
David J Lawrence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6078845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles. , 1998, 281, 1496-1500.		518
2	Global Distribution of Neutrons from Mars: Results from Mars Odyssey. Science, 2002, 297, 75-78.	12.6	468
3	Global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 2004, 109, .	3.3	423
4	Dawn at Vesta: Testing the Protoplanetary Paradigm. Science, 2012, 336, 684-686.	12.6	422
5	The Major-Element Composition of Mercury's Surface from MESSENGER X-ray Spectrometry. Science, 2011, 333, 1847-1850.	12.6	386
6	Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	342
7	Evidence for water ice near the lunar poles. Journal of Geophysical Research, 2001, 106, 23231-23251.	3.3	296
8	Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer. , 1998, 281, 1484-1489.		286
9	Radioactive Elements on Mercury's Surface from MESSENGER: Implications for the Planet's Formation and Evolution. Science, 2011, 333, 1850-1852.	12.6	233
10	Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. Journal of Geophysical Research, 2002, 107, 13-1-13-26.	3.3	220
11	Polar hydrogen deposits on the Moon. Journal of Geophysical Research, 2000, 105, 4175-4195.	3.3	212
12	Elemental Mapping by Dawn Reveals Exogenic H in Vesta's Regolith. Science, 2012, 338, 242-246.	12.6	201
13	Thorium abundances on the lunar surface. Journal of Geophysical Research, 2000, 105, 20307-20331.	3.3	190
14	Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 2016, 353, 1008-1010.	12.6	178
15	The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Science Reviews, 2007, 131, 339-391.	8.1	175
16	Evidence for Water Ice Near Mercury's North Pole from MESSENGER Neutron Spectrometer Measurements. Science, 2013, 339, 292-296.	12.6	173
17	Small-area thorium features on the lunar surface. Journal of Geophysical Research, 2003, 108, .	3.3	171
18	Return to Mercury: A Global Perspective on MESSENGER's First Mercury Flyby. Science, 2008, 321, 59-62.	12.6	170

#	Article	IF	CITATIONS
19	Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 2017, 355, 55-59.	12.6	169
20	Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: Abundances, distributions, processes, and reservoirs. American Mineralogist, 2015, 100, 1668-1707.	1.9	160
21	Majorâ€element abundances on the surface of Mercury: Results from the MESSENGER Gammaâ€Ray Spectrometer. Journal of Geophysical Research, 2012, 117, .	3.3	146
22	Improved modeling of Lunar Prospector neutron spectrometer data: Implications for hydrogen deposits at the lunar poles. Journal of Geophysical Research, 2006, 111, .	3.3	136
23	Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geoscience, 2016, 9, 273-276.	12.9	134
24	Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations. Journal of Geophysical Research, 2000, 105, 20333-20345.	3.3	131
25	Gamma-Ray, Neutron, and Alpha-Particle Spectrometers for the Lunar Prospector mission. Journal of Geophysical Research, 2004, 109, .	3.3	109
26	Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies. Space Science Reviews, 2014, 181, 121-214.	8.1	108
27	Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy. Journal of Geophysical Research, 2004, 109, .	3.3	101
28	Major Compositional Units of the Moon: Lunar Prospector Thermal and Fast Neutrons. , 1998, 281, 1489-1493.		92
29	MCNPX benchmark for cosmic ray interactions with the Moon. Journal of Geophysical Research, 2006, 111, .	3.3	92
30	Lunar true polar wander inferred from polar hydrogen. Nature, 2016, 531, 480-484.	27.8	90
31	Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon. Journal of Geophysical Research, 2006, 111, .	3.3	86
32	Chemical information content of lunar thermal and epithermal neutrons. Journal of Geophysical Research, 2000, 105, 20347-20363.	3.3	85
33	Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gammaâ€Ray Spectrometer. Journal of Geophysical Research, 2012, 117, .	3.3	85
34	Enhanced sodium abundance in Mercury's north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus, 2014, 228, 86-95.	2.5	85
35	Lunar Fe and Ti Abundances: Comparison of Lunar Prospector and Clementine Data. , 1998, 281, 1493-1496.		83
36	High resolution measurements of absolute thorium abundances on the lunar surface. Geophysical Research Letters, 1999, 26, 2681-2684.	4.0	83

#	Article	IF	CITATIONS
37	Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander. Planetary Science Journal, 2021, 2, 130.	3.6	80
38	Reduction of neutron data from Lunar Prospector. Journal of Geophysical Research, 2004, 109, .	3.3	76
39	Lunar Prospector neutron spectrometer constraints on TiO2. Journal of Geophysical Research, 2002, 107, 8-1.	3.3	74
40	Geochemical terranes of Mercury's northern hemisphere as revealed by MESSENGER neutron measurements. Icarus, 2015, 253, 346-363.	2.5	74
41	Gamma-ray measurements from Lunar Prospector: Time series data reduction for the Gamma-Ray Spectrometer. Journal of Geophysical Research, 2004, 109, .	3.3	70
42	A tale of two poles: Toward understanding the presence, distribution, and origin of volatiles at the polar regions of the Moon and Mercury. Journal of Geophysical Research E: Planets, 2017, 122, 21-52.	3.6	69
43	Models of the distribution and abundance of hydrogen at the lunar south pole. Geophysical Research Letters, 2007, 34, .	4.0	66
44	Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet's formation and evolution. Icarus, 2015, 257, 417-427.	2.5	66
45	Hydrated states of MgSO4at equatorial latitudes on Mars. Geophysical Research Letters, 2004, 31, .	4.0	65
46	Global spatial deconvolution of Lunar Prospector Th abundances. Geophysical Research Letters, 2007, 34, .	4.0	64
47	Measurements of early and late time plasmasphere refilling as observed from geosynchronous orbit. Journal of Geophysical Research, 1999, 104, 14691-14704.	3.3	61
48	Twoâ€dimensional distribution of volatiles in the lunar regolith from space weathering simulations. Geophysical Research Letters, 2012, 39, .	4.0	61
49	Observations, Meteorites, and Models: A Preflight Assessment of the Composition and Formation of (16) Psyche. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006296.	3.6	61
50	Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planetary and Space Science, 2015, 108, 98-107.	1.7	57
51	Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution. Journal of Geophysical Research, 2011, 116, .	3.3	54
52	Compositional variability on the surface of 4 Vesta revealed through <scp>GR</scp> a <scp>ND</scp> measurements of highâ€energy gamma rays. Meteoritics and Planetary Science, 2013, 48, 2252-2270.	1.6	53
53	Identification and measurement of neutron-absorbing elements on Mercury's surface. Icarus, 2010, 209, 195-209.	2.5	52
54	Farside explorer: unique science from a mission to the farside of the moon. Experimental Astronomy, 2012, 33, 529-585.	3.7	52

#	Article	IF	CITATIONS
55	Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars. Journal of Geophysical Research, 2011, 116, .	3.3	51
56	Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planets. Earth, Planets and Space, 2022, 74, .	2.5	51
57	Hansteen Alpha: A volcanic construct in the lunar highlands. Journal of Geophysical Research, 2003, 108, .	3.3	50
58	High-energy neutrons from the Moon. Journal of Geophysical Research, 2000, 105, 20365-20375.	3.3	48
59	Neutron absorption constraints on the composition of 4 Vesta. Meteoritics and Planetary Science, 2013, 48, 2211-2236.	1.6	47
60	2. Understanding the Lunar Surface and Space-Moon Interactions. , 2006, , 83-220.		44
61	Deep Space One Investigations of Ion Propulsion Plasma Environment. Journal of Spacecraft and Rockets, 2000, 37, 545-555.	1.9	43
62	TARANIS—A Satellite Project Dedicated to the Physics of TLEs and TGFs. Space Science Reviews, 2008, 137, 301-315.	8.1	41
63	Ice concentration and distribution near the south pole of Mars: Synthesis of odyssey and global surveyor analyses. Geophysical Research Letters, 2002, 29, 10-1-10-4.	4.0	38
64	Integration of the Clementine UV-VIS spectral reflectance data and the Lunar Prospector gamma-ray spectrometer data: A global-scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances. Journal of Geophysical Research, 2002, 107, 15-1-15-14.	3.3	38
65	A comprehensive survey of plasmasphere refilling at geosynchronous orbit. Journal of Geophysical Research, 2001, 106, 25615-25629.	3.3	37
66	Comprehensive survey of energetic electron events in Mercury's magnetosphere with data from the MESSENGER Gammaâ€Ray and Neutron Spectrometer. Journal of Geophysical Research: Space Physics, 2015, 120, 2851-2876.	2.4	36
67	Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail. Journal of Geophysical Research: Space Physics, 2017, 122, 12,170.	2.4	36
68	Recent outgassing from the lunar surface: The Lunar Prospector Alpha Particle Spectrometer. Journal of Geophysical Research, 2005, 110, .	3.3	35
69	Vertical distribution of hydrogen at high northern latitudes on Mars: The Mars Odyssey Neutron Spectrometer. Geophysical Research Letters, 2007, 34, .	4.0	35
70	MESSENGER Observations of Transient Bursts of Energetic Electrons in Mercury's Magnetosphere. Science, 2011, 333, 1865-1868.	12.6	35
71	Distribution of iron on Vesta. Meteoritics and Planetary Science, 2013, 48, 2237-2251.	1.6	35

35

#	Article	IF	CITATIONS
73	Topographic control of hydrogen deposits at low latitudes to midlatitudes of Mars. Journal of Geophysical Research, 2005, 110, .	3.3	34
74	Remote sensing and geologic studies of the Balmer-Kapteyn region of the Moon. Journal of Geophysical Research, 2005, 110, .	3.3	33
75	Reflection of solar wind hydrogen from the lunar surface. Journal of Geophysical Research E: Planets, 2013, 118, 292-305.	3.6	31
76	Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with highâ€resolution observations from MESSENGER. Journal of Geophysical Research: Space Physics, 2016, 121, 2171-2184.	2.4	31
77	Evidence for a high-Th, evolved lithology on the Moon at Hansteen Alpha. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	30
78	Evidence for explosive silicic volcanism on the Moon from the extended distribution of thorium near the Comptonâ€Belkovich Volcanic Complex. Journal of Geophysical Research E: Planets, 2015, 120, 92-108.	3.6	30
79	Hydrogen and major element concentrations on 433 Eros: Evidence for an L―or <scp>LL</scp> â€chondriteâ€like surface composition. Meteoritics and Planetary Science, 2015, 50, 353-367.	1.6	30
80	Compositional terranes on Mercury: Information from fast neutrons. Icarus, 2017, 281, 32-45.	2.5	30
81	Global distribution of lunar composition: New results from Lunar Prospector. Journal of Geophysical Research, 2002, 107, 5-1.	3.3	28
82	Constraints on Vesta's elemental composition: Fast neutron measurements by Dawn's gamma ray and neutron detector. Meteoritics and Planetary Science, 2013, 48, 2271-2288.	1.6	28
83	Identification of surface hydrogen enhancements within the Moon's Shackleton crater. Icarus, 2014, 233, 229-232.	2.5	27
84	How well do we know the polar hydrogen distribution on the Moon?. Journal of Geophysical Research E: Planets, 2014, 119, 574-593.	3.6	27
85	Opening a Window on ICME-driven GCR Modulation in the Inner Solar System. Astrophysical Journal, 2018, 856, 139.	4.5	27
86	Thorium abundances on the Aristarchus plateau: Insights into the composition of the Aristarchus pyroclastic glass deposits. Journal of Geophysical Research, 2009, 114, .	3.3	26
87	Evidence for extended acceleration of solar flare ions from 1–8 MeV solar neutrons detected with the MESSENGER Neutron Spectrometer. Journal of Geophysical Research, 2010, 115, .	3.3	26
88	Measuring the Elemental Composition of Phobos: The Marsâ€moon Exploration with GAmma rays and NEutrons (MEGANE) Investigation for the Martian Moons eXploration (MMX) Mission. Earth and Space Science, 2019, 6, 2605-2623.	2.6	26
89	Technical Comment on "Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND― Science, 2011, 334, 1058-1058.	12.6	25
90	Sensitivity of orbital neutron measurements to the thickness and abundance of surficial lunar water. Journal of Geophysical Research, 2011, 116, .	3.3	24

#	Article	IF	CITATIONS
91	Using <scp>HED</scp> meteorites to interpret neutron and gammaâ€ray data from asteroidÂ4 Vesta. Meteoritics and Planetary Science, 2015, 50, 1311-1337.	1.6	24
92	Deep Space 1 encounter with Comet 19P/Borrelly: Ion composition measurements by the PEPE mass spectrometer. Geophysical Research Letters, 2003, 30, .	4.0	23
93	Plasma Experiment for Planetary Exploration (PEPE). Space Science Reviews, 2007, 129, 327-357.	8.1	23
94	Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies. Astrobiology, 2010, 10, 183-200.	3.0	23
95	Aluminum abundance on the surface of Mercury: Application of a new backgroundâ€reduction technique for the analysis of gammaâ€ray spectroscopy data. Journal of Geophysical Research, 2012, 117, .	3.3	23
96	Science operation plan of Phobos and Deimos from the MMX spacecraft. Earth, Planets and Space, 2021, 73, .	2.5	22
97	Thorium abundances of basalt ponds in South Pole-Aitken basin: Insights into the composition and evolution of the far side lunar mantle. Journal of Geophysical Research, 2011, 116, .	3.3	21
98	Bulk hydrogen abundances in the lunar highlands: Measurements from orbital neutron data. Icarus, 2015, 255, 127-134.	2.5	21
99	Galactic cosmic ray variations in the inner heliosphere from solar distances less than 0.5 AU: Measurements from the MESSENGER Neutron Spectrometer. Journal of Geophysical Research: Space Physics, 2016, 121, 7398-7406.	2.4	21
100	How thick are Mercury's polar water ice deposits?. Icarus, 2017, 284, 407-415.	2.5	21
101	Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons. Journal of Geophysical Research, 2003, 108, .	3.3	19
102	Ion Mobility Spectrometry - High Resolution LTQ-Orbitrap Mass Spectrometry for Analysis of Homemade Explosives. Journal of the American Society for Mass Spectrometry, 2017, 28, 1531-1539.	2.8	19
103	New views of the Moon: Improved understanding through data integration. Eos, 2000, 81, 349.	0.1	18
104	Analysis of MESSENGER Gamma-Ray Spectrometer data from the Mercury flybys. Planetary and Space Science, 2011, 59, 1829-1841.	1.7	18
105	A QUANTITATIVE COMPARISON OF LUNAR ORBITAL NEUTRON DATA. Astrophysical Journal, 2012, 747, 6.	4.5	18
106	DePhine – The Deimos and Phobos Interior Explorer. Advances in Space Research, 2018, 62, 2220-2238.	2.6	17
107	Space-based measurement of the neutron lifetime using data from the neutron spectrometer on NASA's MESSENGER mission. Physical Review Research, 2020, 2, .	3.6	17
108	Recharge mechanism of near-equatorial hydrogen on Mars: Atmospheric redistribution or sub-surface aquifer. Geophysical Research Letters, 2004, 31, .	4.0	16

#	Article	IF	CITATIONS
109	Enhanced hydrogen at the lunar poles: New insights from the detection of epithermal and fast neutron signatures. Journal of Geophysical Research, 2012, 117, .	3.3	16
110	Multi-spacecraft observations and transport simulations of solar energetic particles for the May 17th 2012 event. Astronomy and Astrophysics, 2018, 612, A116.	5.1	16
111	Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons. Journal of Geophysical Research E: Planets, 2016, 121, 388-401.	3.6	15
112	Lunar Prospector epithermal neutrons from impact craters and landing sites: Implications for surface maturity and hydrogen distribution. Journal of Geophysical Research, 2002, 107, 3-1.	3.3	14
113	Surface and Downhole Prospecting Tools for Planetary Exploration: Tests of Neutron and Gamma Ray Probes. Astrobiology, 2008, 8, 639-652.	3.0	14
114	Chemically distinct regions of Venus's atmosphere revealed by measured N2 concentrations. Nature Astronomy, 2020, 4, 947-950.	10.1	14
115	Distinguishing the Origin of Asteroid (16) Psyche. Space Science Reviews, 2022, 218, 17.	8.1	13
116	Composition and origin of the Dewar geochemical anomaly. Journal of Geophysical Research, 2008, 113,	3.3	12
117	Detection and characterization of 0.5–8 MeV neutrons near Mercury: Evidence for a solar origin. Journal of Geophysical Research: Space Physics, 2014, 119, 5150-5171.	2.4	12
118	New insights into the global composition of the lunar surface from highâ€energy gamma rays measured by Lunar Prospector. Journal of Geophysical Research E: Planets, 2013, 118, 671-688.	3.6	11
119	Igneous lithologies on asteroid (4) Vesta mapped using gamma-ray and neutron data. Icarus, 2017, 286, 35-45.	2.5	11
120	The Scientific Value of a Sustained Exploration Program at the Aristarchus Plateau. Planetary Science Journal, 2021, 2, 136.	3.6	11
121	Mapping iron abundances on the surface of Mercury: Predicted spatial resolution of the MESSENGER Gamma-Ray Spectrometer. Planetary and Space Science, 2011, 59, 1654-1658. Near-space operation of compact CsI, CLYC, and CeBr <mml:math< td=""><td>1.7</td><td>10</td></mml:math<>	1.7	10
122	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e513" altimg="si1.gif"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub> sensors: Results from two high-altitude balloon flights. Nuclear Instruments and Methods in Physics Research, Section A:	1.6	10
123	Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 905, 33-46. Plasmaspheric observations at geosynchronous orbit. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 1185-1197.	1.6	9
124	High-resolution mapping of lunar polar hydrogen with a low-resource orbital mission. Acta Astronautica, 2015, 115, 452-462.	3.2	9
125	Mercury's Polar Deposits. , 2018, , 346-370.		9
126	Compositional variability on the surface of 1 Ceres revealed through GRaND measurements of highâ€energy gamma rays. Meteoritics and Planetary Science, 2018, 53, 1805-1819.	1.6	9

#	Article	IF	CITATIONS
127	Image Reconstruction Techniques in Neutron and Gamma Ray Spectroscopy: Improving Lunar Prospector Data. Journal of Geophysical Research E: Planets, 2018, 123, 1804-1822.	3.6	9
128	Cosmogenic radionuclide production modeling with Geant4: Experimental benchmarking and application to nuclear spectroscopy of asteroid (16) Psyche. Nuclear Instruments & Methods in Physics Research B, 2019, 446, 43-57.	1.4	9
129	Solar influence on nuclear decay rates: constraints from the MESSENGER mission. Astrophysics and Space Science, 2012, 337, 39-45.	1.4	8
130	Radiation damage and annealing of three coaxial n-type germanium detectors: Preparation for spaceflight missions to asteroid 16 Psyche and Mars' moon Phobos. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 942, 162409.	1.6	8
131	Measurement of the free neutron lifetime using the neutron spectrometer on NASA's Lunar Prospector mission. Physical Review C, 2021, 104, .	2.9	8
132	Mapping the elemental composition of Ceres and Vesta: Dawn"s gamma ray and neutron detector. , 2004, , .		7
133	The effect of craters on the lunar neutron flux. Journal of Geophysical Research E: Planets, 2015, 120, 1377-1395.	3.6	7
134	Predictions of MESSENGER Neutron Spectrometer measurements for Mercury's north polar region. Planetary and Space Science, 2011, 59, 1665-1669.	1.7	6
135	Water on the Moon. Nature Geoscience, 2011, 4, 586-588.	12.9	6
136	Neutrons and energetic charged particles in the inner heliosphere: Measurements of the MESSENGER Neutron Spectrometer from 0.3 to 0.85 AU. Journal of Geophysical Research: Space Physics, 2015, 120, 841-854.	2.4	6
137	GeMini: A High-Resolution, Low-Resource, Gamma-Ray Spectrometer for Planetary Science Applications. Space Science Reviews, 2020, 216, 1.	8.1	6
138	Position-dependent neutron detection efficiency loss in 3He gas proportional counters. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 982, 164574.	1.6	6
139	Space-based measurements of neutron lifetime: Approaches to resolving the neutron lifetime anomaly. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988, 164919.	1.6	6
140	Statistical analysis of thorium and fast neutron data at the lunar surface. Journal of Geophysical Research, 2002, 107, 2-1.	3.3	5
141	The neutron, gamma-ray, X-ray spectrometer (NGXS): A compact instrument for making combined measurements of neutrons, gamma-rays, and X-rays. Acta Astronautica, 2014, 93, 524-529.	3.2	5
142	FIRST LIGHT: MeV ASTROPHYSICS FROM THE MOON. Astrophysical Journal Letters, 2016, 823, L31.	8.3	5
143	Psyche Science Operations Concept: Maximize Reuse to Minimize Risk. , 2018, , .		5
144	Global Hydrogen Abundances on the Lunar Surface. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5

#	Article	IF	CITATIONS
145	TESTING THE UNITARITY OF THE CKM MATRIX WITH A SPACE-BASED NEUTRON DECAY EXPERIMENT. Modern Physics Letters A, 2008, 23, 1735-1743.	1.2	4
146	The 4 June 2011 neutron event at Mercury: A defense of the solar origin hypothesis. Journal of Geophysical Research: Space Physics, 2015, 120, 5284-5289.	2.4	4
147	Gamma rays and cosmic rays at Venus: The Pioneer Venus gamma ray detector and considerations for future measurements. Planetary and Space Science, 2015, 109-110, 129-134.	1.7	4
148	Statistical Study of Mercury's Energetic Electron Events as Observed by the Gammaâ€Ray and Neutron Spectrometer Instrument Onboard MESSENGER. Journal of Geophysical Research: Space Physics, 2018, 123, 4961-4978.	2.4	4
149	MESSENGER Gamma Ray Spectrometer and Epithermal Neutron Hydrogen Data Reveal Compositional Differences Between Mercury's Hot and Cold Poles. Journal of Geophysical Research E: Planets, 2019, 124, 721-733.	3.6	4
150	The MESSENGER Gamma-Ray and Neutron Spectrometer. , 2007, , 339-391.		4
151	Deciphering Redox State for a Metal-Rich World. Space Science Reviews, 2022, 218, 6.	8.1	4
152	MEGANE investigations of Phobos and the Small Body Mapping Tool. Earth, Planets and Space, 2021, 73, 217.	2.5	4
153	Surveying the South Pole-Aitken basin magnetic anomaly for remnant impactor metallic iron. Icarus, 2014, 243, 27-30.	2.5	3
154	Characterizing near-surface elemental layering on Mars using gamma-ray spectroscopy: A proof-of-principle experiment. Nuclear Instruments & Methods in Physics Research B, 2018, 415, 89-99.	1.4	3
155	Maximum Energies of Trapped Particles Around Magnetized Planets and Small Bodies. Geophysical Research Letters, 2022, 49, .	4.0	3
156	Operation of a 3He proportional counter in the Ganymede radiation environment. Planetary and Space Science, 2012, 61, 46-52.	1.7	2
157	Longâ€duration neutron production by nonflaring transients in the solar corona. Journal of Geophysical Research: Space Physics, 2015, 120, 8247-8266.	2.4	2
158	Volatiles on the Lunar Surface and Subsurface. , 2018, , 1-6.		1
159	Calibration of a two-photon coincidence experiment using 133Ba. Nuclear Instruments & Methods in Physics Research B, 1991, 56-57, 334-336.	1.4	0
160	<title>Combined gamma-ray and neutron detector for measuring the chemical composition of airless planetary bodies</title> . , 2001, , .		0
161	Neutron Probes for the Construction and Resource Utilization eXplorer (CRUX). , 2006, , 1.		0
162	Pulsed neutron generator — gamma ray spectrometer measurements of venus elemental composition. , 2016, , .		0

#	Article	IF	CITATIONS
163	Ex luna, scientia: lunar occultation as a paradigm for nuclear astrophysics. , 2016, , .		Ο
164	Measuring Surface Bulk Elemental Composition on Venus. Physics Procedia, 2017, 90, 180-186.	1.2	0
165	Science Opportunities offered by Mercury's Ice-Bearing Polar Deposits. , 2021, 53, .		0