	36
53	Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling. Ultrasonics Sonochemistry, 2017, 39, 845-852.	3.8	126
54	Synthesis of CuO nanoparticles for catalytic application via ultrasound-assisted ball milling. Processing and Application of Ceramics, 2017, 11, 39-44.	0.4	16

#	Article	IF	CITATIONS
55	Tuning the mechanical performance of Cu42Zr42Ag10Ti6 bulk metallic glass upon ceramic rolling. Journal of Alloys and Compounds, 2016, 688, 903-909.	2.8	1
56	Small Energy Multi-Impact and Static Fatigue Properties of Cemented Carbides. Powder Metallurgy and Metal Ceramics, 2016, 55, 312-318.	0.4	1
57	A study of the mechanism of microwave-assisted ball milling preparing ZnFe2O4. Journal of Magnetism and Magnetic Materials, 2016, 409, 6-9.	1.0	22
58	Microstructure, mechanical and creep properties of high Ca/Al ratio Mg-Al-Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 660, 166-171.	2.6	31
59	Synthesis of Co-substituted Mn-Zn ferrite nanoparticles by mechanochemistry approach. Journal of Electroceramics, 2016, 36, 158-164.	0.8	8
60	Preparation and photocatalytic properties of zinc oxide nanoparticles by microwave-assisted ball milling. Ceramics International, 2016, 42, 3692-3696.	2.3	48
61	Surface modification of titanium hydride with epoxy resin by ultrasonic wave-assisted ball milling. High Performance Polymers, 2016, 28, 281-287.	0.8	9
62	Microstructure and tensile creep resistance of Mg-5.5%Zn-(0.7%, 1.5%, 3.5%, 7.5%)Y alloys. Journal of Central South University, 2015, 22, 4112-4122.	1.2	7
63	Effect of ceramic rolling on the mechanical properties of Ti42.5Cu42.5Ni10Zr5 bulk metallic glass composite. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2015, 646, 90-95.	2.6	4
64	Preparation and microwave absorption properties of Ni–Co nanoferrites. Journal of Alloys and Compounds, 2015, 618, 222-226.	2.8	87
65	Analyses of factors affecting nickel ferrite nanoparticles synthesis in ultrasound-assisted aqueous solution ball milling. Ultrasonics Sonochemistry, 2015, 22, 188-197.	3.8	15
66	Synthesis of <scp>C</scp> o <scp>F</scp> e ₂ <scp>O</scp> ₄ Nanoparticles by a Low Temperature Microwaveâ€Assisted Ballâ€Milling Technique. International Journal of Applied Ceramic Technology, 2014, 11, 954-959.	1.1	20
67	Synthesis and microwave absorbing properties of Mn–Zn nanoferrite produced by microwave assisted ball milling. Journal of Materials Science: Materials in Electronics, 2014, 25, 4246-4251.	1.1	22
68	Arc Erosion Wear Characteristics and Mechanisms of Pure Carbon Strip Against Copper Under Arcing Conditions. Tribology Letters, 2014, 53, 293-301.	1.2	23
69	Cryogenic treatment induced hardening of Cu45Zr45Ag7Al3 bulk metallic glass. Physica B: Condensed Matter, 2014, 433, 84-88.	1.3	12
70	Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling. Applied Surface Science, 2014, 316, 632-636.	3.1	17
71	Crystallization kinetics of Zr 60 Cu 25 Fe 5 Al 10 bulk metallic glass. Journal of Non-Crystalline Solids, 2014, 405, 7-11.	1.5	40
72	Process of synthesizing high saturation magnetization Ni 0.5 Zn 0.5 Fe 2 O 4 by microwave assisted ball milling. Materials Letters, 2014, 133, 259-261.	1.3	21

#	Article	IF	CITATIONS
73	Preparation of ZnxCo1â^'xFe2O4 nanoparticles by microwave-assisted ball milling. Ceramics International, 2014, 40, 14687-14692.	2.3	11
74	Electrochemical deposition of Al-doped ZnO transparent conducting nanowire arrays for thin-film solar cell electrodes. Materials Letters, 2014, 117, 162-164.	1.3	32
75	Synthesis of Mn–Zn ferrite nanoparticles by the coupling effect of ultrasonic irradiation and mechanical forces. Journal of Alloys and Compounds, 2014, 609, 21-24.	2.8	8
76	The influence of pH on thermal fatigue crack propagation behavior of WC–8Co cemented carbide. International Journal of Refractory Metals and Hard Materials, 2013, 40, 14-18.	1.7	3
77	One-step synthesis of zinc ferrite nanoparticles by ultrasonic wave-assisted ball milling technology. Ceramics International, 2013, 39, 4669-4672.	2.3	11
78	Synthesis and compressive fracture behavior of a CuZr-based bulk amorphous alloy with Ti addition. Journal of Central South University, 2013, 20, 1137-1141.	1.2	3
79	Coupling Effect of Microwave and Mechanical Forces during the Synthesis of Ferrite Nanoparticles by Microwave-Assisted Ball Milling. Industrial & Engineering Chemistry Research, 2013, 52, 14179-14184.	1.8	34
80	A low temperature synthesis of MnFe2O4 nanocrystals by microwave-assisted ball-milling. Chemical Engineering Journal, 2013, 215-216, 235-239.	6.6	64
81	Four-point-bending-fatigue behavior of the Cu45Zr45Ag7Al3 bulk metallic glass. Journal of Non-Crystalline Solids, 2013, 370, 31-36.	1.5	14
82	Isochronal and isothermal phase transformation of Cu45Zr45Ag7Al3 bulk metallic glass. Physica B: Condensed Matter, 2013, 411, 149-153.	1.3	20
83	Effect of Ti substitution on glass-forming ability and mechanical properties of a brittle Cu–Zr–Al bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 563, 112-116.	2.6	27
84	Cryogenic treatment induced hardening for Cu-Zr-Ag-Al bulk metallic glasses. Science China Technological Sciences, 2013, 56, 637-641.	2.0	7
85	Preparation of magnesium ferrite nanoparticles by ultrasonic wave-assisted aqueous solution ball milling. Ultrasonics Sonochemistry, 2013, 20, 1337-1340.	3.8	56
86	Effect of Cu/Zr content ratio on the thermal stability of Cu–Zr-rich Cu–Zr–Al BMGs. Philosophical Magazine Letters, 2013, 93, 283-291.	0.5	4
87	Hydrolysis of birch wood by simultaneous ball milling, dilute citric acid, and fungus <i>Penicillium simplicissimum</i> treatment at room temperature. Journal of Applied Polymer Science, 2013, 128, 3338-3345.	1.3	7
88	Deformation mechanism and softening effect of extruded AZ31 magnesium alloy sheet at moderate temperatures. Transactions of Nonferrous Metals Society of China, 2012, 22, 1329-1335.	1.7	11
89	Effect of Cryogenic Treatment on Deformation Behavior of As-cast AZ91 Mg Alloy. Chinese Journal of Aeronautics, 2012, 25, 931-936.	2.8	35
90	Synthesis of NiFe2O4 nanoparticles by a low temperature microwave-assisted ball milling technique. Science China Technological Sciences, 2012, 55, 1535-1538.	2.0	17

#	Article	IF	Citations
91	One Step Conversion of Wheat Straw to Sugars by Simultaneous Ball Milling, Mild Acid, and Fungus Penicillium simplicissimum Treatment. Applied Biochemistry and Biotechnology, 2012, 167, 39-51.	1.4	12
92	One-step decomposition of basic carbonates into single-phase crystalline metallic oxides nanoparticle by ultrasonic wave-assisted ball milling technology. Ceramics International, 2012, 38, 821-825.	2.3	18
93	One-step synthesis of manganese ferrite nanoparticles by ultrasonic wave-assisted ball milling technology. Materials Chemistry and Physics, 2012, 134, 921-924.	2.0	47
94	One-step synthesis of nickel ferrite nanoparticles by ultrasonic wave-assisted ball milling technology. Materials Letters, 2012, 72, 95-97.	1.3	24
95	Preparation of high saturation magnetic MgFe2O4 nanoparticles by microwave-assisted ball milling. Materials Letters, 2012, 82, 10-12.	1.3	61
96	Predicting the eutectic compositions of four multicomponent alloy systems by a simple approach. Journal of Alloys and Compounds, 2011, 509, 648-650.	2.8	6
97	Effect of cryogenic treatment on WC–Co cemented carbides. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1735-1739.	2.6	79
98	Producing ternary intermetallic compounds powders by solid–liquid reaction ball milling. Journal of Materials Science, 2010, 45, 3438-3441.	1.7	2
99	Simultaneous wet ball milling and mild acid hydrolysis of rice hull. Journal of Chemical Technology and Biotechnology, 2010, 85, 85-90.	1.6	14
100	Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydrate Polymers, 2010, 82, 600-604.	5.1	58
101	Oneâ€Step Synthesis of Zn to Singleâ€Phase Nanocrystalline ZnO by Solid–Liquid Reaction Ball Milling Assisted by Ultrasonic Wave. Journal of the American Ceramic Society, 2010, 93, 2675-2678.	1.9	10
102	Production of intermetallic compound powders by a mechanochemical approach: solid–liquid reaction ball milling. , 2010, , 149-166.		3
103	Predicting the thermal stability of RE-based bulk metallic glasses. Intermetallics, 2010, 18, 74-76.	1.8	16
104	Cryogenic treatment-induced martensitic transformation in Cu–Zr–Al bulk metallic glass composite. Intermetallics, 2010, 18, 1254-1257.	1.8	25
105	Preparation of Cu2O nanoparticles in cupric chloride solutions with a simple mechanochemical approach. Journal of Alloys and Compounds, 2010, 504, S345-S348.	2.8	24
106	Effects of the casting temperature on microstructure and mechanical properties of the squeeze-cast Al–Zn–Mg–Cu alloy. Journal of Alloys and Compounds, 2010, 504, L42-L45.	2.8	64
107	Effect of cryogenic treatment on microstructure and mechanical behaviors of the Cu-based bulk metallic glass matrix composite. Journal of Alloys and Compounds, 2010, 505, 319-323.	2.8	11
108	Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy. Materials and Manufacturing Processes, 2010, 25, 837-841.	2.7	55

#	Article	IF	CITATIONS
109	ABRASIVE WEAR BEHAVIOR OF WC REINFORCED Ni -BASED COMPOSITE COATING SPRAYED AND FUSED BY OXY-ACETYLENE FLAME. Surface Review and Letters, 2009, 16, 475-485.	0.5	5
110	The microstructure, optical, and electrical properties of sol–gel-derived Sc-doped and Al–Sc co-doped ZnO thin films. Applied Surface Science, 2009, 255, 9413-9419.	3.1	78
111	Microstructure and mechanical properties of AZ31 magnesium alloy sheets produced by differential speed rolling. Journal of Materials Processing Technology, 2009, 209, 26-31.	3.1	51
112	Densification of large-size spray-deposited Al–Mg alloy square preforms via a novel wedge pressing technology. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2009, 506, 152-156.	2.6	7
113	Optimization of the process for preparing Al-doped ZnO thin films by sol-gel method. Science in China Series D: Earth Sciences, 2009, 52, 88-94.	0.9	13
114	Deformation Behavior of AZ31 Magnesium Alloy During Tension at Moderate Temperatures. Journal of Materials Engineering and Performance, 2009, 18, 966-972.	1.2	11
115	Phase transformation regularities of Zn in the solution systems by solid–liquid reaction milling. Journal of Non-Crystalline Solids, 2009, 355, 1602-1604.	1.5	1
116	Effects of Si addition on microstructure and mechanical properties of RS/PM (rapid solidification and) Tj ETQq0 C	0 rgBT /C	overlock 10 Tf
117	Investigation on microstructures and properties of rapidly solidified Mg–6wt.% Zn–5wt.% Ca–3wt.% Ce alloy. Journal of Alloys and Compounds, 2009, 475, L1-L4.	2.8	26
118	Preparation of several aluminum alloys by solid–liquid mixed casting process. Journal of Alloys and Compounds, 2009, 475, 469-472.	2.8	13
119	Bulk metallic glass-forming region of Cu–Zr binary and Cu–Zr based multicomponent alloy systems. Journal of Alloys and Compounds, 2009, 477, 432-435.	2.8	18
120	Preparation of Al–Mo intermetallic powders by solid–liquid reaction ball milling. Journal of Alloys and Compounds, 2009, 485, L9-L11.	2.8	7
121	Microstructural evolution and its effects on mechanical properties of spray deposited SiCp/8009Al composites during secondary processing. Transactions of Nonferrous Metals Society of China, 2009, 19, 1116-1120.	1.7	10
122	Bulk Metallic Glass-Forming Region of Four Multicomponent Alloy Systems. Materials Transactions, 2009, 50, 1240-1242.	0.4	9
123	Many-stage gas bulging forming of sheet magnesium alloy AZ311. Metal Science and Heat Treatment, 2008, 50, 110-114.	0.2	2
124	Improving the Tribological Behavior of Graphite/Cu Matrix Self-Lubricating Composite Contact Strip by Electroplating Zn on Graphite. Tribology Letters, 2008, 31, 91-98.	1.2	28
125	Phase formation regularities of ultrafine TiAl, NiAl and FeAl intermetallic compound powders during solid–liquid reaction milling. Journal of Alloys and Compounds, 2008, 457, 292-295.	2.8	11
126	Preparation of Wâ€"Al intermetallic compound powders by a mechanochemical approach. Journal of Alloys and Compounds, 2008, 461, L23-L25.	2.8	20

#	Article	IF	CITATIONS
127	Tribological behavior and wear mechanism of resin-matrix contact strip against copper with electrical current. Transactions of Nonferrous Metals Society of China, 2008, 18, 1157-1163.	1.7	9
128	Twinning in weld HAZ of ZK21 commercial magnesium alloy. Transactions of Nonferrous Metals Society of China, 2008, 18, s81-s85.	1.7	2
129	Microstructures and properties of rapidly solidified Mg-Zn-Ca alloys. Transactions of Nonferrous Metals Society of China, 2008, 18, s101-s106.	1.7	28
130	Warm deformation mechanism of hot-rolled Mg alloy. Transactions of Nonferrous Metals Society of China, 2008, 18, s150-s155.	1.7	3
131	Microstructure characterisation and mechanical properties of rapidly solidified Mg–Zn–Ca alloys with Ce addition. Materials Science and Technology, 2008, 24, 848-855.	0.8	11
132	Preparation of Nano-Particles of Metal Oxides via a Novel Solid-Liquid Mechanochemical Reaction Technology. Advanced Materials Research, 2007, 26-28, 671-674.	0.3	4
133	Preparation of the Al-Cu-Co and Al-Cu-Ni Ternary Intermetallic Powders via a Solid-Liquid Reaction Ball Milling Technique. Materials Science Forum, 2007, 561-565, 363-366.	0.3	2
134	Thermal stability and magnetic properties of Gd–Fe–Al bulk amorphous alloys. Journal of Alloys and Compounds, 2007, 440, 199-203.	2.8	19
135	Thermal stability and mechanical properties of Gd-Co-Al bulk glass alloys. Transactions of Nonferrous Metals Society of China, 2007, 17, 1220-1224.	1.7	5
136	Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill. Particuology: Science and Technology of Particles, 2007, 5, 357-358.	0.4	52
137	Synthesis of binary and ternary intermetallic powders via a novel reaction ball milling technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 1-5.	2.6	21
138	Gd–Co–Al and Gd–Ni–Al bulk metallic glasses with high glass forming ability and good mechanical properties. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2007, 457, 226-230.	2.6	48
139	Gd–Ni–Al bulk glasses with great glass-forming ability and better mechanical properties. Journal of Materials Science, 2007, 42, 8662-8666.	1.7	12
140	Preparation of the Al–Cu–Fe & Al–Fe–Si ternary intermetallic powders via a novel reaction ball milling technique. Journal of Alloys and Compounds, 2004, 376, 89-94.	2.8	11
141	Growth of the Sol-Gel Based ZnO:Al Thin Films with High Doping Concentration. Advanced Materials Research, 0, 485, 144-148.	0.3	2