Pascal Jonkheijm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/608226/publications.pdf

Version: 2024-02-01

		36303	25787
140	12,142	51	108
papers	citations	h-index	g-index
159	159	159	12690
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Supramolecular Biomaterials in the Netherlands. Tissue Engineering - Part A, 2022, , .	3.1	3
2	Endothelial cell spreading on lipid bilayers with combined integrin and cadherin binding ligands. Bioorganic and Medicinal Chemistry, 2022, , 116850.	3.0	2
3	The regenerative effect of different growth factors and platelet lysate on meniscus cells and mesenchymal stromal cells and proof of concept with a functionalized meniscus implant. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 648-659.	2.7	10
4	Macroscopic Supramolecular Assembly Strategy to Construct 3D Biocompatible Microenvironments with Site-Selective Cell Adhesion. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28774-28781.	8.0	21
5	RGDâ€functionalized supported lipid bilayers modulate preâ€osteoblast adherence and promote osteogenic differentiation. Journal of Biomedical Materials Research - Part A, 2020, 108, 923-937.	4.0	5
6	Multivalency in Heteroternary Complexes on Cucurbit[8]urilâ€Functionalized Surfaces: Selfâ€assembly, Patterning, and Exchange Processes. ChemPlusChem, 2019, 84, 1324-1330.	2.8	5
7	Weak Multivalent Binding of Influenza Hemagglutinin Nanoparticles at a Sialoglycan-Functionalized Supported Lipid Bilayer. ACS Nano, 2019, 13, 3413-3423.	14.6	45
8	Microwell Scaffolds Using Collagen-IV and Laminin-111 Lead to Improved Insulin Secretion of Human Islets. Tissue Engineering - Part C: Methods, 2019, 25, 71-81.	2.1	14
9	Compartmentalized supramolecular hydrogels based on viral nanocages towards sophisticated cargo administration. Nanoscale, 2018, 10, 4123-4129.	5.6	14
10	Orthogonal supramolecular protein assembly on patterned bifunctional surfaces. Chemical Communications, 2018, 54, 1615-1618.	4.1	5
11	Photoâ€responsive Bioactive Surfaces Based on Cucurbit[8]urilâ€Mediated Host–Guest Interactions of Arylazopyrazoles. Chemistry - A European Journal, 2018, 24, 813-817.	3.3	33
12	About Chemical Strategies to Fabricate Cellâ€Instructive Biointerfaces with Static and Dynamic Complexity. Advanced Healthcare Materials, 2018, 7, e1701192.	7.6	25
13	Lipid bilayers cushioned with polyelectrolyte-based films on doped silicon surfaces. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2669-2680.	2.6	12
14	Re―and Preconfigurable Multistable Visible Light Responsive Surface Topographies. Small, 2018, 14, e1803274.	10.0	28
15	Fibronectin and Collagen IV Microcontact Printing Improves Insulin Secretion by INS1E Cells. Tissue Engineering - Part C: Methods, 2018, 24, 628-636.	2.1	12
16	Bioactive Tape With BMP-2 Binding Peptides Captures Endogenous Growth Factors and Accelerates Healing After Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 2018, 46, 2905-2914.	4.2	25
17	Peptide and protein printing for tissue regeneration and repair. , 2018, , 229-243.		2
18	Hydrolytically Labile Linkers Regulate Release and Activity of Human Bone Morphogenetic Protein-6. Langmuir, 2018, 34, 9298-9306.	3.5	3

#	Article	IF	Citations
19	Acoustic Trapping of Proteins under Physiological Conditions. ACS Central Science, 2018, 4, 950-951.	11.3	O
20	Stimuliâ€Responsive Cucurbit[n]urilâ€Mediated Hostâ€Guest Complexes on Surfaces. Israel Journal of Chemistry, 2018, 58, 314-325.	2.3	22
21	Photoresponsive, reversible immobilization of virus particles on supramolecular platforms. Chemical Communications, 2017, 53, 1896-1899.	4.1	14
22	TGF- \hat{l}^21 activation in human hamstring cells through growth factor binding peptides on polycaprolactone surfaces. Acta Biomaterialia, 2017, 53, 165-178.	8.3	29
23	Assessment of Cooperativity in Ternary Peptideâ€Cucurbit[8]uril Complexes. Chemistry - A European Journal, 2017, 23, 4046-4050.	3.3	18
24	Lightâ€Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration. Advanced Materials, 2017, 29, 1606407.	21.0	90
25	Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces. Langmuir, 2017, 33, 8813-8820.	3.5	20
26	Cell Adhesion on Dynamic Supramolecular Surfaces Probed by Fluid Force Microscopy-Based Single-Cell Force Spectroscopy. ACS Nano, 2017, 11, 3867-3874.	14.6	31
27	Electron-Transfer Rates in Host–Guest Assemblies at β-Cyclodextrin Monolayers. Langmuir, 2017, 33, 8614-8623.	3.5	10
28	Electron Transfer Mediated by Surfaceâ€∓ethered Redox Groups in Nanofluidic Devices. Small, 2017, 13, 1603268.	10.0	7
29	Electron Transfer Processes in Ferrocene-Modified Poly(ethylene glycol) Monolayers on Electrodes. Langmuir, 2017, 33, 11878-11883.	3.5	27
30	Supramolecular Wearable Sensors. CheM, 2017, 3, 531-533.	11.7	5
31	Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags. ACS Nano, 2017, 11, 9068-9083.	14.6	44
32	Biointerfaces: Lightâ€Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration (Adv. Mater. 27/2017). Advanced Materials, 2017, 29, .	21.0	0
33	Targeting protein-loaded CB[8]-mediated supramolecular nanocarriers to cells. RSC Advances, 2017, 7, 54341-54346.	3.6	5
34	Guiding hMSC Adhesion and Differentiation on Supported Lipid Bilayers. Advanced Healthcare Materials, 2017, 6, 1600862.	7.6	27
35	Small molecule absorption by PDMS in the context of drug response bioassays. Biochemical and Biophysical Research Communications, 2017, 482, 323-328.	2.1	312
36	A Microfluidic Device with Continuous Ligand Gradients in Supported Lipid Bilayers to Probe Effects of Ligand Surface Density and Solution Shear Stress on Pathogen Adhesion. Advanced Materials Interfaces, 2016, 3, 1600055.	3.7	8

#	Article	IF	CITATIONS
37	Modulating the Nucleated Selfâ€Assembly of Triâ€Î² ³ â€Peptides Using Cucurbit[<i>n</i>) urils. Chemistry - A European Journal, 2016, 22, 12675-12679.	3.3	4
38	Functionalizing the glycocalyx of living cells with supramolecular guest ligands for cucurbit[8]uril-mediated assembly. Chemical Communications, 2016, 52, 7146-7149.	4.1	19
39	Analysis Chip Devices: A Microfluidic Device with Continuous Ligand Gradients in Supported Lipid Bilayers to Probe Effects of Ligand Surface Density and Solution Shear Stress on Pathogen Adhesion (Adv. Mater. Interfaces 9/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	0
40	Scaffolding of Cystineâ€Stabilized Miniproteins. ChemistrySelect, 2016, 1, 1039-1046.	1.5	2
41	Selfâ€Assembly of Proteins: Towards Supramolecular Materials. Chemistry - A European Journal, 2016, 22, 15570-15582.	3.3	54
42	Bio-inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor-Embedded Hydrogel Matrices. ChemistryOpen, 2016, 5, 331-338.	1.9	8
43	Agglutination of bacteria using polyvalent nanoparticles of aggregation-induced emissive thiophthalonitrile dyes. Journal of Materials Chemistry B, 2016, 4, 4732-4738.	5.8	30
44	Redox-active host-guest supramolecular assemblies of peptides and proteins at surfaces. European Polymer Journal, 2016, 83, 380-389.	5.4	18
45	Programmed disassembly of supramolecular nanoparticles stabilized by heteroternary CB[8] host-guest interactions. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 146-152.	3.9	2
46	Photoresponsive Materials: Photoresponsive Cucurbit[8]uril-Mediated Adhesion of Bacteria on Supported Lipid Bilayers (Small 46/2015). Small, 2015, 11, 6186-6186.	10.0	1
47	Effects of Variations in Ligand Density on Cell Signaling. Small, 2015, 11, 5184-5199.	10.0	34
48	Supramolecular Protein Immobilization on Lipid Bilayers. Chemistry - A European Journal, 2015, 21, 18466-18473.	3.3	26
49	Photoresponsive Cucurbit[8]urilâ€Mediated Adhesion of Bacteria on Supported Lipid Bilayers. Small, 2015, 11, 6187-6196.	10.0	42
50	Supported Lipid Bilayers for the Generation of Dynamic Cell–Material Interfaces. Advanced Healthcare Materials, 2015, 4, 2743-2779.	7.6	68
51	Incorporating Bacteria as a Living Component in Supramolecular Self-Assembled Monolayers through Dynamic Nanoscale Interactions. ACS Nano, 2015, 9, 3579-3586.	14.6	49
52	Supramolecular Surface Immobilization of Knottin Derivatives for Dynamic Display of High Affinity Binders. Bioconjugate Chemistry, 2015, 26, 1972-1980.	3.6	16
53	Carboraneâ€"β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. Journal of Materials Chemistry B, 2015, 3, 539-545.	5.8	47
54	Optical control over bioactive ligands at supramolecular surfaces. Chemical Communications, 2014, 50, 15144-15147.	4.1	41

#	Article	IF	CITATIONS
55	Dual Stimuliâ€Responsive Selfâ€Assembled Supramolecular Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 3400-3404.	13.8	136
56	On-Chip Electrophoresis in Supported Lipid Bilayer Membranes Achieved Using Low Potentials. Journal of the American Chemical Society, 2014, 136, 100-103.	13.7	21
57	Advances in contact printing technologies of carbohydrate, peptide and protein arrays. Current Opinion in Chemical Biology, 2014, 18, 1-7.	6.1	52
58	Chemical strategies for the presentation and delivery of growth factors. Journal of Materials Chemistry B, 2014, 2, 2381-2394.	5.8	32
59	A Supramolecular Host–Guest Carrier System for Growth Factors Employing VHH Fragments. Journal of the American Chemical Society, 2014, 136, 12675-12681.	13.7	37
60	About supramolecular systems for dynamically probing cells. Chemical Society Reviews, 2014, 43, 4449-4469.	38.1	57
61	Lockedâ€in Biomimetic Surface Gradients that are Tunable in Size, Density and Functionalization. ChemPhysChem, 2014, 15, 3460-3465.	2.1	9
62	A fluorogenic monolayer to detect the co-immobilization of peptides that combine cartilage targeting and regeneration. Journal of Materials Chemistry B, 2013, 1, 1903.	5.8	19
63	Supramolecular control of cell adhesion via ferrocene–cucurbit[7]uril host–guest binding on gold surfaces. Chemical Communications, 2013, 49, 3679.	4.1	69
64	Immobilization of Ferrocene-Modified SNAP-Fusion Proteins. International Journal of Molecular Sciences, 2013, 14, 4066-4080.	4.1	19
65	Oriented Protein Immobilization using Covalent and Noncovalent Chemistry on a Thiol-Reactive Self-Reporting Surface. Journal of the American Chemical Society, 2013, 135, 3104-3111.	13.7	32
66	Reversible and Oriented Immobilization of Ferrocene-Modified Proteins. Journal of the American Chemical Society, 2012, 134, 19199-19206.	13.7	83
67	A Supramolecular System for the Electrochemically Controlled Release of Cells. Angewandte Chemie - International Edition, 2012, 51, 12233-12237.	13.8	119
68	A Supramolecular Approach to Enzyme Immobilization in Micro hannels. Small, 2012, 8, 3531-3537.	10.0	26
69	Supramolecularly Oriented Immobilization of Proteins Using Cucurbit[8]uril. Langmuir, 2012, 28, 16364-16371.	3.5	40
70	Patterning perylenes on surfaces using thiol–ene chemistry. Journal of Materials Chemistry, 2012, 22, 16606.	6.7	9
71	A Fluorogenic Reactive Monolayer Platform for the Signaled Immobilization of Thiols. ChemBioChem, 2012, 13, 778-782.	2.6	12
72	Inside Cover: A Fluorogenic Reactive Monolayer Platform for the Signaled Immobilization of Thiols (ChemBioChem 6/2012). ChemBioChem, 2012, 13, 746-746.	2.6	0

#	Article	IF	Citations
73	Directed Supramolecular Surface Assembly of SNAPâ€ŧag Fusion Proteins. Chemistry - A European Journal, 2012, 18, 6788-6794.	3.3	38
74	Patterning of Peptide Nucleic Acids Using Reactive Microcontact Printing. Langmuir, 2011, 27, 1536-1542.	3.5	26
75	Probing Multivalent Interactions in a Synthetic Host–Guest Complex by Dynamic Force Spectroscopy. Journal of the American Chemical Society, 2011, 133, 10849-10857.	13.7	71
76	Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nature Chemistry, 2011, 3, 317-322.	13.6	97
77	Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. Ultramicroscopy, 2011, 111, 1659-1669.	1.9	110
78	Recognition Properties of Cucurbit[7]uril Self-Assembled Monolayers Studied with Force Spectroscopy. Langmuir, 2011, 27, 11508-11513.	3.5	46
79	Selective Immobilization of Biomolecules on PTMC Network Surfaces Using Micro Contact Printing. Macromolecular Symposia, 2011, 309-310, 16-19.	0.7	1
80	Preparation of Biomolecule Microstructures and Microarrays by Thiol–ene Photoimmobilization. ChemBioChem, 2010, 11, 235-247.	2.6	50
81	Strong and Reversible Monovalent Supramolecular Protein Immobilization. ChemBioChem, 2010, 11, 180-183.	2.6	85
82	Oriented Immobilization of Farnesylated Proteins by the Thiolâ€Ene Reaction. Angewandte Chemie - International Edition, 2010, 49, 1252-1257.	13.8	93
83	Pyrylium monolayers as amino-reactive platform. Chemical Communications, 2010, 46, 4193.	4.1	22
84	Direct Patterning of Covalent Organic Monolayers on Silicon Using Nanoimprint Lithography. Langmuir, 2010, 26, 14210-14215.	3.5	12
85	Applications of Protein Biochips in Biomedical and Biotechnological Research. Angewandte Chemie - International Edition, 2009, 48, 7744-7751.	13.8	103
86	Topologically Matching Supramolecular n/pâ€Heterojunction Architectures. Angewandte Chemie - International Edition, 2009, 48, 6461-6464.	13.8	46
87	Ordered and Oriented Supramolecular n/p-Heterojunction Surface Architectures: Completion of the Primary Color Collection. Journal of the American Chemical Society, 2009, 131, 11106-11116.	13.7	111
88	Photochemical Surface Patterning by the Thiolâ€Ene Reaction. Angewandte Chemie - International Edition, 2008, 47, 4421-4424.	13.8	179
89	Chemical Strategies for Generating Protein Biochips. Angewandte Chemie - International Edition, 2008, 47, 9618-9647.	13.8	551
90	Cover Picture: Chemical Strategies for Generating Protein Biochips (Angew. Chem. Int. Ed. 50/2008). Angewandte Chemie - International Edition, 2008, 47, 9575-9575.	13.8	1

#	Article	IF	Citations
91	Surface immobilization of biomolecules by click sulfonamide reaction. Chemical Communications, 2008, , 3723.	4.1	42
92	The role of heterogeneous nucleation in the self-assembly of oligothiophenes. Chemical Communications, 2008, , 4613.	4.1	33
93	Photoluminescence Spectra of Self-Assembling Helical Supramolecular Assemblies: A Theoretical Study. Journal of Physical Chemistry B, 2008, 112, 12386-12393.	2.6	7
94	Mesoscopic order and the dimensionality of long-range resonance energy transfer in supramolecular semiconductors. Journal of Chemical Physics, 2008, 129, 104701.	3.0	16
95	Anharmonic Magnetic Deformation of Self-Assembled Molecular Nanocapsules. Physical Review Letters, 2007, 98, 146101.	7.8	31
96	Tuning the self-assembly of a ditopic crown ether functionalized oligo(p-phenylenevinylene). Journal of Materials Chemistry, 2007, 17, 2654.	6.7	16
97	A Microarray Strategy for Mapping the Substrate Specificity of Protein Tyrosine Phosphatase. Angewandte Chemie - International Edition, 2007, 46, 7700-7703.	13.8	80
98	Chiral Amphiphilic Self-Assembled α,αâ€~-Linked Quinque-, Sexi-, and Septithiophenes: Synthesis, Stability and Oddâ~'Even Effects. Journal of the American Chemical Society, 2006, 128, 5923-5929.	13.7	120
99	The Importance of Nanoscopic Ordering on the Kinetics of Photoinduced Charge Transfer in Aggregated Ï€-Conjugated Hydrogen-Bonded Donorâ^'Acceptor Systems. Journal of Physical Chemistry B, 2006, 110, 16967-16978.	2.6	57
100	The influence of hydrogen bonding and π–π stacking interactions on the self-assembly properties of C3-symmetrical oligo(p-phenylenevinylene) discs. Organic and Biomolecular Chemistry, 2006, 4, 1539.	2.8	51
101	Control of Film Morphology by Folding Hydrogen-Bonded Oligo(p-phenylenevinylene) Polymers in Solution. Macromolecules, 2006, 39, 784-788.	4.8	27
102	Control of Ambipolar Thin Film Architectures by Co-Self-Assembling Oligo(p-phenylenevinylene)s and Perylene Bisimides. Journal of the American Chemical Society, 2006, 128, 9535-9540.	13.7	154
103	Supramolecular chemistry at the liquid/solid interface probed by scanning tunnelling microscopy. International Journal of Nanotechnology, 2006, 3, 462.	0.2	14
104	Influence of mesoscopic ordering on the photoexcitation transfer dynamics in supramolecular assemblies of oligo-p-phenylenevinylene. Chemical Physics Letters, 2006, 418, 196-201.	2.6	33
105	Probing the Solvent-Assisted Nucleation Pathway in Chemical Self-Assembly. Science, 2006, 313, 80-83.	12.6	822
106	Electrical transport measurements on self-assembled organic molecular wires. Journal of Chemical Physics, 2006, 124, 154704.	3.0	18
107	Charge Transfer in Supramolecular Coaggregates of Oligo(p-Phenylene Vinylene) and Perylene Bisimide in Water. ChemPhysChem, 2005, 6, 2029-2031.	2.1	16
108	About Supramolecular Assemblies of π-Conjugated Systems. ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	Citations
109	The effects of supramolecular assembly on exciton decay rates in organic semiconductors. Journal of Chemical Physics, 2005, 123, 084902.	3.0	15
110	High Anisotropy of the Field-Effect Transistor Mobility in Magnetically Aligned Discotic Liquid-Crystalline Semiconductors. Journal of the American Chemical Society, 2005, 127, 16233-16237.	13.7	197
111	Excitation Migration along Oligophenylenevinylene-Based Chiral Stacks:Â Delocalization Effects on Transport Dynamics. Journal of Physical Chemistry B, 2005, 109, 10594-10604.	2.6	80
112	Magnetic Alignment of Self-Assembled Anthracene Organogel Fibers. Langmuir, 2005, 21, 2108-2112.	3.5	78
113	Magnetic Deformation of Self-Assembled Sexithiophene Spherical Nanocapsules. Journal of the American Chemical Society, 2005, 127, 1112-1113.	13.7	105
114	Polarized Emission of Individual Self-Assembled Oligo(p-phenylenevinylene)-Based Nanofibers on a Solid Support. Journal of the American Chemical Society, 2005, 127, 8280-8281.	13.7	68
115	About Supramolecular Assemblies of π-Conjugated Systems. Chemical Reviews, 2005, 105, 1491-1546.	47.7	2,917
116	Charge Transport in Self-Organized π-Stacks ofp-Phenylene Vinylene Oligomers. Journal of Physical Chemistry B, 2005, 109, 18267-18274.	2.6	90
117	Two-Dimensional Self-Assembly into Multicomponent Hydrogen-Bonded Nanostructures. Nano Letters, 2005, 5, 77-81.	9.1	115
118	2D Self-Assembly of Oligo(p-phenylene vinylene) Derivatives: From Dimers to Chiral Rosettes. Small, 2004, 1, 131-137.	10.0	73
119	Ï€-Conjugated Oligo-(p-phenylenevinylene) Rosettes and Their Tubular Self-Assembly. Angewandte Chemie - International Edition, 2004, 43, 74-78.	13.8	197
120	Efficient Energy Transfer in Mixed Columnar Stacks of Hydrogen-Bonded Oligo(p-phenylene vinylene)s in Solution. Angewandte Chemie - International Edition, 2004, 43, 1976-1979.	13.8	99
121	Coiled-Coil Gel Nanostructures of Oligo(p-phenylenevinylene)s: Gelation-Induced Helix Transition in a Higher-Order Supramolecular Self-Assembly of a Rigidl∈-Conjugated System. Angewandte Chemie - International Edition, 2004, 43, 3422-3425.	13.8	202
122	Organic semi-conducting architectures for supramolecular electronics. European Polymer Journal, 2004, 40, 885-892.	5.4	57
123	Surface-controlled self-assembly of chiral sexithiophenes. Journal of Materials Chemistry, 2004, 14, 1959-1963.	6.7	56
124	2D-Structures of Quadruple Hydrogen Bonded Oligo(p-phenylenevinylene)s on Graphite:Â Self-Assembly Behavior and Expression of Chirality. Nano Letters, 2004, 4, 1175-1179.	9.1	72
125	Towards supramolecular electronics. Synthetic Metals, 2004, 147, 43-48.	3.9	44
126	Resonance energy transfer dynamics in hydrogen-bonded oligo-p-phenylenevinylene nanostructures. Synthetic Metals, 2004, 147, 29-35.	3.9	11

#	Article	IF	CITATIONS
127	Supramolecular pâ^'n-Heterojunctions by Co-Self-Organization of Oligo(p-phenylene Vinylene) and Perylene Bisimide Dyes. Journal of the American Chemical Society, 2004, 126, 10611-10618.	13.7	400
128	The Chiroptical Properties of a Thermally Annealed Film of Chiral Substituted Polyfluorene Depend on Film Thickness. Advanced Materials, 2003, 15, 1435-1438.	21.0	106
129	Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction. Advanced Materials, 2003, 15, 118-121.	21.0	260
130	Synthesis and self-assembly of a chiral alternating sexithiophene-undeca(ethyleneoxy) block copolymer. Journal of Polymer Science Part A, 2003, 41, 1737-1743.	2.3	14
131	Transfer of π-Conjugated Columnar Stacks from Solution to Surfaces. Journal of the American Chemical Society, 2003, 125, 15941-15949.	13.7	210
132	Bias-Dependent Visualization of Electron Donor (D) and Electron Acceptor (A) Moieties in a Chiral DAD Triad Molecule. Journal of the American Chemical Society, 2003, 125, 14968-14969.	13.7	82
133	Relating Substitution to Single-Chain Conformation and Aggregation in Poly(p-phenylene Vinylene) Films. Nano Letters, 2003, 3, 1191-1196.	9.1	49
134	Direct observation of chiral oligo(p-phenylenevinylene)s with scanning tunneling microscopy. Journal of Materials Chemistry, 2003, 13, 2164-2167.	6.7	37
135	Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers. Physical Review B, 2003, 68, .	3.2	50
136	Photoinitiated Polymerization of Columnar Stacks of Self-Assembled Trialkyl-1,3,5-benzenetricarboxamide Derivatives. Journal of the American Chemical Society, 2003, 125, 15935-15940.	13.7	57
137	One and Two-dimensional Semiconducting Nanostructures Self-assembly of Conjugated Oligomers. Materials Research Society Symposia Proceedings, 2003, 775, 871.	0.1	0
138	Photoinduced Electron Transfer in Hydrogen-Bonded Oligo(p-phenylene vinylene)â^Perylene Bisimide Chiral Assemblies. Journal of the American Chemical Society, 2002, 124, 10252-10253.	13.7	292
139	Hierarchical Order in Supramolecular Assemblies of Hydrogen-Bonded Oligo(p-phenylene vinylene)s. Journal of the American Chemical Society, 2001, 123, 409-416.	13.7	339
140	Supramolecular organisation of oligo(p-phenylenevinylene) at the air–water interface and in water. Perkin Transactions II RSC, 2001, , 1280-1286.	1.1	26