
D P Higginson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6080124/publications.pdf Version: 2024-02-01

D P HICCINSON

#	Article	IF	CITATIONS
1	A Cartesian-diffusion Langevin method for hybrid kinetic-fluid Coulomb scattering in particle-in-cell plasma simulations. Journal of Computational Physics, 2022, 457, 110935.	3.8	2
2	First Experiments and Radiographs on the MegaJOuLe Neutron Imaging Radiography (MJOLNIR) Dense Plasma Focus. IEEE Transactions on Plasma Science, 2021, 49, 3299-3306.	1.3	6
3	Laboratory disruption of scaled astrophysical outflows by a misaligned magnetic field. Nature Communications, 2021, 12, 762.	12.8	14
4	Thermonuclear neutron emission from a sheared-flow stabilized Z-pinch. Physics of Plasmas, 2021, 28, .	1.9	8
5	Kinetic mix at gas-shell interface in inverted corona fusion targets. Physics of Plasmas, 2021, 28, 122702.	1.9	1
6	Measurement of Kinetic-Scale Current Filamentation Dynamics and Associated Magnetic Fields in Interpenetrating Plasmas. Physical Review Letters, 2020, 124, 215001.	7.8	25
7	Electron acceleration in laboratory-produced turbulent collisionless shocks. Nature Physics, 2020, 16, 916-920.	16.7	60
8	A corrected method for Coulomb scattering in arbitrarily weighted particle-in-cell plasma simulations. Journal of Computational Physics, 2020, 413, 109450.	3.8	15
9	The response function of Fujifilm BAS-TR imaging plates to laser-accelerated titanium ions. Review of Scientific Instruments, 2019, 90, 083302.	1.3	10
10	Kinetic simulations of sheared flow stabilization in high-temperature Z-pinch plasmas. Physics of Plasmas, 2019, 26, .	1.9	10
11	X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars. Matter and Radiation at Extremes, 2019, 4, .	3.9	10
12	Effect of polarity on beam and plasma target formation in a dense plasma focus. Physics of Plasmas, 2019, 26, 042702.	1.9	5
13	A pairwise nuclear fusion algorithm for weighted particle-in-cell plasma simulations. Journal of Computational Physics, 2019, 388, 439-453.	3.8	23
14	Sustained Neutron Production from a Sheared-Flow Stabilized <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Z</mml:mi> Pinch. Physical Review Letters, 2019, 122, 135001.</mml:math 	7.8	35
15	Kinetic effects on neutron generation in moderately collisional interpenetrating plasma flows. Physics of Plasmas, 2019, 26, .	1.9	12
16	Hybrid particle-in-cell simulations of laser-driven plasma interpenetration, heating, and entrainment. Physics of Plasmas, 2019, 26, 112107.	1.9	11
17	Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock. Physical Review Letters, 2018, 120, 095001.	7.8	23
18	Maximizing neutron yields by scaling hollow diameter of a dense plasma focus anode. Journal of Applied Physics, 2018, 124, 233301.	2.5	10

D P HIGGINSON

#	Article	IF	CITATIONS
19	Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas. Scientific Reports, 2018, 8, 14586.	3.3	13
20	Magnetic field production via the Weibel instability in interpenetrating plasma flows. Physics of Plasmas, 2017, 24, .	1.9	27
21	Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility. Physical Review Letters, 2017, 118, 185003.	7.8	49
22	A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas. Journal of Computational Physics, 2017, 349, 589-603.	3.8	11
23	Laboratory unraveling of matter accretion in young stars. Science Advances, 2017, 3, e1700982.	10.3	35
24	Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet. Physical Review Letters, 2017, 119, 255002.	7.8	18
25	Diagnostics of laser-produced plasmas based on the analysis of intensity ratios of He-like ions X-ray emission. Physics of Plasmas, 2016, 23, .	1.9	9
26	Proton pinhole imaging on the National Ignition Facility. Review of Scientific Instruments, 2016, 87, 11E704.	1.3	4
27	Parameters of supersonic astrophysically-relevant plasma jets collimating via poloidal magnetic field measured by x-ray spectroscopy method. Journal of Physics: Conference Series, 2016, 774, 012114.	0.4	4
28	High-contrast laser acceleration of relativistic electrons in solid cone-wire targets. Physical Review E, 2015, 92, 063112.	2.1	4
29	Temporal Narrowing of Neutrons Produced by High-Intensity Short-Pulse Lasers. Physical Review Letters, 2015, 115, 054802.	7.8	30
30	Time of Flight Measurements for Neutrons Produced in Reactions Driven by Laser-Target Interactions at Petawatt level. Physics Procedia, 2015, 77, 29-33.	1.2	0
31	A novel platform to study magnetized high-velocity collisionless shocks. High Energy Density Physics, 2015, 17, 190-197.	1.5	14
32	TNSA-like plasmas collision in an ambient magnetic field as a route to astrophysical collisionless shock observation in a laboratory. High Energy Density Physics, 2015, 17, 183-189.	1.5	2
33	Monochromatic short pulse laser produced ion beam using a compact passive magnetic device. Review of Scientific Instruments, 2014, 85, 043504.	1.3	12
34	Proton stopping power measurements using high intensity short pulse lasers produced proton beams. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 740, 105-106.	1.6	11
35	Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science, 2014, 346, 325-328.	12.6	173
36	Generation of energetic (>15 MeV) neutron beams from proton- and deuteron-driven nuclear reactions using short pulse lasers. Plasma Physics and Controlled Fusion, 2013, 55, 105009.	2.1	11

D P HIGGINSON

#	Article	IF	CITATIONS
37	Impact of extended preplasma on energy coupling in kilojoule energy relativistic laser interaction with cone wire targets relevant to fast ignition. New Journal of Physics, 2013, 15, 015020.	2.9	7
38	Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers. Physics of Plasmas, 2012, 19, 093106.	1.9	29
39	Neutron resonance spectrometry for temperature measurement during dynamic loading. AIP Conference Proceedings, 2012, , .	0.4	1
40	Emission of energetic protons from relativistic intensity laser interaction with a cone-wire target. Physical Review E, 2012, 86, 056405.	2.1	3
41	Hot Electron Temperature and Coupling Efficiency Scaling with Prepulse for Cone-Guided Fast Ignition. Physical Review Letters, 2012, 108, 115004.	7.8	60
42	Particle transport and electric fields in a laser-generated focused proton beam. , 2012, , .		0
43	Dynamics of Relativistic Laser-Plasma Interaction on Solid Targets. Physical Review Letters, 2012, 109, 145006.	7.8	40
44	Focusing of short-pulse high-intensity laser-accelerated proton beams. Nature Physics, 2012, 8, 139-142.	16.7	110
45	Characterizing the energy distribution of laser-generated relativistic electrons in cone-wire targets. Physics of Plasmas, 2012, 19, .	1.9	13
46	Magnetically Guided Fast Electrons in Cylindrically Compressed Matter. Physical Review Letters, 2011, 107, 065004.	7.8	45
47	Proton radiography of laser-driven imploding target in cylindrical geometry. Physics of Plasmas, 2011, 18, 012704.	1.9	30
48	Experimental study of fast electron propagation in compressed matter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653, 176-180.	1.6	6
49	Proton radiography of cylindrical laser-driven implosions. Plasma Physics and Controlled Fusion, 2011, 53, 032003.	2.1	9
50	Laser-driven cylindrical compression of targets for fast electron transport study in warm and dense plasmas. Physics of Plasmas, 2011, 18, 043108.	1.9	16
51	Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions. Physics of Plasmas, 2011, 18, .	1.9	80
52	Carbon ion beam focusing using laser irradiated, heated diamond hemispherical shells. Journal of Physics: Conference Series, 2010, 244, 022053.	0.4	6
53	Divergence of laser-generated hot electrons generated in a cone geometry. Journal of Physics: Conference Series, 2010, 244, 022064.	0.4	0
54	X-ray diagnostics of fast electrons propagation in high density plasmas obtained by cylindrical compression. Journal of Physics: Conference Series, 2010, 244, 022027.	0.4	1

D P HIGGINSON

#	Article	IF	CITATIONS
55	Hot electron generation and transport using Kα emission. Journal of Physics: Conference Series, 2010, 244, 022026.	0.4	3
56	New developments in energy transfer and transport studies in relativistic laser–plasma interactions. Plasma Physics and Controlled Fusion, 2010, 52, 124046.	2.1	7
57	Laser generated neutron source for neutron resonance spectroscopy. Physics of Plasmas, 2010, 17, .	1.9	67
58	Single-shot divergence measurements of a laser-generated relativistic electron beam. Physics of Plasmas, 2010, 17, .	1.9	11
59	A dual channel X-ray spectrometer for fast ignition research. Journal of Instrumentation, 2010, 5, P07008-P07008.	1.2	16
60	Bremsstrahlung and Kα fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons. Physics of Plasmas, 2009, 16, .	1.9	80
61	Fast-electron transport in cylindrically laser-compressed matter. Plasma Physics and Controlled Fusion, 2009, 51, 124035.	2.1	24
62	Radiation and hot electron temperature measurements of short-pulselaser driven hohlraums. High Energy Density Physics, 2009, 5, 212-215.	1.5	1