Yong-Hoon Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6081301/publications.pdf

Version: 2024-02-01

103 papers 2,446 citations

28 h-index 223800 46 g-index

107 all docs

107 docs citations

107 times ranked

3843 citing authors

#	Article	IF	CITATIONS
1	Silk and Paper: Progress and Prospects in Green Photonics and Electronics. Advanced Sustainable Systems, 2022, 6, 2000216.	5.3	22
2	Spatially isolated neutral excitons <i>via</i> clusters on trilayer MoS ₂ . Nanoscale, 2022, 14, 4304-4311.	5.6	2
3	Observation of a single quantized vortex vanishment in exciton-polariton superfluids. Physical Review B, 2022, 105, .	3.2	5
4	Wide-Field Super-Resolution Optical Fluctuation Imaging through Dynamic Near-Field Speckle Illumination. Nano Letters, 2022, 22, 2194-2201.	9.1	7
5	Influence of wafer quality on chip size-dependent efficiency variation in blue and green micro light-emitting diodes. Scientific Reports, 2022, 12, 7955.	3.3	4
6	Active-matrix micro-light-emitting diode displays driven by monolithically integrated dual-gate oxide thin-film transistors. Journal of Materials Chemistry C, 2022, 10, 9699-9706.	5.5	3
7	A Flashâ€Induced Robust Cu Electrode on Glass Substrates and Its Application for Thinâ€Film μ LEDs. Advanced Materials, 2021, 33, e2007186.	21.0	15
8	Extracting internal modes of top emission organic light emitting diodes by using internal random mesoscopic wrinkles. Journal of Industrial and Engineering Chemistry, 2021, 96, 163-168.	5.8	5
9	Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways. NPG Asia Materials, 2021, 13, .	7.9	10
10	Nanoscale Focus Pinspot for High-Purity Quantum Emitters via Focused-Ion-Beam-Induced Luminescence Quenching. ACS Nano, 2021, 15, 11317-11325.	14.6	7
11	Room-temperature polaritonic non-Hermitian system with single microcavity. Nature Photonics, 2021, 15, 582-587.	31.4	9
12	Highly Efficient Vacuum-Evaporated CsPbBr ₃ Perovskite Light-Emitting Diodes with an Electrical Conductivity Enhanced Polymer-Assisted Passivation Layer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37323-37330.	8.0	19
13	Photonic rocket structure grown by site-selective and bottom-up approach: A directional and Gaussian-like quantum emitter platform. Applied Physics Letters, 2021, 119, .	3.3	3
14	Universal Patterning for 2D Van der Waals Materials via Direct Optical Lithography. Advanced Functional Materials, 2021, 31, 2105302.	14.9	6
15	Friction Control by Deformation Mode in Nanopatterned Amorphous Carbon. Nano Letters, 2021, 21, 107-113.	9.1	5
16	1D photonic crystal direct bandgap GeSn-on-insulator laser. Applied Physics Letters, 2021, 119, .	3.3	26
17	Universal and scalable route to fabricate GaN nanowire-based LED on amorphous substrate by MOCVD. Applied Materials Today, 2020, 19, 100541.	4.3	22
18	Modulation of Growth Kinetics of Vacuum-Deposited CsPbBr ₃ Films for Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 1944-1952.	8.0	33

#	Article	IF	CITATIONS
19	AlGaN Deep-Ultraviolet Light-Emitting Diodes with Localized Surface Plasmon Resonance by a High-Density Array of 40 nm Al Nanoparticles. ACS Applied Materials & Diterfaces, 2020, 12, 36339-36346.	8.0	23
20	Full and gradient structural colouration by lattice amplified gallium nitride Mie-resonators. Nanoscale, 2020, 12, 21392-21400.	5.6	37
21	Strong and robust polarization anisotropy of site- and size-controlled single InGaN/GaN quantum wires. Scientific Reports, 2020, 10, 15371.	3.3	6
22	Control of the 3-Fold Symmetric Shape of Group III-Nitride Quantum Dots: Suppression of Fine-Structure Splitting. Nano Letters, 2020, 20, 8461-8468.	9.1	4
23	A broadband ultraviolet light source using GaN quantum dots formed on hexagonal truncated pyramid structures. Nanoscale Advances, 2020, 2, 1449-1455.	4.6	3
24	A discrete core-shell-like micro-light-emitting diode array grown on sapphire nano-membranes. Scientific Reports, 2020, 10, 7506.	3.3	15
25	Three-dimensional hierarchical semi-polar GaN/InGaN MQW coaxial nanowires on a patterned Si nanowire template. Nanoscale Advances, 2020, 2, 1654-1665.	4.6	12
26	Effective Photoluminescence Imaging of Bubbles in hBN-Encapsulated WSe2 Monolayer. Nanomaterials, 2020, 10, 350.	4.1	2
27	Monolithic Micro Light-Emitting Diode/Metal Oxide Nanowire Gas Sensor with Microwatt-Level Power Consumption. ACS Sensors, 2020, 5, 563-570.	7.8	87
28	Determining the Chemical Origin of the Photoluminescence of Cesium–Bismuth–Bromide Perovskite Nanocrystals and Improving the Luminescence via Metal Chloride Additives. ACS Applied Energy Materials, 2020, 3, 4650-4657.	5.1	14
29	Hexagonal GaN nanorod-based photonic crystal slab as simultaneous yellow broadband reflector and blue emitter for phosphor-conversion white light emitting devices. Scientific Reports, 2020, 10, 358.	3.3	5
30	Interplay of strain and intermixing effects on direct-bandgap optical transition in strained Ge-on-Si under thermal annealing. Scientific Reports, 2019, 9, 11709.	3.3	4
31	Orthogonally Polarized, Dual-Wavelength Quantum Wire Network Emitters Embedded in Single Microrod. Nano Letters, 2019, 19, 8454-8460.	9.1	12
32	Direct Transfer of Light's Orbital Angular Momentum onto a Nonresonantly Excited Polariton Superfluid. Physical Review Letters, 2019, 122, 045302.	7.8	35
33	Ultrafast carrier dynamics of conformally grown semi-polar (112̄2) GaN/InGaN multiple quantum well co-axial nanowires on m-axial GaN core nanowires. Nanoscale, 2019, 11, 10932-10943.	5.6	20
34	Strain Property of Germanium Photonic Crystal Cavity on Silicon. , 2019, , .		0
35	Tailoring the potential landscape of room-temperature single-mode whispering gallery polariton condensate. Optica, 2019, 6, 1313.	9.3	8
36	Morphology Tailoring and Growth Mechanism of Indium-Rich InGaN/GaN Axial Nanowire Heterostructures by Plasma-Assisted Molecular Beam Epitaxy. Crystal Growth and Design, 2018, 18, 2545-2554.	3.0	14

#	Article	IF	CITATIONS
37	Site-Selective, Two-Photon Plasmonic Nanofocusing on a Single Quantum Dot for Near-Room-Temperature Operation. ACS Photonics, 2018, 5, 711-717.	6.6	9
38	Three-dimensional GaN dodecagonal ring structures for highly efficient phosphor-free warm white light-emitting diodes. Nanoscale, 2018, 10, 4686-4695.	5.6	19
39	Strongly Coherent Single-Photon Emission from Site-Controlled InGaN Quantum Dots Embedded in GaN Nanopyramids. ACS Photonics, 2018, 5, 439-444.	6.6	29
40	Nanosinusoidal Surface Zinc Oxide for Optical Out-coupling of Inverted Organic Light-Emitting Diodes. ACS Photonics, 2018, 5, 4061-4067.	6.6	15
41	Axial Inhomogeneity of Mg-Doped GaN Rods: A Strong Correlation among Componential, Electrical, and Optical Analyses. ACS Photonics, 2018, 5, 2825-2833.	6.6	4
42	Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light. Scientific Reports, 2017, 7, 41384.	3.3	7
43	Optical and Facet-Dependent Carrier Recombination Properties of Hendecafacet InGaN/GaN Microsized Light Emitters. Crystal Growth and Design, 2017, 17, 3649-3655.	3.0	5
44	Investigating carrier localization and transfer in InGaN/GaN quantum wells with V-pits using near-field scanning optical microscopy and correlation analysis. Scientific Reports, 2017, 7, 42221.	3.3	15
45	Real-time monitoring and visualization of the multi-dimensional motion of an anisotropic nanoparticle. Scientific Reports, 2017, 7, 44167.	3.3	2
46	GROUP III-NITRIDE NANOSTRUCTURES FOR LIGHT-EMITTING DEVICES AND BEYOND. , 2017, , 369-399.		0
47	Electrically driven, highly efficient three-dimensional GaN-based light emitting diodes fabricated by self-aligned twofold epitaxial lateral overgrowth. Scientific Reports, 2017, 7, 9663.	3.3	4
48	Formation of a-plane facets in three-dimensional hexagonal GaN structures for photonic devices. Scientific Reports, 2017, 7, 9356.	3.3	2
49	How Effective is Plasmonic Enhancement of Colloidal Quantum Dots for Colorâ€Conversion Lightâ€Emitting Devices?. Small, 2017, 13, 1701805.	10.0	30
50	Extraordinary Strong Fluorescence Evolution in Phosphor on Graphene. Advanced Materials, 2016, 28, 1657-1662.	21.0	7
51	Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content. RSC Advances, 2016, 6, 97990-97994.	3.6	49
52	Semiconductor Photonic Nanocavity on a Paper Substrate. Advanced Materials, 2016, 28, 9765-9769.	21.0	13
53	Unidirectional Emission of a Site-Controlled Single Quantum Dot from a Pyramidal Structure. Nano Letters, 2016, 16, 6117-6123.	9.1	12
54	Defect engineering route to boron nitride quantum dots and edge-hydroxylated functionalization for bio-imaging. RSC Advances, 2016, 6, 73939-73946.	3.6	34

#	Article	IF	Citations
55	Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field. Scientific Reports, 2016, 6, 34586.	3.3	34
56	Electrically driven, phosphor-free, white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures. Light: Science and Applications, 2016, 5, e16030-e16030.	16.6	73
57	Raman analysis of in-plane biaxial strain for Ge-on-Si lasers. , 2015, , .		0
58	Vertically aligned InGaN nanowires with engineered axial In composition for highly efficient visible light emission. Scientific Reports, 2015, 5, 17003.	3.3	16
59	Superresolution imaging with optical fluctuation using speckle patterns illumination. Scientific Reports, 2015, 5, 16525.	3.3	40
60	Giant Rabi Splitting of Whispering Gallery Polaritons in GaN/InGaN Core–Shell Wire. Nano Letters, 2015, 15, 4517-4524.	9.1	40
61	Squeezing Photons into a Point-Like Space. Nano Letters, 2015, 15, 4102-4107.	9.1	88
62	Controlling optical properties of Ge-on-Si by thermal annealing and etching process., 2015,,.		0
63	Graphene Quantum Dots: Is the Chain of Oxidation and Reduction Process Reversible in Luminescent Graphene Quantum Dots? (Small 31/2015). Small, 2015, 11, 3772-3772.	10.0	1
64	Green luminescence of quasi-molecular level in graphene quantum dots fabricated by microwave bottom-up strategy. , 2015, , .		0
65	Strong correlation between efficiency and carrier recombination processes in efficiency droop of GaN based light-emitting diodes. , 2015, , .		0
66	Quantitative analysis of carrier escape efficiency in GaN-based light-emitting diodes., 2015,,.		0
67	Optical properties of Al0.5Ga0.5N/GaN polar quantum dots and UV LEDs made of them. , 2015, , .		0
68	Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires. Nano Energy, 2015, 12, 215-223.	16.0	96
69	Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires. RSC Advances, 2015, 5, 23303-23310.	3. 6	26
70	Mie resonance-mediated antireflection effects of Si nanocone arrays fabricated on 8-in. wafers using a nanoimprint technique. Nanoscale Research Letters, 2015, 10, 164.	5.7	9
71	Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5280-5285.	7.1	36
72	Is the Chain of Oxidation and Reduction Process Reversible in Luminescent Graphene Quantum Dots?. Small, 2015, 11, 3773-3781.	10.0	49

#	Article	lF	CITATIONS
73	Optical excitation study on the efficiency droop behaviors of InGaN/GaN multiple-quantum-well structures. Applied Physics B: Lasers and Optics, 2014, 114, 551-555.	2.2	7
74	Nonlinear Photonic Diode Behavior in Energy-Graded Core–Shell Quantum Well Semiconductor Rod. Nano Letters, 2014, 14, 4937-4942.	9.1	11
75	Highly Efficient Lightâ€Emitting Diode of Graphene Quantum Dots Fabricated from Graphite Intercalation Compounds. Advanced Optical Materials, 2014, 2, 1016-1023.	7.3	229
76	Full-Field Subwavelength Imaging Using a Scattering Superlens. Physical Review Letters, 2014, 113, 113901.	7.8	81
77	Multi-color broadband visible light source via GaN hexagonal annular structure. Scientific Reports, 2014, 4, 5514.	3.3	46
78	Graphene Quantum Dots: Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence (Adv. Mater. 27/2013). Advanced Materials, 2013, 25, 3748-3748.	21.0	10
79	Optical properties of ZnO powder prepared by using a proteic sol-gel process. Journal of the Korean Physical Society, 2013, 62, 739-742.	0.7	2
80	Subwavelength light focusing using random nanoparticles. Nature Photonics, 2013, 7, 454-458.	31.4	160
81	Simple analysis method for determining internal quantum efficiency and relative recombination ratios in light emitting diodes. Applied Physics Letters, 2013, 102, .	3.3	44
82	Surface plasmon modulation induced by a direct-current electric field into gallium nitride thin film grown on Si(111) substrate. Applied Physics Letters, 2013, 102, 021905.	3.3	8
83	Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk. Scientific Reports, 2013, 3, 2150.	3.3	45
84	Strong carrier localization and diminished quantum-confined Stark effect in ultra-thin high-indium-content InGaN quantum wells with violet light emission. Applied Physics Letters, 2013, 103, .	3.3	4
85	Size-dependent radiative decay processes in graphene quantum dots. Applied Physics Letters, 2012, 101, .	3.3	27
86	Energy coupling processes in InGaN/GaN nanopillar light emitting diodes embedded with Ag and Ag/SiO2 nanoparticles. Journal of Materials Chemistry, 2012, 22, 21749.	6.7	24
87	Growth Mechanism of Catalyst-Free and Mask-Free Heteroepitaxial GaN Submicrometer- and Micrometer-Sized Rods under Biaxial Strain: Variation of Surface Energy and Adatom Kinetics. Crystal Growth and Design, 2012, 12, 3838-3844.	3.0	25
88	Strong luminescence of two-dimensional electron gas in tensile-stressed AlGaN/GaN heterostructures grown on Si substrates. Applied Physics Letters, 2011, 98, 141917.	3.3	11
89	Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN. Applied Physics Letters, 2011, 98, .	3.3	39
90	Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Applied Physics Letters, 2011, 98, .	3.3	132

#	Article	IF	CITATIONS
91	Shell layer dependence of photoblinking in CdSe/ZnSe/ZnS quantum dots. Applied Physics Letters, 2011, 98, 012109.	3.3	17
92	Electrically Driven Quantum Dot/Wire/Well Hybrid Lightâ€Emitting Diodes. Advanced Materials, 2011, 23, 5364-5369.	21.0	70
93	Strain and piezoelectric potential effects on optical properties in CdSe/CdS core/shell quantum dots. Journal of Applied Physics, 2011, 109, .	2.5	18
94	Effects of growth temperature on the optical properties of InN nanostructures grown by MOCVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2029-2032.	0.8	1
95	Optical transition dynamics in ZnO/ZnMgO multiple quantum well structures with different well widths grown on ZnO substrates. Journal of Applied Physics, 2010, 107, 033513.	2.5	29
96	Carrier transfer and recombination dynamics of a long-lived and visible range emission from multi-stacked GaN/AlGaN quantum dots. Applied Physics Letters, 2010, 97, 061905.	3.3	10
97	Spatial correlation between optical properties and defect formation in GaN thin films laterally overgrown on cone-shaped patterned sapphire substrates. Journal of Applied Physics, 2010, 107, .	2.5	34
98	Injection of carriers from a ZnO nanostructured shell to a ZnS based microsphere core. Applied Physics Letters, 2009, 95, 022108.	3.3	3
99	UV photovoltaic cells based on conjugated ZnO quantum dot/multiwalled carbon nanotube heterostructures. Applied Physics Letters, 2009, 94, .	3.3	47
100	Carrier transfer and redistribution dynamics in vertically aligned stacked In0.5Ga0.5As quantum dots with different GaAs spacer thicknesses. Journal of Applied Physics, 2009, 106, 123524.	2.5	1
101	Optical properties and carrier dynamics of polarity controlled ZnO films grown on (0001) Al2O3 by Cr-compound intermediate layers. Applied Physics Letters, 2009, 94, .	3.3	4
102	Violet-light spontaneous and stimulated emission from ultrathin In-rich InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2008, 93, 161905.	3.3	5
103	Carrier dynamics of high-efficiency green light emission in graded-indium-content InGaN/GaN quantum wells: An important role of effective carrier transfer. Applied Physics Letters, 2004, 84, 49-51.	3.3	29