Claudio Santi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6079899/publications.pdf

Version: 2024-02-01

206 papers 6,376 citations

76326 40 h-index 102487 66 g-index

267 all docs

 $\begin{array}{c} 267 \\ \text{docs citations} \end{array}$

times ranked

267

4254 citing authors

#	Article	IF	CITATIONS
1	Fluorineâ€Containing Drugs Approved by the FDA in 2018. Chemistry - A European Journal, 2019, 25, 11797-11819.	3.3	341
2	Green Chemistry with Selenium Reagents: Development of Efficient Catalytic Reactions. Angewandte Chemie - International Edition, 2009, 48, 8409-8411.	13.8	311
3	Design and Synthesis of DiselenoBisBenzamides (DISeBAs) as Nucleocapsid Protein 7 (NCp7) Inhibitors with anti-HIV Activity. Journal of Medicinal Chemistry, 2015, 58, 9601-9614.	6.4	175
4	"The green side of the moon: ecofriendly aspects of organoselenium chemistry― RSC Advances, 2014, 4, 31521-31535.	3.6	169
5	Organoselenium Compounds as Catalysts in Nature and Laboratory. Current Organic Chemistry, 2010, 14, 2442-2462.	1.6	133
6	New Frontiers in Organoselenium Compounds. , 2018, , .		131
7	Catalytic Chalcogenylation under Greener Conditions: A Solvent-Free Sulfur- and Seleno-functionalization of Olefins via I ₂ /DMSO Oxidant System. Journal of Organic Chemistry, 2015, 80, 2120-2127.	3.2	121
8	Asymmetric Azidoselenenylation of Alkenes: A Key Step for the Synthesis of Enantiomerically Enriched Nitrogen-Containing Compounds. Angewandte Chemie - International Edition, 2003, 42, 3131-3133.	13.8	120
9	Preparation of a New Chiral Non-Racemic Sulfur-Containing Diselenide and Applications in Asymmetric Synthesis. Chemistry - A European Journal, 2002, 8, 1118.	3.3	114
10	Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. Journal of Agricultural and Food Chemistry, 2020, 68, 4075-4097.	5 . 2	113
11	Ecoâ€Friendly Olefin Dihydroxylation Catalyzed by Diphenyl Diselenide. Advanced Synthesis and Catalysis, 2008, 350, 2881-2884.	4.3	102
12	Selenium Containing Compounds from Poison to Drug Candidates: A Review on the GPx-like Activity. Current Chemical Biology, 2013, 7, 25-36.	0.5	91
13	Selenocompounds in Cancer Therapy: An Overview. Advances in Cancer Research, 2017, 136, 259-302.	5.0	89
14	New nitrogen containing chiral diselenides: synthesis and asymmetric addition reactions to olefins. Tetrahedron: Asymmetry, 2000, 11, 4645-4650.	1.8	81
15	Preparation of the First Bench‧table Phenyl Selenolate: an Interesting "On Water―Nucleophilic Reagent. European Journal of Organic Chemistry, 2008, 2008, 5387-5390.	2.4	81
16	Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron, 2012, 68, 10530-10535.	1.9	76
17	Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules, 2021, 26, 4230.	3.8	71
18	Glutathione S-transferase pi expression regulates the Nrf2-dependent response to hormetic diselenides. Free Radical Biology and Medicine, 2015, 88, 466-480.	2.9	70

#	Article	IF	Citations
19	A Simple Zinc-Mediated Preparation of Selenols. Synlett, 2008, 2008, 1471-1474.	1.8	67
20	Selenium Catalyzed Oxidation of Aldehydes: Green Synthesis of Carboxylic Acids and Esters. Molecules, 2015, 20, 10496-10510.	3.8	67
21	Synthesis of non-racemic nitrogen-containing diselenides as efficient precursor catalysts in the diethylzinc addition to benzaldehyde. Tetrahedron: Asymmetry, 1999, 10, 1019-1023.	1.8	64
22	Synthesis and biological evaluation of new nitrogen-containing diselenides. European Journal of Medicinal Chemistry, 2014, 87, 131-139.	5.5	64
23	Sonochemistry: An efficient alternative to the synthesis of 3-selanylindoles using Cul as catalyst. Ultrasonics Sonochemistry, 2015, 27, 192-199.	8.2	60
24	Efficient asymmetric selenomethoxylation and selenohydroxylation of alkenes with a new sulfur containing chiral diselenide. Tetrahedron Letters, 2000, 41, 3241-3245.	1.4	59
25	Oxidation of thiols promoted by PhSeZnCl. Tetrahedron Letters, 2012, 53, 232-234.	1.4	59
26	An Update on "Selenium Containing Compounds from Poison to Drug Candidates: A Review on the GPx-like Activity― Current Chemical Biology, 2016, 9, 97-112.	0.5	59
27	On water preparation of phenylselenoesters. Green Chemistry, 2012, 14, 1277.	9.0	57
28	Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiology, 2016, 16, 220.	3.3	57
29	A new vinyl selenone-based domino approach to spirocyclopropyl oxindoles endowed with anti-HIV RT activity. Organic and Biomolecular Chemistry, 2016, 14, 2015-2024.	2.8	57
30	Asymmetric selenomethoxylation of alkenes with camphorselenenyl sulfate. Tetrahedron Letters, 1998, 39, 2809-2812.	1.4	55
31	Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. International Journal of Molecular Sciences, 2021, 22, 990.	4.1	55
32	Efficient asymmetric selenocyclizations of alkenyl oximes into cyclic nitrones and 1,2-oxazines promoted by sulfur containing diselenides. Tetrahedron: Asymmetry, 2001, 12, 3297-3304.	1.8	54
33	Ultrasoundâ€Assisted Multicomponent Reactions, Organometallic and Organochalcogen Chemistry. Asian Journal of Organic Chemistry, 2018, 7, 2368-2385.	2.7	54
34	Asymmetric oxyselenenylation–deselenenylation reactions of alkenes induced by camphor diselenide and ammonium persulfate. A convenient one-pot synthesis of enantiomerically enriched allylic alcohols and ethers. Tetrahedron: Asymmetry, 1999, 10, 747-757.	1.8	49
35	New Halogen-Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical Use. Molecules, 2022, 27, 1643.	3.8	48
36	Vinylic Substitutions Promoted by PhSeZnCl: Synthetic and Theoretical Investigations. European Journal of Organic Chemistry, 2009, 2009, 4921-4925.	2.4	46

#	Article	lF	CITATIONS
37	NCp7: targeting a multitasking protein for next-generation anti-HIV drug development part 1: covalent inhibitors. Drug Discovery Today, 2018, 23, 260-271.	6.4	46
38	A sulfur-containing diselenide as an efficient chiral reagent in asymmetric selenocyclization reactions. Tetrahedron: Asymmetry, 2001, 12, 1493-1502.	1.8	45
39	Synthesis of a new chiral nitrogen containing diselenide as a precursor for selenium electrophiles. Tetrahedron: Asymmetry, 1998, 9, 3625-3628.	1.8	44
40	Optically active isoxazolidines and 1,3-amino alcohols by asymmetric selenocyclization reactions of O-allyl oximes. Tetrahedron: Asymmetry, 2001, 12, 3053-3059.	1.8	44
41	A general phosphoric acid-catalyzed desymmetrization of meso-aziridines with silylated selenium nucleophiles. Organic and Biomolecular Chemistry, 2011, 9, 6205.	2.8	44
42	Seleno-Functionalization of Quercetin Improves the Non-Covalent Inhibition of Mpro and Its Antiviral Activity in Cells against SARS-CoV-2. International Journal of Molecular Sciences, 2021, 22, 7048.	4.1	44
43	Synthesis of enantiomerically enriched \hat{i}^2 -hydroxy selenides by catalytic asymmetric ring opening of meso-epoxides with (phenylseleno)silanes. Tetrahedron, 2008, 64, 3337-3342.	1.9	41
44	Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its d,l-polylactide microparticle formulation. Free Radical Biology and Medicine, 2015, 78, 56-65.	2.9	41
45	Catalytic Oxyselenenylation–Deselenenylation Reactions of Alkenes – Stereoselective One-Pot Conversion of 3-Alkenols into 2,5-Dihydrofurans. European Journal of Organic Chemistry, 1999, 1999, 797-803.	2.4	40
46	Ring-Closure Reactions through Intramolecular Displacement of the Phenylselenonyl Group by Nitrogen Nucleophiles: A New Stereospecific Synthesis of N-Tosyl and N-Benzoyl-1,3-oxazolidin-2-ones from 12-Hydroxyalkyl Phenyl Selenides. Chemistry - A European Journal, 2004, 10, 1752-1764.	3 . 3	40
47	A Chiral Electrophilic Selenium Reagent To Promote the Kinetic Resolution of Racemic Allylic Alcohols. Organic Letters, 2004, 6, 4751-4753.	4.6	40

48

#	Article	IF	CITATIONS
55	Selenium Catalysed Conversion of \hat{l}^2 , \hat{l}^3 -Unsaturated Acids into Butenolides. Synlett, 1993, 1993, 798-800.	1.8	37
56	"Onâ€Water―Michaelâ€Type Addition Reactions Promoted by PhSeZnCl. European Journal of Organic Chemistry, 2011, 2011, 1848-1851.	2.4	37
57	Colloidal nickel(0)-carboxymethyl cellulose particles: A biopolymer-inorganic catalyst for hydrogenation of nitro-aromatics and carbonyl compounds. Catalysis Communications, 2013, 32, 92-100.	3.3	37
58	New Chiral Ebselen Analogues with Antioxidant and Cytotoxic Potential. Molecules, 2017, 22, 492.	3.8	37
59	Enantioselective synthesis of heterocyclic compounds mediated by organoselenium reagents. Arkivoc, 2006, 2006, 186-206.	0.5	37
60	Insights in Behavior of Variably Formulated Alginate-Based Microcapsules for Cell Transplantation. BioMed Research International, 2015, 2015, 1-11.	1.9	36
61	Seleniumâ€Catalyzed Oxacyclization of Alkenoic Acids and Alkenols. Asian Journal of Organic Chemistry, 2017, 6, 988-992.	2.7	36
62	αâ€Keto Acids as Acylating Agents in the Synthesis of 2â€Substituted Benzothiazoles and Benzoselenazoles. European Journal of Organic Chemistry, 2017, 2017, 3830-3836.	2.4	36
63	Diselenides and Benzisoselenazolones as Antiproliferative Agents and Glutathione-S-Transferase Inhibitors. Molecules, 2019, 24, 2914.	3.8	36
64	Asymmetric Amidoselenenylation of Alkenes Promoted by Camphorselenenyl Sulfate: A Useful Synthetic Route to Enantiopure Oxazolines. European Journal of Organic Chemistry, 2000, 2000, 3451-3457.	2.4	35
65	Oxidation of Diphenyl Diselenide with 2,3-Dichloro-5,6-dicyanobenzoquinone (DDQ). A New Method for the Electrophilic Phenylselenenylation of Alkenes under Mild Conditions. Synlett, 2001, 2001, 1767-1771.	1.8	35
66	Niobium-promoted reaction of \hat{l}_{\pm} -phenylglyoxylic acid with ortho-functionalized anilines: synthesis of 2-arylbenzothiazoles and 3-aryl-2H-benzo[b][1,4]benzoxazin-2-ones. Green Chemistry, 2016, 18, 6675-6680.	9.0	35
67	The Thiol-Modifier Effects of Organoselenium Compounds and Their Cytoprotective Actions in Neuronal Cells. Neurochemical Research, 2021, 46, 120-130.	3.3	35
68	Asymmetric synthesis of thioamido selenides. A simple synthetic route to enantiopure thiazolines. Tetrahedron: Asymmetry, 2002, 13, 429-435.	1.8	34
69	Synthesis of enantiomerically pure substituted tetrahydrofurans from epoxides and phenylselenium reagents. Tetrahedron: Asymmetry, 2004, 15, 405-412.	1.8	34
70	Selenomethoxylation of Alkenes Promoted by Oxone®. European Journal of Organic Chemistry, 2018, 2018, 1224-1229.	2.4	34
71	Stereocontrolled synthesis of substituted N-arenesulfonyl azetidines from î³-(phenylseleno)alkyl arylsulfonamides. Organic and Biomolecular Chemistry, 2007, 5, 3510.	2.8	33
72	Synthesis of enantiomerically pure 1,4-dioxanes from alkenes promoted by organoselenium reagents. Tetrahedron: Asymmetry, 2003, 14, 1095-1102.	1.8	32

#	Article	IF	Citations
73	Vinyl selenones: annulation agents for the synthesis of six-membered benzo-1,4-heterocyclic compounds. Tetrahedron, 2013, 69, 481-486.	1.9	32
74	Ultrasoundâ€Promoted Radical Synthesis of 5â€Methylselanylâ€4,5â€dihydroisoxazoles. European Journal of Organic Chemistry, 2020, 2020, 586-592.	2.4	30
75	New synthesis of isoxazolidines from the selenium-induced cyclization of O-allyl hydroxylamines. Tetrahedron Letters, 1995, 36, 163-166.	1.4	29
76	Selenium-promoted synthesis of enantiomerically pure substituted morpholines starting from alkenes and chiral aminoalcohols. Tetrahedron: Asymmetry, 2003, 14, 2651-2657.	1.8	29
77	Synthesis of enantiomerically pure perhydrofuro[3,4-b]pyrans and perhydrofuro[3,4-b]furans. Tetrahedron: Asymmetry, 2004, 15, 1949-1955.	1.8	28
78	Selenium dioxide-promoted selective synthesis of mono- and bis-sulfenylindoles. Organic Chemistry Frontiers, 2018, 5, 1983-1991.	4.5	28
79	Selenium-induced cyclization of O-allyl oximes as a synthetic route to N-alkyl isoxazolidines. Tetrahedron, 1995, 51, 1277-1284.	1.9	27
80	Title is missing!. Angewandte Chemie, 2003, 115, 3239-3241.	2.0	27
81	A new class of silica-supported chromo-fluorogenic chemosensors for anion recognition based on a selenourea scaffold. Chemical Communications, 2017, 53, 3729-3732.	4.1	27
82	Advances in Electrophilic Organochalcogen Reagents. Current Organic Chemistry, 2015, 20, 122-135.	1.6	27
83	Celebrating Two Centuries of Research in Selenium Chemistry: State of the Art and New Prospective. Molecules, 2017, 22, 2124.	3.8	26
84	Intramolecular addition of carbon radicals to aldehydes: synthesis of enantiopure tetrahydrofuran-3-ols. Tetrahedron, 2007, 63, 5482-5489.	1.9	25
85	"Green Is the Color― An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules, 2022, 27, 1597.	3.8	25
86	Organoselenium mediated asymmetric cyclizations. Synthesis of enantiomerically pure 1,6-dioxaspiro[4.4]nonanes. Tetrahedron: Asymmetry, 2006, 17, 2768-2774.	1.8	24
87	A Recyclable Biphasic System for Stereoselective and Easily Handled Hydrochalcogenations. European Journal of Organic Chemistry, 2014, 2014, 5968-5975.	2.4	24
88	Water and Aqueous Mixtures as Convenient Alternative Media for Organoselenium Chemistry. Molecules, 2016, 21, 1482.	3.8	24
89	Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals, 2020, 13, 211.	3.8	24
90	Pyrrolidinamine, piperidinamine and tetrahydropyridazine derivatives from selenium promoted cyclization of alkenyl phenylhydrazones. Tetrahedron, 1997, 53, 7311-7318.	1.9	23

#	Article	IF	CITATIONS
91	Diastereo and Enantioselective Synthesis of 1,2-Diols Promoted by Electrophilic Selenium Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 956-960.	1.6	23
92	Charge-displacement analysis as a tool to study chalcogen bonded adducts and predict their association constants in solution. Dalton Transactions, 2015, 44, 20168-20175.	3.3	23
93	Phenylselenenyl sulfate induced cyclization of allylhydrazines. Synthesis of pyrazole derivatives. Tetrahedron, 1997, 53, 4441-4446.	1.9	22
94	Asymmetric Syntheses Promoted by Organoselenium Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 729-740.	1.6	22
95	Oxoneâ∈Mediated Oxidation of Vinyl Selenides in Water. European Journal of Organic Chemistry, 2018, 2018, 3914-3919.	2.4	22
96	Factors controlling the selenium-induced cyclizations of alkenyl hydrazines to pyridazine or pyrrolidinamine derivatives. Tetrahedron, 1997, 53, 10591-10602.	1.9	21
97	Asymmetric Selenohydroxylation of Alkenes with Camphorselenenyl Sulfate. European Journal of Organic Chemistry, 1998, 1998, 2275-2277.	2.4	21
98	Synthesis of enantiomerically pure \hat{l}^2 -azidoselenides starting from natural terpenes. Tetrahedron, 2007, 63, 12373-12378.	1.9	21
99	Agarsenone, a Cadinane Sesquiterpenoid from <i>Commiphora erythraea</i> . Journal of Natural Products, 2013, 76, 1254-1259.	3.0	21
100	Organic Diselenides: Versatile Reagents, Precursors, and Intriguing Biologically Active Compounds. Chimia, 2017, 71, 592.	0.6	21
101	One-Pot Conversion of Alkenes into Oxazolines and Oxazolidin-2-Ones Promoted by Diphenyl Diselenide. Synthetic Communications, 1997, 27, 4131-4140.	2.1	20
102	Synthesis of \hat{I}^3 -lactams via a domino Michael addition/cyclization reaction of vinyl selenone with substituted amides. Tetrahedron Letters, 2013, 54, 6755-6757.	1.4	20
103	DES as a green solvent to prepare 1,2-bis-organylseleno alkenes. Scope and limitations. Tetrahedron Letters, 2015, 56, 6890-6895.	1.4	20
104	Asymmetric aldol reactions from titanium enolates of \hat{l} ±-seleno ketones and esters. Tetrahedron: Asymmetry, 2004, 15, 783-791.	1.8	19
105	Synthesis of enantiomerically pure perhydrofuro [2,3-b] furans. Tetrahedron: Asymmetry, 2005, 16, 2429-2435.	1.8	19
106	Synthesis, characterization and <i>in vitro</i> extracellular and intracellular activity against <i>Mycobacterium tuberculosis</i> infection of new second-line antitubercular drug-palladium complexes. Journal of Pharmacy and Pharmacology, 2013, 66, 106-121.	2.4	19
107	Selective continuous flow synthesis of hydroxy lactones from alkenoic acids. Reaction Chemistry and Engineering, 2017, 2, 467-471.	3.7	18
108	Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol. Molecules, 2017, 22, 327.	3.8	18

#	Article	IF	Citations
109	Continuous Bioinspired Oxidation of Sulfides. Molecules, 2020, 25, 2711.	3.8	18
110	Electrophilic 2-Thienylselenenylation of Thiophene. Preparation of Oligo(seleno-2,5-thienylenes). Tetrahedron, 2000, 56, 3255-3260.	1.9	17
111	A New Synthesis of α-Phenylseleno γ-and δ-Lactones from Terminal Alkynes. Synlett, 2003, 2003, 0655-0658.	1.8	17
112	Fast and easy conversion of <i>ortho</i> amidoaryldiselenides into the corresponding ebselen-like derivatives driven by theoretical investigations. New Journal of Chemistry, 2020, 44, 9444-9451.	2.8	17
113	A mild and efficient method for the synthesis of a new optically active diallyl selenide and its catalytic activity in the allylic chlorination of natural terpenes. New Journal of Chemistry, 2016, 40, 3395-3399.	2.8	16
114	Recent advances in the chemistry of vinylchalcogenides. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 235-244.	1.6	16
115	Induction of reactive oxygen species by diphenyl diselenide is preceded by changes in cell morphology and permeability in <i>Saccharomyces cerevisiae</i> . Free Radical Research, 2017, 51, 657-668.	3.3	16
116	New Prospective for Redox Modulation Mediated by Organo selenium and Organotellurium Compounds. Current Organic Chemistry, 2017, 21, .	1.6	16
117	Conjugated Additions of Selenium Containing Enolates to Enones - Enantioselective Synthesis of ?-Oxo-?-Seleno Esters and Their Facile Transformations. European Journal of Organic Chemistry, 2005, 2005, 543-551.	2.4	15
118	Short Synthesis of (R)- and (S)-4-Amino-3-Hydroxybutyric Acid (GABOB). Synthesis, 2005, 2005, 579-582.	2.3	15
119	Arylseleninic acid as a green, bench-stable selenylating agent: synthesis of selanylanilines and 3-selanylindoles. Organic and Biomolecular Chemistry, 2020, 18, 5210-5217.	2.8	15
120	Selenium Promoted Stereospecific One-Pot Conversion Of Cinnamyl Derivatives Into Oxazoleses. A Simple Synthetic Route To Racemic Taxol Side Chain. Synthetic Communications, 1999, 29, 1773-1778.	2.1	14
121	Atom Efficient Preparation of Zinc Selenates for the Synthesis of Selenol Esters under "On Water― Conditions. Molecules, 2017, 22, 953.	3.8	14
122	A domino approach to pyrazino- indoles and pyrroles using vinyl selenones. Tetrahedron, 2018, 74, 7156-7163.	1.9	14
123	Synthesis of Spirooxindole Oxetanes Through a Domino Reaction of 3-Hydroxyoxindoles and Phenyl Vinyl Selenone. European Journal of Organic Chemistry, 2019, 2019, 5396-5401.	2.4	14
124	PhSeZnCl in the Synthesis of Steroidal \hat{l}^2 -Hydroxy-Phenylselenides Having Antibacterial Activity. International Journal of Molecular Sciences, 2019, 20, 2121.	4.1	14
125	A three-component [3 + 2]-cycloaddition/elimination cascade for the synthesis of spirooxindole-pyrrolizines. Organic and Biomolecular Chemistry, 2021, 19, 667-676.	2.8	13
126	A New Synthesis of $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Phenylseleno Esters and Acids from Terminal Alkynes. Synlett, 2001, 2001, 0706-0708.	1.8	12

#	Article	IF	Citations
127	Synthesis of selenoxides by oxidation of selenides with superoxide radical anions and 2-nitrobenzenesulfonyl chloride. Tetrahedron Letters, 2005, 46, 5165-5168.	1.4	12
128	Oxidation of Alkynes in Aqueous Media Catalyzed by Diphenyl Diselenide. Synlett, 2010, 2010, 1402-1406.	1.8	12
129	Bioactive Organoselenium Compounds and Therapeutic Perspectives. , 2018, , 99-143.		12
130	Ultrasound-assisted synthesis of alkali metals diselenides (M2Se2) and their application for the gram-scale preparation of 2,2'-diselenobis(benzoic acid). Arkivoc, 2020, 2019, 24-37.	0.5	12
131	Synthesis of Î ³ - and Î ² -Lactones from Alkynols. Synlett, 2006, 2006, 0587-0590.	1.8	11
132	Quinolinophane-derived alkyldiphenylphosphines: two homologous P,N-planar chiral ligands for palladium-catalysed allylic alkylation. Tetrahedron: Asymmetry, 2007, 18, 1742-1749.	1.8	11
133	Enantioselective Methoxyselenenylation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Aldehydes. Synlett, 2009, 2009, 743-746.	1.8	11
134	Synthesis of Thiol Esters Using PhSZnBr as Sulfenylating Agent: A DFTâ€Guided Optimization of Reaction Conditions. European Journal of Organic Chemistry, 2016, 2016, 2999-3005.	2.4	11
135	The Q-tube System, A Nonconventional Technology for Green Chemistry Practitioners. Current Green Chemistry, 2017, 4, .	1.1	11
136	Mannich-type addition of 1,3-dicarbonyl compounds to chiral <i>tert</i> -butanesulfinyltrifluoroacetaldimines. Mechanistic aspects and chiroptical studies. Organic and Biomolecular Chemistry, 2018, 16, 8742-8750.	2.8	11
137	Phenylselanyl Group Incorporation for "Glutathione Peroxidase-Like―Activity Modulation. Molecules, 2020, 25, 3354.	3.8	11
138	Continuous flow synthesis of 2,2′-diselenobis(benzoic acid) and derivatives. Reaction Chemistry and Engineering, 2020, 5, 641-644.	3.7	11
139	Palladium-Catalyzed Carbonylative Synthesis of Aryl Selenoesters Using Formic Acid as an <i>Ex Situ</i> CO Source. Journal of Organic Chemistry, 2022, 87, 595-605.	3.2	11
140	Synthesis of oxazino [4,3-a] indoles by domino addition-cyclization reactions of (1H-indol-2-yl) methanols and vinyl selenones in the presence of 18-crown-6. Tetrahedron, 2016, 72, 7059-7064.	1.9	10
141	Solvent-free, uncatalyzed asymmetric "ene―reactions of N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimines: a general approach to enantiomerically pure α-(trifluoromethyl)tryptamines. Organic and Biomolecular Chemistry, 2017, 15, 3930-3937.	2.8	10
142	Reshaping antibiotics through hydrophobic drug-bile acid ionic complexation enhances activity against Staphylococcus aureus biofilms. International Journal of Pharmaceutics, 2017, 528, 144-162.	5.2	10
143	Dichalcogenides/Oxone ® â€Mediated Cyclization of (Z)â€Chalcogenoenynes under Ultrasound Irradiation. ChemistrySelect, 2020, 5, 9813-9819.	1.5	10
144	A Simple Zinc-Mediated Method for Selenium Addition to Michael Acceptors. Molecules, 2020, 25, 2018.	3.8	10

#	Article	IF	Citations
145	Selenium Catalyzed Conversion of d-Phenyl-g-alkenyl Oximes into 2-Phenylpyridines. Heterocycles, 1996, 43, 2679.	0.7	10
146	New Insights into Green Protocols for Oxidative Depolymerization of Lignin and Lignin Model Compounds. International Journal of Molecular Sciences, 2022, 23, 4378.	4.1	10
147	A simple synthesis of (R)-3-aminooctanoic acid (D-BAOA) from (S)-1-octyn-3-ol. Tetrahedron Letters, 2007, 48, 4343-4345.	1.4	9
148	"On-water―thiolysis of epoxides promoted by PhSZnBr. Journal of Sulfur Chemistry, 2013, 34, 671-676.	2.0	9
149	Kinetic Resolution of Allylic Alcohols Promoted by Electrophilic Selenium Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1071-1075.	1.6	8
150	Reaction of Acyl Chlorides with <i>In Situ </i> Formed Zinc Selenolates: Synthesis of Selenoesters <i>Versus </i> Ring-Opening Reaction of Tetrahydrofuran. Journal of Chemistry, 2016, 2016, 1-8.	1.9	8
151	Chemical composition of the essential oil of Commiphora erythraea. Natural Product Communications, 2009, 4, 1751-4.	0.5	8
152	Water-Dependent Selective Synthesis of Mono- or Bis-Selanyl Alkenes from Terminal Alkynes. ChemistrySelect, 2016, 1, 4289-4294.	1.5	7
153	New insights into the seleniranium ion promoted cyclization of prenyl and propenylbenzene aryl ethers. Tetrahedron Letters, 2017, 58, 371-374.	1.4	7
154	Organoselenium Compounds as Reagents and Catalysts to Develop New Green Protocols. , 2018, , 1-97.		7
155	Synthesis and Antioxidant Activity of New Selenium-Containing Quinolines. Medicinal Chemistry, 2021, 17, 667-676.	1.5	7
156	7.20 Addition Reactions with Formation of Carbon–Sulfur and Carbon Selenium Bonds. , 2014, , 605-637.		6
157	Zinc Chalcogenolates As Green Reagents. Current Green Chemistry, 2016, 3, 68-75.	1.1	6
158	Q-Tube $\hat{A} \otimes \text{O}$ assisted MCRs for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Arkivoc, 2019, 2018, 270-278.	0.5	6
159	Thiols Oxidation for the Evaluation of Gpx-Like Activity. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 507-508.	1.6	5
160	Organoselenium Compounds as Phytochemicals from the Natural Kingdom. Natural Product Communications, 2015, 10, 1934578X1501001.	0.5	5
161	Tellurium-promoted stereoselective hydrodebromination of 1,1-dibromoalkenes: synthesis of (E)-bromoalkenes. RSC Advances, 2016, 6, 103657-103661.	3.6	4
162	Zinc-Selenium reagents in organic synthesis. Physical Sciences Reviews, 2018, 3, .	0.8	4

#	Article	IF	CITATIONS
163	Selenium & tellurium chemistry at the beginning of the 3rd millennium: a celebration of ICCST. New Journal of Chemistry, 2019, 43, 11032-11033.	2.8	4
164	Perspective in Green Chemistry for Organoselenium Compounds (no more an oxymoron). Current Green Chemistry, 2019, 6, 9-11.	1.1	4
165	Synthesis of 4-Arylselanyl-1H-1,2,3-triazoles from Selenium-Containing Carbinols. Molecules, 2021, 26, 2224.	3.8	4
166	l-Arginine Improves Solubility and ANTI SARS-CoV-2 Mpro Activity of Rutin but Not the Antiviral Activity in Cells. Molecules, 2021, 26, 6062.	3.8	4
167	Organoselenium Compounds as Phytochemicals from the Natural Kingdom. Natural Product Communications, 2015, 10, 1885-92.	0.5	4
168	Nonbonded Interaction: The Chalcogen Bond. , 2018, , 157-183.		3
169	Dynamic modeling of primary commands for a car simulator. , 0, , .		2
170	An enantiopure diselenide based on a chiral bicyclic backboneâ€"synthesis and configuration assignment. Tetrahedron: Asymmetry, 2017, 28, 1367-1372.	1.8	2
171	Mild and Green Protocol for Selective Deuteration of Quercetin-3-ORutinoside (Rutin) Under Aqueous Basic Conditions. Current Green Chemistry, 2019, 6, 147-151.	1.1	2
	The nature of Gâx Eâ E Y Ïf (3câ E 4e) in		
172	<i>>o</i> -Me _n GCH ₂ C ₆ H ₄ EY (Me _n G =) Tj ETQq and compliance constants in poncovalent Câx F interactions. PSC Advances. 2019. 9, 39435-39446.	0 0 0 rgBT 3.6	Oyerlock 10
172 173	and compliance constants in noncovalent Gâc E interactions. RSC Advances, 2019, 9, 39435-39446. Synthetic Advances on Bioactive Selenium CompoundsChapter 2. Looking Beyond the Traditional Idea of Glutathione Peroxidase Mimics as Antioxidants., 0, , 35-76.	0 0 0 rgBT	Oyerlock 10
	and compliance constants in noncovalent Gâc ^T E interactions. RSC Advances, 2019, 9, 39435-39446. Synthetic Advances on Bioactive Selenium CompoundsChapter 2. Looking Beyond the Traditional Idea	0 0 0 rgBT 3.6	_
173	and compliance constants in noncovalent Gâc E interactions. RSC Advances, 2019, 9, 39435-39446. Synthetic Advances on Bioactive Selenium CompoundsChapter 2. Looking Beyond the Traditional Idea of Glutathione Peroxidase Mimics as Antioxidants., 0,, 35-76. Q-Tube®-Assisted Alkylation and Arylation of Xanthines and Other N-H-Containing Heterocycles in	5.0	2
173 174	and compliance constants in noncovalent Gâc E interactions. RSC Advances, 2019, 9, 39435-39446. Synthetic Advances on Bioactive Selenium CompoundsChapter 2. Looking Beyond the Traditional Idea of Glutathione Peroxidase Mimics as Antioxidants., 0,, 35-76. Q-Tube®-Assisted Alkylation and Arylation of Xanthines and Other N-H-Containing Heterocycles in Water. Chemistry, 2021, 3, 1126-1137.	5.0	2
173 174 175	and compliance constants in noncovalent Gâc E interactions. RSC Advances, 2019, 9, 39435-39446. Synthetic Advances on Bioactive Selenium CompoundsChapter 2. Looking Beyond the Traditional Idea of Glutathione Peroxidase Mimics as Antioxidants., 0,, 35-76. Q-Tube®-Assisted Alkylation and Arylation of Xanthines and Other N-H-Containing Heterocycles in Water. Chemistry, 2021, 3, 1126-1137. Selenium and Tellurium Complexes in Organic Synthesis., 2021,, Vibrational and Electronic Circular Dichroism Study of Chiral Seleno Compounds Prepared from a	2.2	2 2
173 174 175 176	and compliance constants in noncovalent Gâc E interactions. RSC Advances, 2019, 9, 39435-39446. Synthetic Advances on Bioactive Selenium CompoundsChapter 2. Looking Beyond the Traditional Idea of Glutathione Peroxidase Mimics as Antioxidants., 0, , 35-76. Q-Tube®-Assisted Alkylation and Arylation of Xanthines and Other N-H-Containing Heterocycles in Water. Chemistry, 2021, 3, 1126-1137. Selenium and Tellurium Complexes in Organic Synthesis., 2021, Vibrational and Electronic Circular Dichroism Study of Chiral Seleno Compounds Prepared from a Naphthol Based Diselenide. European Journal of Organic Chemistry, 2022, 2022, . A Chiral Electrophilic Selenium Reagent to Promote the Kinetic Resolution of Racemic Allylic	2.2	2 2 2
173 174 175 176	and compliance constants in noncovalent GâcE interactions. RSC Advances, 2019, 9, 39435-39446. Synthetic Advances on Bioactive Selenium CompoundsChapter 2. Looking Beyond the Traditional Idea of Glutathione Peroxidase Mimics as Antioxidants., 0, , 35-76. Q-Tube®-Assisted Alkylation and Arylation of Xanthines and Other N-H-Containing Heterocycles in Water. Chemistry, 2021, 3, 1126-1137. Selenium and Tellurium Complexes in Organic Synthesis., 2021, , . Vibrational and Electronic Circular Dichroism Study of Chiral Seleno Compounds Prepared from a Naphthol Based Diselenide. European Journal of Organic Chemistry, 2022, 2022, . A Chiral Electrophilic Selenium Reagent to Promote the Kinetic Resolution of Racemic Allylic Alcohols ChemInform, 2005, 36, no.	2.2	2 2 2 2

#	Article	IF	CITATIONS
181	Editorial (Thematic Issue: Organochalcogens in Green Chemistry). Current Green Chemistry, 2016, 3, 3-3.	1.1	1
182	< strong > Organoselenium compounds, an overview on the biological activities beyond antioxidant properties < /strong >. , 0, , .		1
183	Simple Zn-Mediated Seleno- and Thio-Functionalization of Steroids at C-1 Position. International Journal of Molecular Sciences, 2022, 23, 3022.	4.1	1
184	A New Synthesis of α-Phenylseleno γ- and Î-Lactones from Terminal Alkynes ChemInform, 2003, 34, no.	0.0	0
185	Asymmetric Azidoselenenylation of Alkenes: A Key Step for the Synthesis of Enantiomerically Enriched Nitrogen-Containing Compounds ChemInform, 2003, 34, no.	0.0	0
186	Selenium-Promoted Synthesis of Enantiomerically Pure Substituted Morpholines Starting from Alkenes and Chiral Aminoalcohols ChemInform, 2003, 34, no.	0.0	0
187	Synthesis of Enantiomerically Pure Perhydrofuro [3,4-b] pyrans and Perhydrofuro [3,4-b] furans ChemInform, 2004, 35, no.	0.0	0
188	Synthesis of Substituted Se-Phenyl Selenocarboxylates from Terminal Alkynes ChemInform, 2004, 35, no.	0.0	0
189	Conjugated Additions of Selenium Containing Enolates to Enones — Enantioselective Synthesis of Î-Oxo-l±-Seleno Esters and Their Facile Transformations ChemInform, 2005, 36, no.	0.0	0
190	Asymmetric Syntheses Promoted by Organoselenium Reagents. Chemlnform, 2005, 36, no.	0.0	0
191	Kinetic Resolution of Allylic Alcohols Promoted by Electrophilic Selenium Reagents ChemInform, 2005, 36, no.	0.0	0
192	Short Synthesis of (R)- and (S)-4-Amino-3-hydroxybutyric Acid (GABOB) ChemInform, 2005, 36, no.	0.0	0
193	Synthesis of Selenoxides by Oxidation of Selenides with Superoxide Radical Anions and 2-Nitrobenzenesulfonyl Chloride ChemInform, 2005, 36, no.	0.0	0
194	Synthesis of Enantiomerically Pure Perhydrofuro [2,3-b] furans ChemInform, 2005, 36, no.	0.0	0
195	GSTP expression influences the metabolism and redox of cellular glutathione. Free Radical Biology and Medicine, 2017, 108, S66.	2.9	0
196	9. Zinc-Selenium reagents in organic synthesis. , 2019, , 315-330.		0
197	Synthesis of Pyrrolidinols by Radical Additions to Carbonyls Groups. Proceedings (mdpi), 2019, 41, 20.	0.2	0
198	A tribute to Prof. Lorenzo Testaferri. Arkivoc, 2020, 2019, 1-5.	0.5	0

#	Article	IF	CITATIONS
199	Kinetic resolution of 2-methoxycarbonylalk-3-enols through a stereoselective cyclofunctionalization promoted by an enantiomerically pure electrophilic selenium reagent. Arkivoc, 2017, 2017, 303-312.	0.5	0
200	Ultrasound mediated synthesis of ecofriendly zinc chalcogenates in "on water conditions"., 0,,.		0
201	Preliminary investigations on seleno-analogues of plant oxyprenylated secondary metabolites. Planta Medica, 2016, 81, S1-S381.	1.3	0
202	Meet Our Editor-in-Chief. Current Chemical Biology, 2020, 14, 69-70.	0.5	0
203	Ecofriendly Catalytic Aminoselenation of Alkenes: A Green Alternative for Obtaining Potentially Active Compounds. , 2020, 2, .		0
204	Assessing the effects of covalent, dative and halogen bond on the electronic structure of selenoamide. New Journal of Chemistry, $0, \dots$	2.8	0
205	Flow chemistry in the synthesis of organochalcogen compounds. , 2022, , 83-122.		0
206	The Science of Complex Systems for Preparing the New Generation to Tackle Global Challenges , 0, , .		0