
Shenshan Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6082189/publications.pdf Version: 2024-02-01

SHENSHAN 7HAN

#	Article	IF	CITATIONS
1	Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. Journal of Nanobiotechnology, 2022, 20, 11.	9.1	138
2	Self-assembly of 1-triacontanol onto layered doubled hydroxide nano-carriers toward sustainable growth regulation of maize. Environmental Science: Nano, 2022, 9, 797-804.	4.3	2
3	DNA-templated coinage metal nanostructures and their applications in bioanalysis and biomedicine. Coordination Chemistry Reviews, 2022, 455, 214381.	18.8	15
4	Plasmonic gold nanostructures for biosensing and bioimaging. Mikrochimica Acta, 2021, 188, 304.	5.0	32
5	Advances in Controlled-Release Pesticide Formulations with Improved Efficacy and Targetability. Journal of Agricultural and Food Chemistry, 2021, 69, 12579-12597.	5.2	70
6	Avermectin loaded carboxymethyl cellulose nanoparticles with stimuli-responsive and controlled release properties. Industrial Crops and Products, 2020, 152, 112497.	5.2	39
7	Simultaneous detection of telomerase and miRNA with graphene oxide-based fluorescent aptasensor in living cells and tissue samples. Biosensors and Bioelectronics, 2019, 124-125, 199-204.	10.1	70
8	Highly hydrophobic ZIF-8 particles and application for oil-water separation. Separation and Purification Technology, 2018, 206, 186-191.	7.9	128
9	Zeolitic imidazolate framework-based biosensor for detection of HIV-1 DNA. Analytical Biochemistry, 2018, 546, 5-9.	2.4	53
10	Sandwich Assays Based on SPR, SERS, GMR, QCM, Microcantilever, SAW, and RRS Techniques for Protein Detection. , 2018, , 69-91.		1
11	Recent Advances in Solid Nanopore/Channel Analysis. Analytical Chemistry, 2018, 90, 577-588.	6.5	112
12	Biological and chemical sensing applications based on special wettable surfaces. TrAC - Trends in Analytical Chemistry, 2018, 108, 183-194.	11.4	30
13	Ultrasensitive and selective detection of isocarbophos pesticide based on target and random ssDNA triggered aggregation of hemin in polar organic solutions. Sensors and Actuators B: Chemical, 2017, 243, 445-453.	7.8	38
14	Recent advances in optical-based and force-based single nucleic acid imaging. Science China Chemistry, 2017, 60, 1267-1276.	8.2	5
15	A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Mikrochimica Acta, 2016, 183, 2251-2258.	5.0	33
16	A mini-review on functional nucleic acids-based heavy metal ion detection. Biosensors and Bioelectronics, 2016, 86, 353-368.	10.1	135
17	Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Mikrochimica Acta, 2016, 183, 723-729.	5.0	72
18	A Label-Free Colorimetric Biosensor for 17β-Estradiol Detection Using Nanoparticles Assembled by Aptamer and Cationic Polymer. Australian Journal of Chemistry, 2016, 69, 12.	0.9	32

SHENSHAN ZHAN

#	Article	IF	CITATIONS
19	Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Analytical Biochemistry, 2016, 499, 51-56.	2.4	64
20	Fluorescent detection of Hg2+ and Pb2+ using GeneFinderâ"¢ and an integrated functional nucleic acid. Biosensors and Bioelectronics, 2015, 72, 95-99.	10.1	40
21	A label-free fluorescent sensor for the detection of Pb ²⁺ and Hg ²⁺ . Analytical Methods, 2015, 7, 6260-6265.	2.7	13
22	Determination of silver(I) ion based on the aggregation of gold nanoparticles caused by silver-specific DNA, and its effect on the fluorescence of Rhodamine B. Mikrochimica Acta, 2015, 182, 1411-1419.	5.0	31
23	Sensitive fluorescent assay for copper (II) determination in aqueous solution using copper-specific ssDNA and Sybr Green I. Talanta, 2015, 142, 176-182.	5.5	20
24	Label-free fluorescent sensor for lead ion detection based on lead(II)-stabilized G-quadruplex formation. Analytical Biochemistry, 2014, 462, 19-25.	2.4	51
25	Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst, The, 2014, 139, 1550-1561.	3.5	166
26	Ultrasensitive Resonance Scattering (RS) Spectral Detection for Trace Tetracycline in Milk Using Aptamer-Coated Nanogold (ACNG) as a Catalyst. Journal of Agricultural and Food Chemistry, 2014, 62, 1032-1037.	5.2	46
27	Sensitive colorimetric detection of melamine in milk with an aptamer-modified nanogold probe. RSC Advances, 2013, 3, 17424.	3.6	20
28	A simple fluorescent assay for lead(ii) detection based on lead(ii)-stabilized G-quadruplex formation. RSC Advances, 2013, 3, 16962.	3.6	36
29	Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic(iii). RSC Advances, 2013, 3, 25614.	3.6	56
30	A Simple and Sensitive Colorimetric Detection of Silver Ions Based on Cationic Polymer-Directed AuNPs Aggregation. Australian Journal of Chemistry, 2013, 66, 113.	0.9	28
31	A highly sensitive resonance scattering based sensor using unmodified gold nanoparticles for daunomycin detection in aqueous solution. Analytical Methods, 2012, 4, 2266.	2.7	15
32	A silver-specific DNA-based bio-assay for Ag(i) detection via the aggregation of unmodified gold nanoparticles in aqueous solution coupled with resonance Rayleigh scattering. Analytical Methods, 2012, 4, 3997.	2.7	34
33	Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(iii) in aqueous solution. Chemical Communications, 2012, 48, 4459.	4.1	223
34	Nanoparticles assembled by aptamers and crystal violet for arsenic(iii) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay. Nanoscale, 2012, 4, 6841.	5.6	109
35	Ultrasensitive aptamer biosensor for arsenic(iii) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst, The, 2012, 137, 4171.	3.5	160
36	A simple and label-free sensor for mercury(ii) detection in aqueous solution by malachite green based on a resonance scattering spectral assay. Chemical Communications, 2011, 47, 6027.	4.1	91

#	Article	IF	CITATIONS
37	A Viable Approach for Utilization of the Agro-Industrial Waste in Biodiesel Industry: Using Deoiled Jatropha curcas Seed Meal to Produce Protease by Aspergillus niger under Solid-State Fermentation. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010. , .	0.0	0