
## Shahriar Mobashery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6078410/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structure-based inhibitor design for reshaping bacterial morphology. Communications Biology, 2022, 5, 395.                                                                                                                      | 4.4  | 1         |
| 2  | An Atypical ABC Transporter Is Involved in Antifungal Resistance and Host Interactions in the Pathogenic Fungus Cryptococcus neoformans. MBio, 2022, 13, .                                                                      | 4.1  | 16        |
| 3  | Proteomics Identification of Targets for Intervention in Pressure Ulcers. ACS Chemical Biology, 2022, 17, 1357-1363.                                                                                                            | 3.4  | 2         |
| 4  | Selective MMP-9 Inhibitor ( <i>R</i> )-ND-336 Alone or in Combination with Linezolid Accelerates<br>Wound Healing in Infected Diabetic Mice. ACS Pharmacology and Translational Science, 2021, 4, 107-117.                      | 4.9  | 17        |
| 5  | Unconventional Antibacterials and Adjuvants. Accounts of Chemical Research, 2021, 54, 917-929.                                                                                                                                  | 15.6 | 20        |
| 6  | Turnover Chemistry and Structural Characterization of the Cj0843c Lytic Transglycosylase of<br><i>Campylobacter jejuni</i> . Biochemistry, 2021, 60, 1133-1144.                                                                 | 2.5  | 3         |
| 7  | Bacterial Cell Wall: Morphology and Biochemistry. , 2021, , 167-204.                                                                                                                                                            |      | 5         |
| 8  | Metabolism of the Selective Matrix Metalloproteinase-9 Inhibitor ( <i>R</i> )-ND-336. ACS Pharmacology and Translational Science, 2021, 4, 1204-1213.                                                                           | 4.9  | 4         |
| 9  | Structure–Activity Relationship for the Picolinamide Antibacterials that Selectively Target<br>Clostridioides difficile. ACS Medicinal Chemistry Letters, 2021, 12, 991-995.                                                    | 2.8  | 0         |
| 10 | Turnover chemistry and structural characterization of the Cj0843c lytic transglycosylase of<br>Campylobacter jejuni. FASEB Journal, 2021, 35, .                                                                                 | 0.5  | 0         |
| 11 | Production of Proteins of the SARS-CoV-2 Proteome for Drug Discovery. ACS Omega, 2021, 6, 19983-19994.                                                                                                                          | 3.5  | 6         |
| 12 | Integrative structural biology of the penicillin-binding protein-1 from Staphylococcus aureus, an<br>essential component of the divisome machinery. Computational and Structural Biotechnology<br>Journal, 2021, 19, 5392-5405. | 4.1  | 2         |
| 13 | β-Lactams against the Fortress of the Gram-Positive <i>Staphylococcus aureus</i> Bacterium. Chemical<br>Reviews, 2021, 121, 3412-3463.                                                                                          | 47.7 | 52        |
| 14 | Horizontal-Acquisition of a Promiscuous Peptidoglycan-Recycling Enzyme Enables Aphids To Influence<br>Symbiont Cell Wall Metabolism. MBio, 2021, 12, e0263621.                                                                  | 4.1  | 6         |
| 15 | Structure–Activity Relationship for the Oxadiazole Class of Antibacterials. ACS Medicinal Chemistry<br>Letters, 2020, 11, 322-326.                                                                                              | 2.8  | 18        |
| 16 | Constructing and deconstructing the bacterial cell wall. Protein Science, 2020, 29, 629-646.                                                                                                                                    | 7.6  | 41        |
| 17 | Catalytic Cycle of Glycoside Hydrolase BglX from <i>Pseudomonas aeruginosa</i> and Its Implications for Biofilm Formation. ACS Chemical Biology, 2020, 15, 189-196.                                                             | 3.4  | 11        |
| 18 | Hyperbaric oxygen therapy accelerates wound healing in diabetic mice by decreasing active matrix<br>metalloproteinaseâ€9. Wound Repair and Regeneration, 2020, 28, 194-201.                                                     | 3.0  | 15        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Discovery of a Potent Picolinamide Antibacterial Active against <i>Clostridioides difficile</i> . ACS<br>Infectious Diseases, 2020, 6, 2362-2368.                                                                               | 3.8  | 8         |
| 20 | Peptidoglycan reshaping by a noncanonical peptidase for helical cell shape in Campylobacter jejuni.<br>Nature Communications, 2020, 11, 458.                                                                                    | 12.8 | 14        |
| 21 | Fluorescence Assessment of the AmpR-Signaling Network of <i>Pseudomonas aeruginosa</i> to Exposure to β-Lactam Antibiotics. ACS Chemical Biology, 2020, 15, 1184-1194.                                                          | 3.4  | 7         |
| 22 | Exploration of the Structural Space in 4(3 <i>H</i> )-Quinazolinone Antibacterials. Journal of Medicinal Chemistry, 2020, 63, 5287-5296.                                                                                        | 6.4  | 28        |
| 23 | A type VI secretion system delivers a cell wall amidase to target bacterial competitors. Molecular<br>Microbiology, 2020, 114, 308-321.                                                                                         | 2.5  | 25        |
| 24 | Cinnamonitrile Adjuvants Restore Susceptibility to $\hat{l}^2$ -Lactams against Methicillin-Resistant Staphylococcus aureus. ACS Medicinal Chemistry Letters, 2019, 10, 1148-1153.                                              | 2.8  | 10        |
| 25 | Susceptibility of Methicillin-Resistant Staphylococcus aureus to Five Quinazolinone Antibacterials.<br>Antimicrobial Agents and Chemotherapy, 2019, 64, .                                                                       | 3.2  | 2         |
| 26 | The Quinazolinone Allosteric Inhibitor of PBP 2a Synergizes with Piperacillin and Tazobactam against<br>Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2019, 63, .                         | 3.2  | 40        |
| 27 | Structural basis of denuded glycan recognition by SPOR domains in bacterial cell division. Nature Communications, 2019, 10, 5567.                                                                                               | 12.8 | 29        |
| 28 | Slt, MltD, and MltG of <i>Pseudomonas aeruginosa</i> as Targets of Bulgecin A in Potentiation of β-Lactam Antibiotics. ACS Chemical Biology, 2019, 14, 296-303.                                                                 | 3.4  | 28        |
| 29 | Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of <i>Pseudomonas<br/>aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018,<br>115, 4393-4398. | 7.1  | 31        |
| 30 | Potentiation of the activity of $\hat{l}^2$ -lactam antibiotics by farnesol and its derivatives. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 642-645.                                                                 | 2.2  | 18        |
| 31 | Allostery, Recognition of Nascent Peptidoglycan, and Cross-linking of the Cell Wall by the Essential Penicillin-Binding Protein 2x of <i>Streptococcus pneumoniae</i> . ACS Chemical Biology, 2018, 13, 694-702.                | 3.4  | 29        |
| 32 | Total Syntheses of Bulgecins A, B, and C and Their Bactericidal Potentiation of the Î <sup>2</sup> -Lactam Antibiotics.<br>ACS Infectious Diseases, 2018, 4, 860-867.                                                           | 3.8  | 27        |
| 33 | Mechanism of the Escherichia coli MltE lytic transglycosylase, the cell-wall-penetrating enzyme for<br>Type VI secretion system assembly. Scientific Reports, 2018, 8, 4110.                                                    | 3.3  | 27        |
| 34 | Structure–activity relationship of the cinnamamide family of antibiotic potentiators for<br>methicillin-resistant <i>Staphylococcus aureus</i> (MRSA). MedChemComm, 2018, 9, 2008-2016.                                         | 3.4  | 5         |
| 35 | MMP-9 inhibitors impair learning in spontaneously hypertensive rats. PLoS ONE, 2018, 13, e0208357.                                                                                                                              | 2.5  | 10        |
| 36 | A Structural Dissection of the Active Site of the Lytic Transglycosylase MltE from <i>Escherichia coli</i> . Biochemistry, 2018, 57, 6090-6098.                                                                                 | 2.5  | 2         |

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A positive positive to negative. Nature Chemistry, 2018, 10, 998-1000.                                                                                                                                                                                                         | 13.6 | 2         |
| 38 | Validation of Matrix Metalloproteinase-9 (MMP-9) as a Novel Target for Treatment of Diabetic Foot<br>Ulcers in Humans and Discovery of a Potent and Selective Small-Molecule MMP-9 Inhibitor That<br>Accelerates Healing. Journal of Medicinal Chemistry, 2018, 61, 8825-8837. | 6.4  | 82        |
| 39 | Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chemical<br>Reviews, 2018, 118, 5952-5984.                                                                                                                                           | 47.7 | 154       |
| 40 | Expression of active matrix metalloproteinase-9 as a likely contributor to the clinical failure of aclerastide in treatment of diabetic foot ulcers. European Journal of Pharmacology, 2018, 834, 77-83.                                                                       | 3.5  | 11        |
| 41 | Activities of Oxadiazole Antibacterials against Staphylococcus aureus and Other Gram-Positive<br>Bacteria. Antimicrobial Agents and Chemotherapy, 2018, 62, .                                                                                                                  | 3.2  | 11        |
| 42 | In Search of Selectivity in Inhibition of ADAM10. ACS Medicinal Chemistry Letters, 2018, 9, 708-713.                                                                                                                                                                           | 2.8  | 5         |
| 43 | Early Abrogation of Gelatinase Activity Extends the Time Window for tPA Thrombolysis after Embolic<br>Focal Cerebral Ischemia in Mice. ENeuro, 2018, 5, ENEURO.0391-17.2018.                                                                                                   | 1.9  | 16        |
| 44 | Transferase Versus Hydrolase: The Role of Conformational Flexibility in Reaction Specificity.<br>Structure, 2017, 25, 295-304.                                                                                                                                                 | 3.3  | 23        |
| 45 | Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant <i>Staphylococcus<br/>aureus</i> , Allosteric Communication Network and Enablement of Catalysis. Journal of the American<br>Chemical Society, 2017, 139, 2102-2110.                          | 13.7 | 65        |
| 46 | Muropeptide Binding and the X-ray Structure of the Effector Domain of the Transcriptional Regulator<br>AmpR of <i>Pseudomonas aeruginosa</i> . Journal of the American Chemical Society, 2017, 139, 1448-1451.                                                                 | 13.7 | 42        |
| 47 | From Genome to Proteome to Elucidation of Reactions for All Eleven Known Lytic Transglycosylases<br>from <i>Pseudomonas aeruginosa</i> . Angewandte Chemie, 2017, 129, 2779-2783.                                                                                              | 2.0  | 5         |
| 48 | From Genome to Proteome to Elucidation of Reactions for All Eleven Known Lytic Transglycosylases<br>from <i>Pseudomonas aeruginosa</i> . Angewandte Chemie - International Edition, 2017, 56, 2735-2739.                                                                       | 13.8 | 50        |
| 49 | Catalytic Cycle of the <i>N</i> -Acetylglucosaminidase NagZ from <i>Pseudomonas aeruginosa</i> .<br>Journal of the American Chemical Society, 2017, 139, 6795-6798.                                                                                                            | 13.7 | 28        |
| 50 | Exploitation of Conformational Dynamics in Imparting Selective Inhibition for Related Matrix Metalloproteinases. ACS Medicinal Chemistry Letters, 2017, 8, 654-659.                                                                                                            | 2.8  | 6         |
| 51 | Deciphering the Nature of Enzymatic Modifications of Bacterial Cell Walls. ChemBioChem, 2017, 18, 1696-1702.                                                                                                                                                                   | 2.6  | 12        |
| 52 | Allosteric Inhibition of Bacterial Targets: An Opportunity for Discovery of Novel Antibacterial Classes. Topics in Medicinal Chemistry, 2017, , 119-147.                                                                                                                       | 0.8  | 7         |
| 53 | Whole-Genome Shotgun Sequencing of Two β-Proteobacterial Species in Search of the Bulgecin<br>Biosynthetic Cluster. ACS Chemical Biology, 2017, 12, 2552-2557.                                                                                                                 | 3.4  | 28        |
| 54 | Discovery of Mechanism-Based Inactivators for Human Pancreatic Carboxypeptidase A from a Focused<br>Synthetic Library. ACS Medicinal Chemistry Letters, 2017, 8, 1122-1127.                                                                                                    | 2.8  | 8         |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | X-ray Structure of Catenated Lytic Transglycosylase SltB1. Biochemistry, 2017, 56, 6317-6320.                                                                                                                           | 2.5  | 9         |
| 56 | Synthesis and shift-reagent-assisted full NMR assignment of bacterial (Z8,E2,ω)-undecaprenol. Chemical<br>Communications, 2017, 53, 12774-12777.                                                                        | 4.1  | 5         |
| 57 | Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Critical Reviews in<br>Biochemistry and Molecular Biology, 2017, 52, 503-542.                                                              | 5.2  | 120       |
| 58 | The crystal structure of the major pneumococcal autolysin LytA in complex with a large<br>peptidoglycan fragment reveals the pivotal role of glycans for lytic activity. Molecular Microbiology,<br>2016, 101, 954-967. | 2.5  | 14        |
| 59 | <i>In Vitro</i> and <i>In Vivo</i> Synergy of the Oxadiazole Class of Antibacterials with β-Lactams.<br>Antimicrobial Agents and Chemotherapy, 2016, 60, 5581-5588.                                                     | 3.2  | 29        |
| 60 | Muropeptides in Pseudomonas aeruginosa and their Role as Elicitors of Î²â€Łactamâ€Antibiotic Resistance.<br>Angewandte Chemie, 2016, 128, 6996-7000.                                                                    | 2.0  | 3         |
| 61 | Muropeptides in <i>Pseudomonas aeruginosa</i> and their Role as Elicitors of Î²â€Łactamâ€Antibiotic<br>Resistance. Angewandte Chemie - International Edition, 2016, 55, 6882-6886.                                      | 13.8 | 43        |
| 62 | Orthologous and Paralogous AmpD Peptidoglycan Amidases from Gram-Negative Bacteria. Microbial<br>Drug Resistance, 2016, 22, 470-476.                                                                                    | 2.0  | 23        |
| 63 | Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of <i>Pseudomonas aeruginosa</i> . ACS Chemical Biology, 2016, 11, 1525-1531.                                                            | 3.4  | 16        |
| 64 | The Natural Product Essramycin and Three of Its Isomers Are Devoid of Antibacterial Activity. Journal of Natural Products, 2016, 79, 1219-1222.                                                                         | 3.0  | 9         |
| 65 | Structure–Activity Relationship for the 4(3 <i>H</i> )-Quinazolinone Antibacterials. Journal of<br>Medicinal Chemistry, 2016, 59, 5011-5021.                                                                            | 6.4  | 111       |
| 66 | β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and <i>Mycobacterium tuberculosis</i> . Cold<br>Spring Harbor Perspectives in Medicine, 2016, 6, a025221.                                                        | 6.2  | 56        |
| 67 | Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling and releasing peptidoglycan in <i>Neisseria gonorrhoeae</i> . Molecular Microbiology, 2016, 102, 865-881.                         | 2.5  | 38        |
| 68 | Selective Inhibition of MMP-2 Does Not Alter Neurological Recovery after Spinal Cord Injury. ACS<br>Chemical Neuroscience, 2016, 7, 1482-1487.                                                                          | 3.5  | 12        |
| 69 | Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound Lytic Transglycosylase<br>from Pseudomonas aeruginosa. Structure, 2016, 24, 1729-1741.                                                      | 3.3  | 27        |
| 70 | The oxadiazole antibacterials. Current Opinion in Microbiology, 2016, 33, 13-17.                                                                                                                                        | 5.1  | 40        |
| 71 | Amidase Activity of AmiC Controls Cell Separation and Stem Peptide Release and Is Enhanced by NlpD in<br>Neisseria gonorrhoeae. Journal of Biological Chemistry, 2016, 291, 10916-10933.                                | 3.4  | 26        |
| 72 | Three-dimensional QSAR analysis and design of new 1,2,4-oxadiazole antibacterials. Bioorganic and<br>Medicinal Chemistry Letters, 2016, 26, 1011-1015.                                                                  | 2.2  | 48        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Endless resistance. Endless antibiotics?. MedChemComm, 2016, 7, 37-49.                                                                                                                                                            | 3.4  | 39        |
| 74 | Structural Basis of the Heterodimer Formation between Cell Shape-Determining Proteins Csd1 and Csd2 from Helicobacter pylori. PLoS ONE, 2016, 11, e0164243.                                                                       | 2.5  | 17        |
| 75 | Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Scientific Reports, 2015, 5, 16198.                                                                                    | 3.3  | 30        |
| 76 | Bacterial Cell Wall: Morphology and Biochemistry. , 2015, , 221-264.                                                                                                                                                              |      | 3         |
| 77 | The external PASTA domain of the essential serine/threonine protein kinase PknB regulates mycobacterial growth. Open Biology, 2015, 5, 150025.                                                                                    | 3.6  | 22        |
| 78 | Structure of Csd3 from <i>Helicobacter pylori</i> , a cell shape-determining metallopeptidase. Acta<br>Crystallographica Section D: Biological Crystallography, 2015, 71, 675-686.                                                | 2.5  | 21        |
| 79 | The Cell Shape-determining Csd6 Protein from Helicobacter pylori Constitutes a New Family of<br>l,d-Carboxypeptidase. Journal of Biological Chemistry, 2015, 290, 25103-25117.                                                    | 3.4  | 34        |
| 80 | Investigation of Signal Transduction Routes within the Sensor/Transducer Protein BlaR1 of<br><i>Staphylococcus aureus</i> . Biochemistry, 2015, 54, 1600-1610.                                                                    | 2.5  | 25        |
| 81 | Discovery of Antibiotic ( <i>E</i> )-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3 <i>H</i> )-one.<br>Journal of the American Chemical Society, 2015, 137, 1738-1741.                                                       | 13.7 | 116       |
| 82 | Structure–Activity Relationship for the Oxadiazole Class of Antibiotics. Journal of Medicinal Chemistry, 2015, 58, 1380-1389.                                                                                                     | 6.4  | 100       |
| 83 | Catalytic Spectrum of the Penicillin-Binding Protein 4 of <i>Pseudomonas aeruginosa</i> , a Nexus for the Induction of β-Lactam Antibiotic Resistance. Journal of the American Chemical Society, 2015, 137, 190-200.              | 13.7 | 32        |
| 84 | Exploration of the structure–activity relationship of 1,2,4-oxadiazole antibiotics. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4854-4857.                                                                              | 2.2  | 39        |
| 85 | Regioselective Control of the S <sub>N</sub> Ar Amination of 5-Substituted-2,4-Dichloropyrimidines<br>Using Tertiary Amine Nucleophiles. Journal of Organic Chemistry, 2015, 80, 7757-7763.                                       | 3.2  | 18        |
| 86 | The Tipper–Strominger Hypothesis and Triggering of Allostery in Penicillin-Binding Protein 2a of<br>Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). Journal of the American Chemical Society,<br>2015, 137, 6500-6505. | 13.7 | 26        |
| 87 | Synthesis and Evaluation of 1,2,4-Triazolo[1,5- <i>a</i> ]pyrimidines as Antibacterial Agents Against<br><i>Enterococcus faecium</i> . Journal of Medicinal Chemistry, 2015, 58, 4194-4203.                                       | 6.4  | 113       |
| 88 | The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: An Achilles' Heel of<br>Methicillin-Resistant Staphylococcus aureus. Current Medicinal Chemistry, 2015, 22, 1678-1686.                            | 2.4  | 32        |
| 89 | Water-Soluble MMP-9 Inhibitor Reduces Lesion Volume after Severe Traumatic Brain Injury. ACS<br>Chemical Neuroscience, 2015, 6, 1658-1664.                                                                                        | 3.5  | 20        |
| 90 | AAC(3)-XI, a New Aminoglycoside 3- <i>N</i> -Acetyltransferase from Corynebacterium striatum.<br>Antimicrobial Agents and Chemotherapy, 2015, 59, 5647-5653.                                                                      | 3.2  | 14        |

| #   | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nature Chemical<br>Biology, 2015, 11, 855-861.                                                                                                                                      | 8.0  | 126       |
| 92  | Phosphorylation of BlaR1 in Manifestation of Antibiotic Resistance in Methicillin-Resistant<br><i>Staphylococcus aureus</i> and Its Abrogation by Small Molecules. ACS Infectious Diseases, 2015, 1,<br>454-459.                                                           | 3.8  | 31        |
| 93  | Acceleration of diabetic wound healing using a novel protease–anti-protease combination therapy.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15226-15231.                                                               | 7.1  | 126       |
| 94  | Chapter 3. The β-Lactam (Azetidin-2-one) as a Privileged Ring in Medicinal Chemistry. RSC Drug Discovery<br>Series, 2015, , 64-97.                                                                                                                                         | 0.3  | 4         |
| 95  | Chapter 10. Thiirane Class of Gelatinase Inhibitors as a Privileged Template that Crosses the<br>Blood–Brain Barrier. RSC Drug Discovery Series, 2015, , 262-286.                                                                                                          | 0.3  | 1         |
| 96  | Structural and Functional Insights into Peptidoglycan Access for the Lytic Amidase LytA of<br>Streptococcus pneumoniae. MBio, 2014, 5, e01120-13.                                                                                                                          | 4.1  | 48        |
| 97  | Penicillinâ€binding protein 2a of methicillinâ€resistant <i>Staphylococcus aureus</i> . IUBMB Life, 2014, 66,<br>572-577.                                                                                                                                                  | 3.4  | 176       |
| 98  | Protonation states of activeâ€site lysines of penicillinâ€binding protein 6 from <i>Escherichia coli</i> and the mechanistic implications. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1348-1358.                                                          | 2.6  | 9         |
| 99  | Structural basis for the recognition of muramyltripeptide by <i>Helicobacter pylori</i> Csd4,<br>a <scp>D</scp> , <scp>L</scp> -carboxypeptidase controlling the helical cell shape. Acta<br>Crystallographica Section D: Biological Crystallography, 2014, 70, 2800-2812. | 2.5  | 20        |
| 100 | Enantiomers of a selective gelatinase inhibitor: (R)- and<br>(S)-2-[(4-phenoxyphenyl)sulfonylmethyl]thiirane. Acta Crystallographica Section C, Structural<br>Chemistry, 2014, 70, 1003-1006.                                                                              | 0.5  | 1         |
| 101 | A Chemical Biological Strategy to Facilitate Diabetic Wound Healing. ACS Chemical Biology, 2014, 9,<br>105-110.                                                                                                                                                            | 3.4  | 75        |
| 102 | Discovery of a New Class of Non-β-lactam Inhibitors of Penicillin-Binding Proteins with Gram-Positive<br>Antibacterial Activity. Journal of the American Chemical Society, 2014, 136, 3664-3672.                                                                           | 13.7 | 136       |
| 103 | Characterization of a selective inhibitor for matrix metalloproteinase-8 (MMP-8). MedChemComm, 2014, 5, 1381-1383.                                                                                                                                                         | 3.4  | 10        |
| 104 | Regulation of the Expression of the β-Lactam Antibiotic-Resistance Determinants in<br>Methicillin-Resistant Staphylococcus aureus (MRSA). Biochemistry, 2014, 53, 1548-1550.                                                                                               | 2.5  | 39        |
| 105 | Glycosylation at Asn211 Regulates the Activation State of the Discoidin Domain Receptor 1 (DDR1).<br>Journal of Biological Chemistry, 2014, 289, 9275-9287.                                                                                                                | 3.4  | 33        |
| 106 | Mutations in <i>mmpL</i> and in the Cell Wall Stress Stimulon Contribute to Resistance to<br>Oxadiazole Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and<br>Chemotherapy, 2014, 58, 5841-5847.                                         | 3.2  | 12        |
| 107 | Disruption of Allosteric Response as an Unprecedented Mechanism of Resistance to Antibiotics.<br>Journal of the American Chemical Society, 2014, 136, 9814-9817.                                                                                                           | 13.7 | 93        |
| 108 | Structure and Cell Wall Cleavage by Modular Lytic Transglycosylase MltC of <i>Escherichia coli</i> .<br>ACS Chemical Biology, 2014, 9, 2058-2066.                                                                                                                          | 3.4  | 41        |

| #   | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Revealing Cell-Surface Intramolecular Interactions in the BlaR1 Protein of Methicillin-Resistant<br><i>Staphylococcus aureus</i> by NMR Spectroscopy. Biochemistry, 2014, 53, 10-12.                                                                           | 2.5  | 13        |
| 110 | The sentinel role of peptidoglycan recycling in the β-lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa. Bioorganic Chemistry, 2014, 56, 41-48.                                                                             | 4.1  | 70        |
| 111 | <i>O</i> -Phenyl Carbamate and Phenyl Urea Thiiranes as Selective Matrix Metalloproteinase-2<br>Inhibitors that Cross the Blood–Brain Barrier. Journal of Medicinal Chemistry, 2013, 56, 8139-8150.                                                            | 6.4  | 33        |
| 112 | Use of Silver Carbonate in the Wittig Reaction. Journal of Organic Chemistry, 2013, 78, 12224-12228.                                                                                                                                                           | 3.2  | 19        |
| 113 | Cell-Wall Remodeling by the Zinc-Protease AmpDh3 from Pseudomonas aeruginosa. Journal of the<br>American Chemical Society, 2013, 135, 12604-12607.                                                                                                             | 13.7 | 41        |
| 114 | Structural Basis for Carbapenemase Activity of the OXA-23 β-Lactamase from Acinetobacter baumannii.<br>Chemistry and Biology, 2013, 20, 1107-1115.                                                                                                             | 6.0  | 92        |
| 115 | Discoidin Domain Receptors: Unique Receptor Tyrosine Kinases in Collagen-mediated Signaling. Journal of Biological Chemistry, 2013, 288, 7430-7437.                                                                                                            | 3.4  | 182       |
| 116 | Bacterial cellâ€wall recycling. Annals of the New York Academy of Sciences, 2013, 1277, 54-75.                                                                                                                                                                 | 3.8  | 246       |
| 117 | Reactions of the Three AmpD Enzymes of <i>Pseudomonas aeruginosa</i> . Journal of the American Chemical Society, 2013, 135, 4950-4953.                                                                                                                         | 13.7 | 50        |
| 118 | Reactions of All <i>Escherichia coli</i> Lytic Transglycosylases with Bacterial Cell Wall. Journal of the American Chemical Society, 2013, 135, 3311-3314.                                                                                                     | 13.7 | 111       |
| 119 | Reaction Products and the X-ray Structure of AmpDh2, a Virulence Determinant of Pseudomonas aeruginosa. Journal of the American Chemical Society, 2013, 135, 10318-10321.                                                                                      | 13.7 | 38        |
| 120 | Structural Analysis of the Role of Pseudomonas aeruginosa Penicillin-Binding Protein 5 in β-Lactam<br>Resistance. Antimicrobial Agents and Chemotherapy, 2013, 57, 3137-3146.                                                                                  | 3.2  | 40        |
| 121 | Shedding of Discoidin Domain Receptor 1 by Membrane-type Matrix Metalloproteinases. Journal of<br>Biological Chemistry, 2013, 288, 12114-12129.                                                                                                                | 3.4  | 69        |
| 122 | How allosteric control of <i>Staphylococcus aureus</i> penicillin binding protein 2a enables<br>methicillin resistance and physiological function. Proceedings of the National Academy of Sciences<br>of the United States of America, 2013, 110, 16808-16813. | 7.1  | 235       |
| 123 | Penicillin-Binding Protein 5 of Escherichia coli. , 2013, , 3474-3480.                                                                                                                                                                                         |      | 0         |
| 124 | Selective Inhibition of Matrix Metalloproteinase-9 Attenuates Secondary Damage Resulting from<br>Severe Traumatic Brain Injury. PLoS ONE, 2013, 8, e76904.                                                                                                     | 2.5  | 95        |
| 125 | Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gramâ€negative<br>bacterial outer membrane. FASEB Journal, 2012, 26, 219-228.                                                                                                     | 0.5  | 164       |
| 126 | An Amino Acid Position at Crossroads of Evolution of Protein Function. Journal of Biological Chemistry, 2012, 287, 8232-8241.                                                                                                                                  | 3.4  | 14        |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Pharmacological Stabilization of Intracranial Aneurysms in Mice. Stroke, 2012, 43, 2450-2456.                                                                                                                    | 2.0  | 81        |
| 128 | Antibiotics as physiological stress inducers and bacterial response to the challenge. Current Opinion in Microbiology, 2012, 15, 553-554.                                                                        | 5.1  | 4         |
| 129 | Structure–Activity Relationship for Thiirane-Based Gelatinase Inhibitors. ACS Medicinal Chemistry<br>Letters, 2012, 3, 490-495.                                                                                  | 2.8  | 34        |
| 130 | Synthesis and NMR Characterization of<br>( <i>Z</i> , <i>Z</i> , <i>Z</i> , <i>Z</i> , <i>Z</i> , <i>E</i> , <i>E</i> ,i>,i>M)-Heptaprenol. Journal of the American Chemical<br>Society, 2012, 134, 13881-13888. | 13.7 | 12        |
| 131 | Messenger Functions of the Bacterial Cell Wall-derived Muropeptides. Biochemistry, 2012, 51, 2974-2990.                                                                                                          | 2.5  | 80        |
| 132 | Dissection of Events in the Resistance to β-Lactam Antibiotics Mediated by the Protein BlaR1 fromStaphylococcus aureus. Biochemistry, 2012, 51, 4642-4649.                                                       | 2.5  | 47        |
| 133 | Structural Basis for Progression toward the Carbapenemase Activity in the GES Family of β-Lactamases.<br>Journal of the American Chemical Society, 2012, 134, 19512-19515.                                       | 13.7 | 51        |
| 134 | Selective Gelatinase Inhibitor Neuroprotective Agents Cross the Blood-Brain Barrier. ACS Chemical Neuroscience, 2012, 3, 730-736.                                                                                | 3.5  | 30        |
| 135 | Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Molecular Neurodegeneration, 2012, 7, 21.                                                | 10.8 | 93        |
| 136 | Inhibitors for Bacterial Cell-Wall Recycling. ACS Medicinal Chemistry Letters, 2012, 3, 238-242.                                                                                                                 | 2.8  | 36        |
| 137 | High-Resolution Crystal Structure of MltE, an Outer Membrane-Anchored Endolytic Peptidoglycan<br>Lytic Transglycosylase from <i>Escherichia coli</i> . Biochemistry, 2011, 50, 2384-2386.                        | 2.5  | 39        |
| 138 | Resistance to the Third-Generation Cephalosporin Ceftazidime by a Deacylation-Deficient Mutant of the TEM β-Lactamase by the Uncommon Covalent-Trapping Mechanism. Biochemistry, 2011, 50, 6387-6395.            | 2.5  | 17        |
| 139 | Selective Water-Soluble Gelatinase Inhibitor Prodrugs. Journal of Medicinal Chemistry, 2011, 54, 6676-6690.                                                                                                      | 6.4  | 44        |
| 140 | A Computational Evaluation of the Mechanism of Penicillin-Binding Protein-Catalyzed Cross-Linking of<br>the Bacterial Cell Wall. Journal of the American Chemical Society, 2011, 133, 5274-5283.                 | 13.7 | 27        |
| 141 | Tackling antibiotic resistance. Nature Reviews Microbiology, 2011, 9, 894-896.                                                                                                                                   | 28.6 | 919       |
| 142 | Sulfonate-Containing Thiiranes as Selective Gelatinase Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 177-181.                                                                                            | 2.8  | 36        |
| 143 | Recognition of peptidoglycan and β-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from <i>Streptococcus pneumoniae</i> . FEBS Letters, 2011, 585, 357-363.                    | 2.8  | 72        |
| 144 | Identification of Products of Inhibition of GES-2 β-Lactamase by Tazobactam by X-ray Crystallography<br>and Spectrometry. Journal of Biological Chemistry, 2011, 286, 14396-14409.                               | 3.4  | 22        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Crystallization and preliminary X-ray diffraction analysis of the lytic transglycosylase MltE<br>from <i>Escherichia coli</i> . Acta Crystallographica Section F: Structural Biology Communications,<br>2011, 67, 161-163.                                                   | 0.7 | 8         |
| 146 | Exploration of mild copper-mediated coupling of organotrifluoroborates in the synthesis of thiirane-based inhibitors of matrix metalloproteinases. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2675-2678.                                                          | 2.2 | 5         |
| 147 | Endogenous Matrix Metalloproteinases 2 and 9 Regulate Activation of CD4+and CD8+T cells. American<br>Journal of Respiratory Cell and Molecular Biology, 2011, 44, 700-708.                                                                                                   | 2.9 | 36        |
| 148 | Crystal Structures of Bacterial Peptidoglycan Amidase AmpD and an Unprecedented Activation Mechanism. Journal of Biological Chemistry, 2011, 286, 31714-31722.                                                                                                               | 3.4 | 49        |
| 149 | Characterization of the Dimerization Interface of Membrane Type 4 (MT4)-Matrix Metalloproteinase.<br>Journal of Biological Chemistry, 2011, 286, 33178-33189.                                                                                                                | 3.4 | 23        |
| 150 | Short Alkylated Peptoid Mimics of Antimicrobial Lipopeptides. Antimicrobial Agents and Chemotherapy, 2011, 55, 417-420.                                                                                                                                                      | 3.2 | 108       |
| 151 | Lysine Nζ-Decarboxylation Switch and Activation of the β-Lactam Sensor Domain of BlaR1 Protein of<br>Methicillin-resistant Staphylococcus aureus*. Journal of Biological Chemistry, 2011, 286, 31466-31472.                                                                  | 3.4 | 25        |
| 152 | Activation of BlaR1 Protein of Methicillin-resistant Staphylococcus aureus, Its Proteolytic<br>Processing, and Recovery from Induction of Resistance. Journal of Biological Chemistry, 2011, 286,<br>38148-38158.                                                            | 3.4 | 52        |
| 153 | Exploring the functional space of thiiranes as gelatinase inhibitors using click chemistry. Arkivoc, 2011, 2011, 221-236.                                                                                                                                                    | 0.5 | 7         |
| 154 | Hostâ^'Guest Chemistry of the Peptidoglycan. Journal of Medicinal Chemistry, 2010, 53, 4813-4829.                                                                                                                                                                            | 6.4 | 17        |
| 155 | Synthetic Peptidoglycan Motifs for Germination of Bacterial Spores. ChemBioChem, 2010, 11, 2525-2529.                                                                                                                                                                        | 2.6 | 54        |
| 156 | The Xâ€Ray Structure of Carboxypeptidase A Inhibited by a Thiirane Mechanismâ€Based Inhibitor. Chemical<br>Biology and Drug Design, 2010, 75, 29-34.                                                                                                                         | 3.2 | 10        |
| 157 | Insights into pneumococcal fratricide from the crystal structures of the modular killing factor LytC.<br>Nature Structural and Molecular Biology, 2010, 17, 576-581.                                                                                                         | 8.2 | 57        |
| 158 | Insertion of Epicatechin Gallate into the Cytoplasmic Membrane of Methicillin-resistant<br>Staphylococcus aureus Disrupts Penicillin-binding Protein (PBP) 2a-mediated β-Lactam Resistance by<br>Delocalizing PBP2. Journal of Biological Chemistry, 2010, 285, 24055-24065. | 3.4 | 59        |
| 159 | Enzymology of Bacterial Resistance. , 2010, , 443-487.                                                                                                                                                                                                                       |     | 9         |
| 160 | Matrix Metalloproteinase 2 (MMP2) Inhibition: DFT and QM/MM Studies of the<br>Deprotonation-Initialized Ring-Opening Reaction of the Sulfoxide Analogue of SB-3CT. Journal of<br>Physical Chemistry B, 2010, 114, 1030-1037.                                                 | 2.6 | 20        |
| 161 | Binding of the Gene Repressor Blal to the <i>bla</i> Operon in Methicillin-Resistant<br><i>Staphylococcus aureus</i> . Biochemistry, 2010, 49, 7975-7977.                                                                                                                    | 2.5 | 14        |
| 162 | Sulfonylation-Induced <i>N</i> - to <i>O</i> -Acetyl Migration in 2-Acetamidoethanol Derivatives.<br>Journal of Organic Chemistry, 2010, 75, 3515-3517.                                                                                                                      | 3.2 | 12        |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Mechanism-Based Profiling of MMPs. Methods in Molecular Biology, 2010, 622, 471-487.                                                                                                                                           | 0.9  | 23        |
| 164 | The future of the β-lactams. Current Opinion in Microbiology, 2010, 13, 551-557.                                                                                                                                               | 5.1  | 149       |
| 165 | Elucidation of the Structure of the Membrane Anchor of Penicillin-Binding Protein 5 of Escherichia coli. Journal of the American Chemical Society, 2010, 132, 4110-4118.                                                       | 13.7 | 8         |
| 166 | An Antibiotic-Resistance Enzyme from a Deep-Sea Bacterium. Journal of the American Chemical Society, 2010, 132, 816-823.                                                                                                       | 13.7 | 57        |
| 167 | QM/MM Studies of the Matrix Metalloproteinase 2 (MMP2) Inhibition Mechanism of ( <i>S</i> )-SB-3CT and its Oxirane Analogue. Journal of Chemical Theory and Computation, 2010, 6, 3580-3587.                                   | 5.3  | 23        |
| 168 | Source of Phosphate in the Enzymic Reaction as a Point of Distinction among Aminoglycoside<br>2″-Phosphotransferases. Journal of Biological Chemistry, 2009, 284, 6690-6696.                                                   | 3.4  | 33        |
| 169 | Mechanistic Basis for the Emergence of Catalytic Competence against Carbapenem Antibiotics by the GES Family of β-Lactamases. Journal of Biological Chemistry, 2009, 284, 29509-29513.                                         | 3.4  | 61        |
| 170 | Molecular Basis and Phenotype of Methicillin Resistance in <i>Staphylococcus aureus</i> and Insights<br>into New β-Lactams That Meet the Challenge. Antimicrobial Agents and Chemotherapy, 2009, 53,<br>4051-4063.             | 3.2  | 117       |
| 171 | Regiospecific Syntheses of 6α-(1R-Hydroxyoctyl)penicillanic Acid and 6β-(1R-Hydroxyoctyl)penicillanic<br>Acid as Mechanistic Probes of Class D β-Lactamases. Organic Letters, 2009, 11, 2515-2518.                             | 4.6  | 15        |
| 172 | Crystal structure of CbpF, a bifunctional cholineâ€binding protein and autolysis regulator from<br><i>Streptococcus pneumoniae</i> . EMBO Reports, 2009, 10, 246-251.                                                          | 4.5  | 56        |
| 173 | Roles of Matrix Metalloproteinases in Flow-Induced Outward Vascular Remodeling. Journal of<br>Cerebral Blood Flow and Metabolism, 2009, 29, 1547-1558.                                                                         | 4.3  | 64        |
| 174 | A Potent Gelatinase Inhibitor with Antiâ€Tumorâ€Invasive Activity and its Metabolic Disposition. Chemical<br>Biology and Drug Design, 2009, 73, 189-202.                                                                       | 3.2  | 33        |
| 175 | Active Site Ringâ€Opening of a Thiirane Moiety and Picomolar Inhibition of Gelatinases. Chemical Biology<br>and Drug Design, 2009, 74, 527-534.                                                                                | 3.2  | 46        |
| 176 | Synthesis, Kinetic Characterization and Metabolism of Diastereomeric<br>2â€{1â€{4â€Phenoxyphenylsulfonyl)ethyl)thiiranes as Potent Gelatinase and MT1â€MMP Inhibitors. Chemical<br>Biology and Drug Design, 2009, 74, 535-546. | 3.2  | 13        |
| 177 | Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group. Chemical<br>Papers, 2009, 63, 592-597.                                                                                                | 2.2  | 2         |
| 178 | Bacterial AmpD at the Crossroads of Peptidoglycan Recycling and Manifestation of Antibiotic Resistance. Journal of the American Chemical Society, 2009, 131, 8742-8743.                                                        | 13.7 | 52        |
| 179 | Crystal Structures of Penicillin-Binding Protein 6 from <i>Escherichia coli</i> . Journal of the American Chemical Society, 2009, 131, 14345-14354.                                                                            | 13.7 | 60        |
| 180 | The bifunctional enzymes of antibiotic resistance. Current Opinion in Microbiology, 2009, 12, 505-511.                                                                                                                         | 5.1  | 40        |

| #   | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Matrix Metalloproteinase 2 Inhibition: Combined Quantum Mechanics and Molecular Mechanics<br>Studies of the Inhibition Mechanism of (4-Phenoxyphenylsulfonyl)methylthiirane and Its Oxirane<br>Analogue. Biochemistry, 2009, 48, 9839-9847.                   | 2.5  | 62        |
| 182 | Total Synthesis of <i>N</i> -Acetylglucosamine-1,6-anhydro- <i>N</i> -acetylmuramylpentapeptide and<br>Evaluation of Its Turnover by AmpD from Escherichia coli. Journal of the American Chemical Society,<br>2009, 131, 5187-5193.                           | 13.7 | 61        |
| 183 | Complications from Dual Roles of Sodium Hydride as a Base and as a Reducing Agent. Journal of<br>Organic Chemistry, 2009, 74, 2567-2570.                                                                                                                      | 3.2  | 37        |
| 184 | DFT Studies of the Ring-Opening Mechanism of SB-3CT, a Potent Inhibitor of Matrix Metalloproteinase 2. Organic Letters, 2009, 11, 2559-2562.                                                                                                                  | 4.6  | 23        |
| 185 | Three Decades of the Class A β-Lactamase Acyl-Enzyme. Current Protein and Peptide Science, 2009, 10, 401-407.                                                                                                                                                 | 1.4  | 64        |
| 186 | Conformational analyses of thiirane-based gelatinase inhibitors. Bioorganic and Medicinal Chemistry<br>Letters, 2008, 18, 3064-3067.                                                                                                                          | 2.2  | 8         |
| 187 | Metabolism of (4â€Phenoxyphenylsulfonyl)methylthiirane, a Selective Gelatinase Inhibitor. Chemical<br>Biology and Drug Design, 2008, 71, 187-196.                                                                                                             | 3.2  | 23        |
| 188 | Synthetic Efforts in Preparations of Components of the Bacterial Cell Wall. ACS Symposium Series, 2008, , 54-78.                                                                                                                                              | 0.5  | 5         |
| 189 | Effect of Ablation or Inhibition of Stromal Matrix Metalloproteinase-9 on Lung Metastasis in a Breast<br>Cancer Model Is Dependent on Genetic Background. Cancer Research, 2008, 68, 6251-6259.                                                               | 0.9  | 114       |
| 190 | Lytic Transglycosylase MltB of <i>Escherichia coli</i> and Its Role in Recycling of Peptidoglycan<br>Strands of Bacterial Cell Wall. Journal of the American Chemical Society, 2008, 130, 11878-11879.                                                        | 13.7 | 41        |
| 191 | Investigation of the Mechanism of the Cell Wall dd-Carboxypeptidase Reaction of Penicillin-Binding<br>Protein 5 of Escherichia coli by Quantum Mechanics/Molecular Mechanics Calculations. Journal of<br>the American Chemical Society, 2008, 130, 9293-9303. | 13.7 | 35        |
| 192 | Co-opting the Cell Wall in Fighting Methicillin-Resistant <i>Staphylococcus aureus</i> : Potent<br>Inhibition of PBP 2a by Two Anti-MRSA β-Lactam Antibiotics. Journal of the American Chemical Society,<br>2008, 130, 9212-9213.                             | 13.7 | 111       |
| 193 | Facile Preparation of a Highly Functionalized Tetrahydropyran by Catalytic Hydrogenation of an Oxazoline. Journal of Organic Chemistry, 2008, 73, 7349-7352.                                                                                                  | 3.2  | 5         |
| 194 | Identification and Role of the Homodimerization Interface of the<br>Glycosylphosphatidylinositol-anchored Membrane Type 6 Matrix Metalloproteinase (MMP25). Journal<br>of Biological Chemistry, 2008, 283, 35023-35032.                                       | 3.4  | 18        |
| 195 | Restoration of Susceptibility of Methicillin-resistant Staphylococcus aureus to β-Lactam Antibiotics by<br>Acidic pH. Journal of Biological Chemistry, 2008, 283, 12769-12776.                                                                                | 3.4  | 41        |
| 196 | Testosterone-Induced Matrix Metalloproteinase Activation Is a Checkpoint for Neuronal Addition to the Adult Songbird Brain. Journal of Neuroscience, 2008, 28, 208-216.                                                                                       | 3.6  | 37        |
| 197 | Aminoglycoside 2″-Phosphotransferase Type IIIa from Enterococcus. Journal of Biological Chemistry, 2008, 283, 7638-7647.                                                                                                                                      | 3.4  | 13        |
| 198 | Elucidation of the Molecular Recognition of Bacterial Cell Wall by Modular Pneumococcal Phage<br>Endolysin CPL-1. Journal of Biological Chemistry, 2007, 282, 24990-24999.                                                                                    | 3.4  | 61        |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Cytoplasmic-Membrane Anchoring of a Class A β-Lactamase and Its Capacity in Manifesting Antibiotic<br>Resistance. Antimicrobial Agents and Chemotherapy, 2007, 51, 2937-2942.                                                   | 3.2  | 9         |
| 200 | Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8761-8766.                      | 7.1  | 87        |
| 201 | Resistance to beta-Lactam Antibiotics Mediated by beta-Lactamases. , 2007, , 103-132.                                                                                                                                           |      | 3         |
| 202 | Prospects of therapies targeting resistant bacteria—New challenges 20 years post emergence of vancomycin-resistant enterococcus. Current Opinion in Microbiology, 2007, 10, 425-427.                                            | 5.1  | 4         |
| 203 | Prostate Cancer-Associated Membrane Type 1-Matrix Metalloproteinase. American Journal of Pathology, 2007, 170, 2100-2111.                                                                                                       | 3.8  | 66        |
| 204 | Design and Synthesis of a Structurally Constrained Aminoglycoside. Journal of Organic Chemistry, 2007, 72, 5450-5453.                                                                                                           | 3.2  | 22        |
| 205 | Lysine Nζ-Decarboxylation in the BlaR1 Protein fromStaphylococcus aureusat the Root of Its Function<br>As an Antibiotic Sensor. Journal of the American Chemical Society, 2007, 129, 3834-3835.                                 | 13.7 | 26        |
| 206 | Mechanistic Characterization of the Bifunctional Aminoglycoside-Modifying Enzyme<br>AAC(3)-Ib/AAC(6â€~)-Ibâ€~ from Pseudomonas aeruginosa. Biochemistry, 2007, 46, 5270-5282.                                                   | 2.5  | 42        |
| 207 | Molecular Structures and Dynamics of the Stepwise Activation Mechanism of a Matrix<br>Metalloproteinase Zymogen:  Challenging the Cysteine Switch Dogma. Journal of the American<br>Chemical Society, 2007, 129, 13566-13574.   | 13.7 | 87        |
| 208 | Shared Functional Attributes between the mecA Gene Product of Staphylococcus sciuri and<br>Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus. Biochemistry, 2007, 46,<br>8050-8057.                  | 2.5  | 22        |
| 209 | Catalytic Mechanism of Penicillin-Binding Protein 5 of <i>Escherichia coli</i> . Biochemistry, 2007, 46, 10113-10121.                                                                                                           | 2.5  | 48        |
| 210 | Characterization of the β-Lactam Antibiotic Sensor Domain of the MecR1 Signal Sensor/Transducer<br>Protein from Methicillin-Resistant Staphylococcus aureus. Biochemistry, 2007, 46, 7822-7831.                                 | 2.5  | 25        |
| 211 | Conformational Transition in the Aminoacyl t-RNA Site of the Bacterial Ribosome both in the Presence and Absence of an Aminoglycoside Antibiotic. Chemical Biology and Drug Design, 2007, 69, 291-297.                          | 3.2  | 24        |
| 212 | Metabolism of a Highly Selective Gelatinase Inhibitor Generates Active Metabolite. Chemical Biology<br>and Drug Design, 2007, 70, 371-382.                                                                                      | 3.2  | 40        |
| 213 | Effect of synthetic matrix metalloproteinase inhibitors on lipopolysaccharide-induced blood–brain<br>barrier opening in rodents: Differences in response based on strains and solvents. Brain Research,<br>2007, 1133, 186-192. | 2.2  | 59        |
| 214 | Side Reaction of Significance in Preparation of Peptide- or Peptidomimetic-Based Hydroxamate Enzyme<br>Inhibitors. Journal of Organic Chemistry, 2006, 71, 2885-2887.                                                           | 3.2  | 3         |
| 215 | Three-dimensional structure of the bacterial cell wall peptidoglycan. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4404-4409.                                                    | 7.1  | 371       |
| 216 | Characterization of the Bifunctional Aminoglycoside-Modifying Enzyme ANT(3â€~ â€~)-Ii/AAC(6â€~)-IId from<br>Serratia marcescens. Biochemistry, 2006, 45, 8368-8377.                                                             | 2.5  | 50        |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Thermodynamics of Interactions of Vancomycin and Synthetic Surrogates of Bacterial Cell Wall.<br>Journal of the American Chemical Society, 2006, 128, 7736-7737.                                                                                       | 13.7 | 32        |
| 218 | Synthesis of an Inhibitor-Tethered Resin for Detection of Active Matrix Metalloproteinases Involved in Disease. Journal of Organic Chemistry, 2006, 71, 5848-5854.                                                                                     | 3.2  | 26        |
| 219 | MT1-MMP shedding involves an ADAM and is independent of its localization in lipid rafts. Biochemical and Biophysical Research Communications, 2006, 350, 377-384.                                                                                      | 2.1  | 11        |
| 220 | Interactions of Designer Antibiotics and the Bacterial Ribosomal Aminoacyl-tRNA Site. Chemistry and Biology, 2006, 13, 129-138.                                                                                                                        | 6.0  | 38        |
| 221 | Design and Characterization of a Metalloproteinase Inhibitor-Tethered Resin for the Detection of Active MMPs in Biological Samples. Chemistry and Biology, 2006, 13, 379-386.                                                                          | 6.0  | 28        |
| 222 | Recent advances in MMP inhibitor design. Cancer and Metastasis Reviews, 2006, 25, 115-136.                                                                                                                                                             | 5.9  | 241       |
| 223 | Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model<br>by a novel mechanismâ€based selective gelatinase inhibitor. International Journal of Cancer, 2006, 118,<br>2721-2726.                            | 5.1  | 88        |
| 224 | Discrete steps in sensing of beta-lactam antibiotics by the BlaR1 protein of the methicillin-resistant<br>Staphylococcus aureus bacterium. Proceedings of the National Academy of Sciences of the United<br>States of America, 2006, 103, 10630-10635. | 7.1  | 52        |
| 225 | Hydrolysis of ATP by Aminoglycoside 3′-Phosphotransferases. Journal of Biological Chemistry, 2006,<br>281, 6964-6969.                                                                                                                                  | 3.4  | 22        |
| 226 | Mechanistic Basis for the Action of New Cephalosporin Antibiotics Effective against Methicillin- and<br>Vancomycin-resistant Staphylococcus aureus. Journal of Biological Chemistry, 2006, 281, 10035-10041.                                           | 3.4  | 35        |
| 227 | Cleavage at the stem region releases an active ectodomain of the membrane typeÂ1 matrix<br>metalloproteinase. Biochemical Journal, 2005, 387, 497-506.                                                                                                 | 3.7  | 47        |
| 228 | Phosphoryl transfer by aminoglycoside 3′-phosphotransferases and manifestation of antibiotic resistance. Bioorganic Chemistry, 2005, 33, 149-158.                                                                                                      | 4.1  | 36        |
| 229 | β-Lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cellular and<br>Molecular Life Sciences, 2005, 62, 2617-2633.                                                                                               | 5.4  | 161       |
| 230 | Lysine carboxylation in proteins: OXA-10 β-lactamase. Proteins: Structure, Function and Bioinformatics, 2005, 61, 246-257.                                                                                                                             | 2.6  | 41        |
| 231 | A Highly Specific Inhibitor of Matrix Metalloproteinase-9 Rescues Laminin from Proteolysis and<br>Neurons from Apoptosis in Transient Focal Cerebral Ischemia. Journal of Neuroscience, 2005, 25,<br>6401-6408.                                        | 3.6  | 397       |
| 232 | Potent Mechanism-based Inhibitors for Matrix Metalloproteinases. Journal of Biological Chemistry, 2005, 280, 33992-34002.                                                                                                                              | 3.4  | 116       |
| 233 | Antimetastatic Activity of a Novel Mechanism-Based Gelatinase Inhibitor. Cancer Research, 2005, 65, 3523-3526.                                                                                                                                         | 0.9  | 121       |
| 234 | Mutational and Structural Analyses of the Hinge Region of Membrane Type 1-Matrix Metalloproteinase<br>and Enzyme Processing. Journal of Biological Chemistry, 2005, 280, 26160-26168.                                                                  | 3.4  | 13        |

| #   | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Design, Synthesis, and Evaluation of a Mechanism-Based Inhibitor for Gelatinase A. Journal of Organic<br>Chemistry, 2005, 70, 5709-5712.                                                                                                                                        | 3.2  | 44        |
| 236 | Activation for Catalysis of Penicillin-Binding Protein 2a from<br>Methicillin-ResistantStaphylococcusaureusby Bacterial Cell Wall. Journal of the American Chemical<br>Society, 2005, 127, 2056-2057.                                                                           | 13.7 | 89        |
| 237 | Ab Initio QM/MM Study of Class A β-Lactamase Acylation:  Dual Participation of Glu166 and Lys73 in a<br>Concerted Base Promotion of Ser70. Journal of the American Chemical Society, 2005, 127, 15397-15407.                                                                    | 13.7 | 153       |
| 238 | A Practical Synthesis of Nitrocefin. Journal of Organic Chemistry, 2005, 70, 367-369.                                                                                                                                                                                           | 3.2  | 30        |
| 239 | Computational Investigation of Irreversible Inactivation of the Zinc-Dependent Protease<br>Carboxypeptidase A. Journal of Physical Chemistry B, 2005, 109, 4761-4769.                                                                                                           | 2.6  | 16        |
| 240 | Bacterial Resistance to β-Lactam Antibiotics:  Compelling Opportunism, Compelling Opportunity.<br>Chemical Reviews, 2005, 105, 395-424.                                                                                                                                         | 47.7 | 795       |
| 241 | Synthesis of Chiral 2-(4-Phenoxyphenylsulfonylmethyl)thiiranes as Selective Gelatinase Inhibitors.<br>Organic Letters, 2005, 7, 4463-4465.                                                                                                                                      | 4.6  | 59        |
| 242 | Pronounced Diversity in Electronic and Chemical Properties between the Catalytic Zinc Sites of<br>Tumor Necrosis Factor-α-converting Enzyme and Matrix Metalloproteinases despite Their High<br>Structural Similarity. Journal of Biological Chemistry, 2004, 279, 31646-31654. | 3.4  | 38        |
| 243 | X-ray Crystal Structure of the Acylated β-Lactam Sensor Domain of BlaR1 fromStaphylococcus aureusand the Mechanism of Receptor Activation for Signal Transduction. Journal of the American Chemical Society, 2004, 126, 13945-13947.                                            | 13.7 | 51        |
| 244 | A Novel β-Lactamase Activity from a Penicillin-binding Protein of Treponema pallidum and Why Syphilis<br>Is Still Treatable with Penicillin. Journal of Biological Chemistry, 2004, 279, 14917-14921.                                                                           | 3.4  | 45        |
| 245 | The Importance of a Critical Protonation State and the Fate of the Catalytic Steps in Class A<br>β-Lactamases and Penicillin-binding Proteins. Journal of Biological Chemistry, 2004, 279, 34665-34673.                                                                         | 3.4  | 63        |
| 246 | The Basis for Resistance to β-Lactam Antibiotics by Penicillin-binding Protein 2a of Methicillin-resistant<br>Staphylococcus aureus. Journal of Biological Chemistry, 2004, 279, 40802-40806.                                                                                   | 3.4  | 211       |
| 247 | Synthesis of a Fragment of Bacterial Cell Wall. Journal of Organic Chemistry, 2004, 69, 2137-2146.                                                                                                                                                                              | 3.2  | 52        |
| 248 | A Convenient Synthesis of a Selective Gelatinase Inhibitor as an Antimetastatic Agent. Journal of<br>Organic Chemistry, 2004, 69, 3572-3573.                                                                                                                                    | 3.2  | 19        |
| 249 | Fluorinated Aminoglycosides and Their Mechanistic Implication for Aminoglycoside<br>3â€ <sup>-</sup> -Phosphotransferases from Gram-Negative Bacteriaâ€. Biochemistry, 2004, 43, 2373-2383.                                                                                     | 2.5  | 34        |
| 250 | Synthetic Peptidoglycan Substrates for Penicillin-Binding Protein 5 of Gram-Negative Bacteria. Journal of Organic Chemistry, 2004, 69, 778-784.                                                                                                                                 | 3.2  | 56        |
| 251 | Extracellular proteases as targets for treatment of cancer metastases. Chemical Society Reviews, 2004, 33, 401.                                                                                                                                                                 | 38.1 | 81        |
| 252 | Strategy in Inhibition of Cathepsin B, A Target in Tumor Invasion and Metastasis. Journal of the<br>American Chemical Society, 2004, 126, 10271-10277.                                                                                                                          | 13.7 | 37        |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Quest for Selectivity in Inhibition of Matrix Metalloproteinases. Current Topics in Medicinal Chemistry, 2004, 4, 1227-1238.                                                                                                           | 2.1  | 67        |
| 254 | Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer and Metastasis Reviews, 2003, 22, 153-166.                                                                                                               | 5.9  | 141       |
| 255 | Mechanisms Complex biological processes and their central chemical events. Current Opinion in Chemical Biology, 2003, 7, 525-527.                                                                                                      | 6.1  | 1         |
| 256 | A Dynamic Structure for the Acylâ `Enzyme Species of the Antibiotic Aztreonam with theCitrobacter<br>freundiiβ-Lactamase Revealed by Infrared Spectroscopy and Molecular Dynamics Simulationsâ€.<br>Biochemistry, 2003, 42, 1950-1957. | 2.5  | 29        |
| 257 | A Mechanism-Based Inhibitor Targeting thedd-Transpeptidase Activity of Bacterial Penicillin-Binding<br>Proteins. Journal of the American Chemical Society, 2003, 125, 16322-16326.                                                     | 13.7 | 52        |
| 258 | The Complex of a Designer Antibiotic with a Model Aminoacyl Site of the 30S Ribosomal Subunit<br>Revealed by X-ray Crystallography. Journal of the American Chemical Society, 2003, 125, 3410-3411.                                    | 13.7 | 77        |
| 259 | Structural Aspects for Evolution of $\hat{l}^2$ -Lactamases from Penicillin-Binding Proteins. Journal of the American Chemical Society, 2003, 125, 9612-9618.                                                                          | 13.7 | 96        |
| 260 | Structural Basis for Potent Slow Binding Inhibition of Human Matrix Metalloproteinase-2 (MMP-2).<br>Journal of Biological Chemistry, 2003, 278, 27009-27015.                                                                           | 3.4  | 44        |
| 261 | Resistance to β-Lactam Antibiotics and Its Mediation by the Sensor Domain of the Transmembrane BlaR<br>Signaling Pathway in Staphylococcus aureus. Journal of Biological Chemistry, 2003, 278, 18419-18425.                            | 3.4  | 74        |
| 262 | Versatility of Aminoglycosides and Prospects for Their Future. Clinical Microbiology Reviews, 2003, 16, 430-450.                                                                                                                       | 13.6 | 529       |
| 263 | Complex Pattern of Membrane Type 1 Matrix Metalloproteinase Shedding. Journal of Biological<br>Chemistry, 2002, 277, 26340-26350.                                                                                                      | 3.4  | 112       |
| 264 | Mutational Replacement of Leu-293 in the Class C Enterobacter cloacae P99 β-Lactamase Confers<br>Increased MIC of Cefepime. Antimicrobial Agents and Chemotherapy, 2002, 46, 1966-1970.                                                | 3.2  | 41        |
| 265 | Design, Synthesis, and Characterization of Potent, Slow-binding Inhibitors That Are Selective for Gelatinases. Journal of Biological Chemistry, 2002, 277, 11201-11207.                                                                | 3.4  | 76        |
| 266 | Antibacterials as wonder drugs and how their effectiveness is being compromised.<br>Pharmacochemistry Library, 2002, 32, 193-205.                                                                                                      | 0.1  | 0         |
| 267 | High-Resolution X-ray Structure of an Acyl-Enzyme Species for the Class D OXA-10 β-Lactamase. Journal of the American Chemical Society, 2002, 124, 2461-2465.                                                                          | 13.7 | 73        |
| 268 | Design of Novel Antibiotics that Bind to the Ribosomal Acyltransfer Site. Journal of the American<br>Chemical Society, 2002, 124, 3229-3237.                                                                                           | 13.7 | 165       |
| 269 | Molecular Dynamics at the Root of Expansion of Function in the M69L Inhibitor-Resistant TEM<br>β-Lactamase fromEscherichiacoli. Journal of the American Chemical Society, 2002, 124, 9422-9430.                                        | 13.7 | 54        |
| 270 | N-Glycosylation pattern of the zymogenic form of human matrix metalloproteinase-9. Bioorganic<br>Chemistry, 2002, 30, 356-370.                                                                                                         | 4.1  | 32        |

442

| #   | Article                                                                                                                                                                                                  | IF                  | CITATIONS            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|
| 271 | Aminoglycosides Modified by Resistance Enzymes Display Diminished Binding to the Bacterial<br>Ribosomal Aminoacyl-tRNA Site. Chemistry and Biology, 2002, 9, 455-463.                                    | 6.0                 | 160                  |
| 272 | Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resistance<br>Updates, 2001, 4, 106-117.                                                                        | 14.4                | 110                  |
| 273 | Identification of Colchicine in Placental Blood from Patients Using Herbal Medicines. Chemical Research in Toxicology, 2001, 14, 1254-1258.                                                              | 3.3                 | 38                   |
| 274 | Insight into the Complex and Dynamic Process of Activation of Matrix Metalloproteinases. Journal of the American Chemical Society, 2001, 123, 3108-3113.                                                 | 13.7                | 26                   |
| 275 | Substrate Hydrolysis by Matrix Metalloproteinase-9*. Journal of Biological Chemistry, 2001, 276, 20572-20578.                                                                                            | 3.4                 | 170                  |
| 276 | A Renaissance of Interest in Aminoglycoside Antibiotics. Current Organic Chemistry, 2001, 5, 193-205.                                                                                                    | 1.6                 | 25                   |
| 277 | Inhibition of β-Lactamases by 6,6-Bis(hydroxylmethyl)penicillanate. Bioorganic Chemistry, 2001, 29,<br>140-145.                                                                                          | 4.1                 | 6                    |
| 278 | Conjoint molecules of cephalosporins and aminoglycosides. Archiv Der Pharmazie, 2001, 334, 295.                                                                                                          | 4.1                 | 18                   |
| 279 | X-ray Absorption Studies of Human Matrix Metalloproteinase-2 (MMP-2) Bound to a Highly Selective<br>Mechanism-based Inhibitor. Journal of Biological Chemistry, 2001, 276, 17125-17131.                  | 3.4                 | 68                   |
| 280 | Mechanism-Based Inhibition of Zinc Proteases. Current Medicinal Chemistry, 2001, 8, 959-965.                                                                                                             | 2.4                 | 17                   |
| 281 | 6-(Hydroxyalkyl)penicillanates as Probes for Mechanisms of .BETALactamases Journal of Antibiotics, 2000, 53, 1022-1027.                                                                                  | 2.0                 | 19                   |
| 282 | From genes to sequences to antibiotics: prospects for future developments from microbial genomics.<br>Microbes and Infection, 2000, 2, 651-658.                                                          | 1.9                 | 13                   |
| 283 | N-Sulfonyloxy-β-lactam Inhibitors for β-Lactamases. Tetrahedron, 2000, 56, 5719-5728.                                                                                                                    | 1.9                 | 23                   |
| 284 | Insights into Class D β-Lactamases Are Revealed by the Crystal Structure of the OXA10 Enzyme from Pseudomonas aeruginosa. Structure, 2000, 8, 1289-1298.                                                 | 3.3                 | 135                  |
| 285 | Potent and Selective Mechanism-Based Inhibition of Gelatinases. Journal of the American Chemical Society, 2000, 122, 6799-6800.                                                                          | 13.7                | 188                  |
| 286 | Tissue Inhibitor of Metalloproteinase (TIMP)-2 Acts Synergistically with Synthetic Matrix<br>Metalloproteinase (MMP) Inhibitors but Not with TIMP-4 to Enhance the (Membrane Type) Tj ETQq0 0 0 rgBT /Ov | ver <b>so</b> æk 10 | Tf1 <b>50</b> 137 Td |
| 287 | Evaluation of inhibition of the carbenicillin-hydrolyzing β-lactamase PSE-4 by the clinically used mechanism-based inhibitors. FEBS Letters, 2000, 470, 285-292.                                         | 2.8                 | 7                    |
|     |                                                                                                                                                                                                          |                     |                      |

288Aminoglycosides: Perspectives on Mechanisms of Action and Resistance and Strategies to Counter<br/>Resistance. Antimicrobial Agents and Chemotherapy, 2000, 44, 3249-3256.3.2

| #   | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | A Light-Inactivated Antibiotic. Journal of Medicinal Chemistry, 2000, 43, 128-132.                                                                                                                                                                                         | 6.4  | 46        |
| 290 | Characterization of the Monomeric and Dimeric Forms of Latent and Active Matrix<br>Metalloproteinase-9. Journal of Biological Chemistry, 2000, 275, 2661-2668.                                                                                                             | 3.4  | 132       |
| 291 | Tethered Bisubstrate Derivatives as Probes for Mechanism and as Inhibitors of Aminoglycoside<br>3â€ <sup>-</sup> Phosphotransferases. Journal of Organic Chemistry, 2000, 65, 7422-7431.                                                                                   | 3.2  | 36        |
| 292 | Stereoselective Reduction of α-Bromopenicillanates by Tributylphosphine. Organic Letters, 2000, 2, 2889-2892.                                                                                                                                                              | 4.6  | 11        |
| 293 | The First Structural and Mechanistic Insights for Class D β-Lactamases: Evidence for a Novel Catalytic<br>Process for Turnover of β-Lactam Antibiotics. Journal of the American Chemical Society, 2000, 122,<br>6132-6133.                                                 | 13.7 | 51        |
| 294 | High-Resolution Atomic Force Microscopy Studies of theEscherichiacoliOuter Membrane:Â Structural<br>Basis for Permeability. Langmuir, 2000, 16, 2789-2796.                                                                                                                 | 3.5  | 415       |
| 295 | Class C Î <sup>2</sup> -Lactamases Operate at the Diffusion Limit for Turnover of Their Preferred Cephalosporin Substrates. Antimicrobial Agents and Chemotherapy, 1999, 43, 1743-1746.                                                                                    | 3.2  | 45        |
| 296 | Effects on Substrate Profile by Mutational Substitutions at Positions 164 and 179 of the Class A<br>TEMpUC19 β-Lactamase from Escherichia coli. Journal of Biological Chemistry, 1999, 274, 23052-23060.                                                                   | 3.4  | 61        |
| 297 | Inhibition of the Broad Spectrum Nonmetallocarbapenamase of Class A (NMC-A) β-Lactamase from<br>Enterobacter cloacae by Monocyclic β-Lactams. Journal of Biological Chemistry, 1999, 274, 25260-25265.                                                                     | 3.4  | 20        |
| 298 | Elucidation of Mechanism of Inhibition and X-ray Structure of the TEM-1 β-Lactamase from Escherichia<br>coli Inhibited by a N-Sulfonyloxy-β-lactam. Journal of the American Chemical Society, 1999, 121, 5353-5359.                                                        | 13.7 | 29        |
| 299 | An Antibiotic Cloaked by Its Own Resistance Enzyme. Journal of the American Chemical Society, 1999, 121, 11922-11923.                                                                                                                                                      | 13.7 | 88        |
| 300 | Dynamics of the Lipopolysaccharide Assembly on the Surface ofEscherichiacoli. Journal of the<br>American Chemical Society, 1999, 121, 8707-8711.                                                                                                                           | 13.7 | 106       |
| 301 | 1H-NMR analysis of copper-aminoglycoside complexes in solution and its implication for regioselective modification of multifunctional aminoglycoside antibiotics. Tetrahedron, 1998, 54, 7705-7720.                                                                        | 1.9  | 27        |
| 302 | Structural insight into the binding motifs for the calcium ion and the non-catalytic zinc in matrix metalloproteases. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 853-858.                                                                                        | 2.2  | 21        |
| 303 | Templates for design of inhibitors for serine proteases: Application of the program dock to the<br>discovery of novel inhibitors for thrombin. Bioorganic and Medicinal Chemistry Letters, 1998, 8,<br>2463-2466.                                                          | 2.2  | 10        |
| 304 | The use of neamine as a molecular template: Inactivation of bacterial antibiotic resistance enzyme<br>aminoglycoside 3′-phosphotransferase type IIa. Bioorganic and Medicinal Chemistry Letters, 1998, 8,<br>3483-3488.                                                    | 2.2  | 35        |
| 305 | The use of neamine as a molecular template: Identification of active site residues in the bacterial<br>antibiotic resistance enzyme aminoglycoside 3′-phosphotransferase type IIa by mass spectroscopy.<br>Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3489-3494. | 2.2  | 5         |
| 306 | Inhibition of the NMC-A β-Lactamase by a Penicillanic Acid Derivative and the Structural Bases for the<br>Increase in Substrate Profile of This Antibiotic Resistance Enzyme. Journal of the American Chemical<br>Society, 1998, 120, 9382-9383.                           | 13.7 | 47        |

| #   | Article                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Hydrogen Bonding and Attenuation of the Rate of Enzymic Catalysis. Journal of the American Chemical Society, 1998, 120, 13003-13007.                                                                                                                                                | 13.7 | 11        |
| 308 | Structural Basis for Clinical Longevity of Carbapenem Antibiotics in the Face of Challenge by the<br>Common Class A β-Lactamases from the Antibiotic-Resistant Bacteria. Journal of the American Chemical<br>Society, 1998, 120, 9748-9752.                                         | 13.7 | 138       |
| 309 | Aminoglycoside Antibiotics. Advances in Experimental Medicine and Biology, 1998, , 27-69.                                                                                                                                                                                           | 1.6  | 116       |
| 310 | Matrix metalloproteinases: structures, evolution, and diversification. FASEB Journal, 1998, 12, 1075-1095.                                                                                                                                                                          | 0.5  | 714       |
| 311 | Kinship and Diversification of Bacterial Penicillin-Binding Proteins and $\hat{I}^2$ -Lactamases. Antimicrobial Agents and Chemotherapy, 1998, 42, 1-17.                                                                                                                            | 3.2  | 392       |
| 312 | Selection and Characterization of β-Lactam–β-Lactamase Inactivator-Resistant Mutants following PCR<br>Mutagenesis of the TEM-1 β-Lactamase Gene. Antimicrobial Agents and Chemotherapy, 1998, 42, 1542-1548.                                                                        | 3.2  | 69        |
| 313 | How β-Lactamases Have Driven Pharmaceutical Drug Discovery. Advances in Experimental Medicine and<br>Biology, 1998, , 71-98.                                                                                                                                                        | 1.6  | 72        |
| 314 | Kinetic Analysis of the Binding of Human Matrix Metalloproteinase-2 and -9 to Tissue Inhibitor of Metalloproteinase (TIMP)-1 and TIMP-2. Journal of Biological Chemistry, 1997, 272, 29975-29983.                                                                                   | 3.4  | 251       |
| 315 | Molecular Bases for Interactions between β-Lactam Antibiotics and β-Lactamases. Accounts of Chemical Research, 1997, 30, 162-168.                                                                                                                                                   | 15.6 | 64        |
| 316 | Properties of a Bifunctional Bacterial Antibiotic Resistance Enzyme That Catalyzes ATP-Dependent<br>2â€~â€~-Phosphorylation and Acetyl-CoA-Dependent 6â€~-Acetylation of Aminoglycosides. Journal of the<br>American Chemical Society, 1997, 119, 2317-2318.                        | 13.7 | 40        |
| 317 | Nuances of Mechanisms and Their Implications for Evolution of the Versatile β-Lactamase Activity:  From<br>Biosynthetic Enzymes to Drug Resistance Factors. Journal of the American Chemical Society, 1997, 119,<br>7619-7625.                                                      | 13.7 | 63        |
| 318 | Structural Insights into the Catalytic Domains of Human Matrix Metalloprotease-2 and Human Matrix<br>Metalloprotease-9: Implications for Substrate Specificities. Journal of Molecular Modeling, 1997, 3,<br>17-30.                                                                 | 1.8  | 27        |
| 319 | Insights into the three-dimensional structure of crotalase: Implications for biological activity and substrate specificity. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 3139-3144.                                                                                         | 2.2  | 7         |
| 320 | Evidence for Structural Elasticity of Class A β-Lactamases in the Course of Catalytic Turnover of the<br>Novel Cephalosporin Cefepime. Journal of the American Chemical Society, 1996, 118, 7441-7448.                                                                              | 13.7 | 36        |
| 321 | Crystal Structure of 6α-(Hydroxymethyl)penicillanate Complexed to the TEM-1 β-Lactamase<br>fromEscherichia coli:Â Evidence on the Mechanism of Action of a Novel Inhibitor Designed by a<br>Computer-Aided Process. Journal of the American Chemical Society, 1996, 118, 7435-7440. | 13.7 | 120       |
| 322 | Crystallographic and Computational Insight on the Mechanism of Zinc-Ion-Dependent Inactivation of<br>Carboxypeptidase A by 2-Benzyl-3-iodopropanoate. Journal of the American Chemical Society, 1996, 118,<br>12479-12480.                                                          | 13.7 | 21        |
| 323 | Quantification of the extent of attenuation of the rate of turnover chemistry of the TEM-1 β-lactamase by the α-1R-hydroxyethyl group in substrates. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 319-322.                                                                  | 2.2  | 17        |
| 324 | Properties of analogues of an intermediate in the process of mechanism-based inactivation of carboxypeptidase A. Bioorganic and Medicinal Chemistry, 1996, 4, 1487-1492.                                                                                                            | 3.0  | 4         |

| #   | Article                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Mechanistic support for the stepwise process for inactivation of class A β-lactamases by clavulanate.<br>Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1043-1048.                                                                                                                 | 2.2  | 3         |
| 326 | Loss of individual electrostatic interactions between aminoglycoside antibiotics and resistance<br>enzymes as an effective means to overcoming bacterial drug resistance. Journal of the American<br>Chemical Society, 1995, 117, 11060-11069.                                           | 13.7 | 74        |
| 327 | Mechanism-Based Inactivation of Bacterial Aminoglycoside 3'-Phosphotransferases. Journal of the<br>American Chemical Society, 1995, 117, 80-84.                                                                                                                                          | 13.7 | 62        |
| 328 | Mechanism of turnover of imipenem by the TEM .betalactamase revisited. Journal of the American<br>Chemical Society, 1995, 117, 7600-7605.                                                                                                                                                | 13.7 | 58        |
| 329 | Penem BRL 42715: An Effective Inactivator for .betaLactamases. Journal of the American Chemical Society, 1995, 117, 4797-4801.                                                                                                                                                           | 13.7 | 42        |
| 330 | Potent mechanism-based inhibition of the TEM-1 .betalactamase by novel N-sulfonyloxy .betalactams.<br>Journal of the American Chemical Society, 1995, 117, 5938-5943.                                                                                                                    | 13.7 | 29        |
| 331 | Design, Synthesis, and Evaluation of a Potent Mechanism-Based Inhibitor for the TEM .betaLactamase<br>with Implications for the Enzyme Mechanism. Journal of the American Chemical Society, 1995, 117,<br>11055-11059.                                                                   | 13.7 | 51        |
| 332 | Purification, characterization, and investigation of the mechanism of aminoglycoside<br>3'-phosphotransferase type Ia. Biochemistry, 1995, 34, 12681-12688.                                                                                                                              | 2.5  | 51        |
| 333 | A Convenient Triphosgene-Mediated Synthesis of Symmetric Carboxylic Acid Anhydrides. Journal of<br>Organic Chemistry, 1994, 59, 2913-2914.                                                                                                                                               | 3.2  | 72        |
| 334 | N-(tert-Butoxycarbonyloxy)-5-norbornene-endo-2,3-dicarboximide, a Reagent for the Regioselective<br>Introduction of the tert-Butoxycarbonyl (BOC) Protective Group at Unhindered Amines: Application<br>to Amino glycoside Chemistry. Journal of Organic Chemistry, 1994, 59, 1918-1922. | 3.2  | 27        |
| 335 | Conscripting the Active-Site Zinc Ion in Carboxypeptidase A in Inactivation Chemistry by a New Type of<br>Irreversible Enzyme Inactivator. Journal of the American Chemical Society, 1994, 116, 7475-7480.                                                                               | 13.7 | 27        |
| 336 | Inactivation of class A .betalactamases by clavulanic acid: the role of arginine-244 in a proposed nonconcerted sequence of events. Journal of the American Chemical Society, 1993, 115, 4435-4442.                                                                                      | 13.7 | 141       |
| 337 | Evidence for a new enzyme-catalyzed reaction other than .betalactam hydrolysis in turnover of a penem by the TEM-1 .betalactamase. Journal of the American Chemical Society, 1993, 115, 4962-4965.                                                                                       | 13.7 | 4         |
| 338 | A mechanism-based inactivation study of neutral endopeptidase 24.11. [Erratum to document cited in CA119(13):134114z]. Journal of Medicinal Chemistry, 1993, 36, 3746-3746.                                                                                                              | 6.4  | 0         |
| 339 | A mechanism-based inactivation study of neutral endopeptidase 24.11. Journal of Medicinal Chemistry, 1993, 36, 2408-2411.                                                                                                                                                                | 6.4  | 5         |
| 340 | The use of triphosgene in preparation of N-carboxy .alphaamino acid anhydrides. Journal of Organic<br>Chemistry, 1992, 57, 2755-2756.                                                                                                                                                    | 3.2  | 118       |
| 341 | The first mechanism-based inactivators for angiotensin-converting enzyme. Journal of Medicinal Chemistry, 1992, 35, 4175-4179.                                                                                                                                                           | 6.4  | 14        |
| 342 | Facilitation of the .DELTA.2 .fwdarwDELTA.1 pyrroline tautomerization of carbapenem antibiotics by the highly conserved arginine-244 of class A .betalactamases during the course of turnover. Journal of the American Chemical Society, 1992, 114, 1505-1506.                           | 13.7 | 44        |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Facile chloride substitution of activated alcohols by triphosgene: application to cephalosporin chemistry. Journal of Organic Chemistry, 1991, 56, 7186-7188.                                                          | 3.2  | 44        |
| 344 | Targeting renal dipeptidase (dehydropeptidase I) for inactivation by mechanism-based inactivators.<br>Journal of Medicinal Chemistry, 1991, 34, 1914-1916.                                                             | 6.4  | 10        |
| 345 | Inactivation of the catalytic subunit of bovine cAMP-dependent protein kinase by a peptide-based affinity inactivator. Biopolymers, 1990, 29, 131-138.                                                                 | 2.4  | 2         |
| 346 | Conscripting .betalactamase for use in drug delivery. Synthesis and biological activity of a<br>cephalosporin C10-ester of an antibiotic dipeptide. Journal of the American Chemical Society, 1986, 108,<br>1685-1686. | 13.7 | 43        |
| 347 | Preparation of ceph-3-em esters unaccompanied by .DELTA.3 .fwdarwDELTA.2 isomerization of the cephalosporin. Journal of Organic Chemistry, 1986, 51, 4723-4726.                                                        | 3.2  | 29        |
| 348 | A novel approach to deacylation of ceph-3-em esters. Tetrahedron Letters, 1986, 27, 3333-3336.                                                                                                                         | 1.4  | 9         |
| 349 | A new approach to the preparation of N-carboxy .alphaamino acid anhydrides. Journal of Organic<br>Chemistry, 1985, 50, 2200-2202.                                                                                      | 3.2  | 26        |
| 350 | Roles of Matrix Metalloproteinases in Cutaneous Wound Healing. , 0, , .                                                                                                                                                |      | 28        |
| 351 | Inhibition of Class A β-Lactamases. , 0, , 101-114.                                                                                                                                                                    |      | 0         |
| 352 | MMP-1 and ADAM10 as Targets for Therapeutic Intervention in Idiopathic Pulmonary Fibrosis. ACS Pharmacology and Translational Science, 0, , .                                                                          | 4.9  | 7         |