Shahriar Mobashery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6078410/publications.pdf

Version: 2024-02-01

352 papers

20,754 citations

70 h-index 122 g-index

373 all docs

373 docs citations

times ranked

373

18642 citing authors

#	Article	IF	CITATIONS
1	Tackling antibiotic resistance. Nature Reviews Microbiology, 2011, 9, 894-896.	28.6	919
2	Bacterial Resistance to β-Lactam Antibiotics:  Compelling Opportunism, Compelling Opportunity. Chemical Reviews, 2005, 105, 395-424.	47.7	795
3	Matrix metalloproteinases: structures, evolution, and diversification. FASEB Journal, 1998, 12, 1075-1095.	0.5	714
4	Versatility of Aminoglycosides and Prospects for Their Future. Clinical Microbiology Reviews, 2003, 16, 430-450.	13.6	529
5	Aminoglycosides: Perspectives on Mechanisms of Action and Resistance and Strategies to Counter Resistance. Antimicrobial Agents and Chemotherapy, 2000, 44, 3249-3256.	3.2	442
6	High-Resolution Atomic Force Microscopy Studies of the Escherichia coli Outer Membrane: Â Structural Basis for Permeability. Langmuir, 2000, 16, 2789-2796.	3.5	415
7	A Highly Specific Inhibitor of Matrix Metalloproteinase-9 Rescues Laminin from Proteolysis and Neurons from Apoptosis in Transient Focal Cerebral Ischemia. Journal of Neuroscience, 2005, 25, 6401-6408.	3.6	397
8	Kinship and Diversification of Bacterial Penicillin-Binding Proteins and \hat{l}^2 -Lactamases. Antimicrobial Agents and Chemotherapy, 1998, 42, 1-17.	3.2	392
9	Three-dimensional structure of the bacterial cell wall peptidoglycan. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4404-4409.	7.1	371
10	Kinetic Analysis of the Binding of Human Matrix Metalloproteinase-2 and -9 to Tissue Inhibitor of Metalloproteinase (TIMP)-1 and TIMP-2. Journal of Biological Chemistry, 1997, 272, 29975-29983.	3.4	251
11	Bacterial cellâ€wall recycling. Annals of the New York Academy of Sciences, 2013, 1277, 54-75.	3.8	246
12	Recent advances in MMP inhibitor design. Cancer and Metastasis Reviews, 2006, 25, 115-136.	5.9	241
13	How allosteric control of <i>Staphylococcus aureus</i> penicillin binding protein 2a enables methicillin resistance and physiological function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16808-16813.	7.1	235
14	The Basis for Resistance to \hat{I}^2 -Lactam Antibiotics by Penicillin-binding Protein 2a of Methicillin-resistant Staphylococcus aureus. Journal of Biological Chemistry, 2004, 279, 40802-40806.	3.4	211
15	Potent and Selective Mechanism-Based Inhibition of Gelatinases. Journal of the American Chemical Society, 2000, 122, 6799-6800.	13.7	188
16	Discoidin Domain Receptors: Unique Receptor Tyrosine Kinases in Collagen-mediated Signaling. Journal of Biological Chemistry, 2013, 288, 7430-7437.	3.4	182
17	Penicillinâ€binding protein 2a of methicillinâ€resistant <i>Staphylococcus aureus</i> . IUBMB Life, 2014, 66, 572-577.	3.4	176
18	Substrate Hydrolysis by Matrix Metalloproteinase-9*. Journal of Biological Chemistry, 2001, 276, 20572-20578.	3.4	170

#	Article	IF	CITATIONS
19	Design of Novel Antibiotics that Bind to the Ribosomal Acyltransfer Site. Journal of the American Chemical Society, 2002, 124, 3229-3237.	13.7	165
20	Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gramâ€negative bacterial outer membrane. FASEB Journal, 2012, 26, 219-228.	0.5	164
21	\hat{l}^2 -Lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cellular and Molecular Life Sciences, 2005, 62, 2617-2633.	5.4	161
22	Aminoglycosides Modified by Resistance Enzymes Display Diminished Binding to the Bacterial Ribosomal Aminoacyl-tRNA Site. Chemistry and Biology, 2002, 9, 455-463.	6.0	160
23	Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chemical Reviews, 2018, 118, 5952-5984.	47.7	154
24	Ab Initio QM/MM Study of Class A β-Lactamase Acylation:  Dual Participation of Glu166 and Lys73 in a Concerted Base Promotion of Ser70. Journal of the American Chemical Society, 2005, 127, 15397-15407.	13.7	153
25	The future of the β-lactams. Current Opinion in Microbiology, 2010, 13, 551-557.	5.1	149
26	Inactivation of class A .betalactamases by clavulanic acid: the role of arginine-244 in a proposed nonconcerted sequence of events. Journal of the American Chemical Society, 1993, 115, 4435-4442.	13.7	141
27	Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer and Metastasis Reviews, 2003, 22, 153-166.	5.9	141
28	Structural Basis for Clinical Longevity of Carbapenem Antibiotics in the Face of Challenge by the Common Class A \hat{l}^2 -Lactamases from the Antibiotic-Resistant Bacteria. Journal of the American Chemical Society, 1998, 120, 9748-9752.	13.7	138
29	Discovery of a New Class of Non- \hat{l}^2 -lactam Inhibitors of Penicillin-Binding Proteins with Gram-Positive Antibacterial Activity. Journal of the American Chemical Society, 2014, 136, 3664-3672.	13.7	136
30	Insights into Class D \hat{I}^2 -Lactamases Are Revealed by the Crystal Structure of the OXA10 Enzyme from Pseudomonas aeruginosa. Structure, 2000, 8, 1289-1298.	3.3	135
31	Characterization of the Monomeric and Dimeric Forms of Latent and Active Matrix Metalloproteinase-9. Journal of Biological Chemistry, 2000, 275, 2661-2668.	3.4	132
32	Synergistic, collaterally sensitive \hat{l}^2 -lactam combinations suppress resistance in MRSA. Nature Chemical Biology, 2015, 11, 855-861.	8.0	126
33	Acceleration of diabetic wound healing using a novel protease–anti-protease combination therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15226-15231.	7.1	126
34	Antimetastatic Activity of a Novel Mechanism-Based Gelatinase Inhibitor. Cancer Research, 2005, 65, 3523-3526.	0.9	121
35	Crystal Structure of $6\hat{l}$ ±-(Hydroxymethyl)penicillanate Complexed to the TEM-1 \hat{l}^2 -Lactamase fromEscherichia coli:Â Evidence on the Mechanism of Action of a Novel Inhibitor Designed by a Computer-Aided Process. Journal of the American Chemical Society, 1996, 118, 7435-7440.	13.7	120
36	Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 503-542.	5.2	120

3

#	Article	IF	CITATIONS
37	The use of triphosgene in preparation of N-carboxy .alphaamino acid anhydrides. Journal of Organic Chemistry, 1992, 57, 2755-2756.	3.2	118
38	Molecular Basis and Phenotype of Methicillin Resistance in <i>Staphylococcus aureus</i> and Insights into New \hat{l}^2 -Lactams That Meet the Challenge. Antimicrobial Agents and Chemotherapy, 2009, 53, 4051-4063.	3.2	117
39	Aminoglycoside Antibiotics. Advances in Experimental Medicine and Biology, 1998, , 27-69.	1.6	116
40	Potent Mechanism-based Inhibitors for Matrix Metalloproteinases. Journal of Biological Chemistry, 2005, 280, 33992-34002.	3.4	116
41	Discovery of Antibiotic (<i>E</i>)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3 <i>H</i>)-one. Journal of the American Chemical Society, 2015, 137, 1738-1741.	13.7	116
42	Tissue Inhibitor of Metalloproteinase (TIMP)-2 Acts Synergistically with Synthetic Matrix Metalloproteinase (MMP) Inhibitors but Not with TIMP-4 to Enhance the (Membrane Type) Tj ETQq0 0 0 rgBT /C)ver\$o€k 1() Tf1 50 537 To
43	Effect of Ablation or Inhibition of Stromal Matrix Metalloproteinase-9 on Lung Metastasis in a Breast Cancer Model Is Dependent on Genetic Background. Cancer Research, 2008, 68, 6251-6259.	0.9	114
44	Synthesis and Evaluation of 1,2,4-Triazolo[1,5- <i>a</i>]pyrimidines as Antibacterial Agents Against <i>Enterococcus faecium</i> . Journal of Medicinal Chemistry, 2015, 58, 4194-4203.	6.4	113
45	Complex Pattern of Membrane Type 1 Matrix Metalloproteinase Shedding. Journal of Biological Chemistry, 2002, 277, 26340-26350.	3.4	112
46	Co-opting the Cell Wall in Fighting Methicillin-Resistant <i>Staphylococcus aureus</i> Potent Inhibition of PBP 2a by Two Anti-MRSA \hat{l}^2 -Lactam Antibiotics. Journal of the American Chemical Society, 2008, 130, 9212-9213.	13.7	111
47	Reactions of All <i>Escherichia coli</i> Lytic Transglycosylases with Bacterial Cell Wall. Journal of the American Chemical Society, 2013, 135, 3311-3314.	13.7	111
48	Structure–Activity Relationship for the 4(3 <i>H</i>)-Quinazolinone Antibacterials. Journal of Medicinal Chemistry, 2016, 59, 5011-5021.	6.4	111
49	Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resistance Updates, 2001, 4, 106-117.	14.4	110
50	Short Alkylated Peptoid Mimics of Antimicrobial Lipopeptides. Antimicrobial Agents and Chemotherapy, 2011, 55, 417-420.	3.2	108
51	Dynamics of the Lipopolysaccharide Assembly on the Surface of Escherichiacoli. Journal of the American Chemical Society, 1999, 121, 8707-8711.	13.7	106
52	Structureâ€"Activity Relationship for the Oxadiazole Class of Antibiotics. Journal of Medicinal Chemistry, 2015, 58, 1380-1389.	6.4	100
53	Structural Aspects for Evolution of \hat{l}^2 -Lactamases from Penicillin-Binding Proteins. Journal of the American Chemical Society, 2003, 125, 9612-9618.	13.7	96
54	Selective Inhibition of Matrix Metalloproteinase-9 Attenuates Secondary Damage Resulting from Severe Traumatic Brain Injury. PLoS ONE, 2013, 8, e76904.	2.5	95

#	Article	IF	Citations
55	Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Molecular Neurodegeneration, 2012, 7, 21.	10.8	93
56	Disruption of Allosteric Response as an Unprecedented Mechanism of Resistance to Antibiotics. Journal of the American Chemical Society, 2014, 136, 9814-9817.	13.7	93
57	Structural Basis for Carbapenemase Activity of the OXA-23 \hat{I}^2 -Lactamase from Acinetobacter baumannii. Chemistry and Biology, 2013, 20, 1107-1115.	6.0	92
58	Activation for Catalysis of Penicillin-Binding Protein 2a from Methicillin-ResistantStaphylococcusaureusby Bacterial Cell Wall. Journal of the American Chemical Society, 2005, 127, 2056-2057.	13.7	89
59	An Antibiotic Cloaked by Its Own Resistance Enzyme. Journal of the American Chemical Society, 1999, 121, 11922-11923.	13.7	88
60	Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanismâ€based selective gelatinase inhibitor. International Journal of Cancer, 2006, 118, 2721-2726.	5.1	88
61	Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8761-8766.	7.1	87
62	Molecular Structures and Dynamics of the Stepwise Activation Mechanism of a Matrix Metalloproteinase Zymogen:  Challenging the Cysteine Switch Dogma. Journal of the American Chemical Society, 2007, 129, 13566-13574.	13.7	87
63	Validation of Matrix Metalloproteinase-9 (MMP-9) as a Novel Target for Treatment of Diabetic Foot Ulcers in Humans and Discovery of a Potent and Selective Small-Molecule MMP-9 Inhibitor That Accelerates Healing. Journal of Medicinal Chemistry, 2018, 61, 8825-8837.	6.4	82
64	Extracellular proteases as targets for treatment of cancer metastases. Chemical Society Reviews, 2004, 33, 401.	38.1	81
65	Pharmacological Stabilization of Intracranial Aneurysms in Mice. Stroke, 2012, 43, 2450-2456.	2.0	81
66	Messenger Functions of the Bacterial Cell Wall-derived Muropeptides. Biochemistry, 2012, 51, 2974-2990.	2. 5	80
67	The Complex of a Designer Antibiotic with a Model Aminoacyl Site of the 30S Ribosomal Subunit Revealed by X-ray Crystallography. Journal of the American Chemical Society, 2003, 125, 3410-3411.	13.7	77
68	Design, Synthesis, and Characterization of Potent, Slow-binding Inhibitors That Are Selective for Gelatinases. Journal of Biological Chemistry, 2002, 277, 11201-11207.	3.4	76
69	A Chemical Biological Strategy to Facilitate Diabetic Wound Healing. ACS Chemical Biology, 2014, 9, 105-110.	3.4	75
70	Loss of individual electrostatic interactions between aminoglycoside antibiotics and resistance enzymes as an effective means to overcoming bacterial drug resistance. Journal of the American Chemical Society, 1995, 117, 11060-11069.	13.7	74
71	Resistance to \hat{l}^2 -Lactam Antibiotics and Its Mediation by the Sensor Domain of the Transmembrane BlaR Signaling Pathway in Staphylococcus aureus. Journal of Biological Chemistry, 2003, 278, 18419-18425.	3.4	74
72	High-Resolution X-ray Structure of an Acyl-Enzyme Species for the Class D OXA-10 \hat{l}^2 -Lactamase. Journal of the American Chemical Society, 2002, 124, 2461-2465.	13.7	73

#	Article	IF	Citations
73	A Convenient Triphosgene-Mediated Synthesis of Symmetric Carboxylic Acid Anhydrides. Journal of Organic Chemistry, 1994, 59, 2913-2914.	3.2	72
74	Recognition of peptidoglycan and \hat{l}^2 -lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from < i>Streptococcus pneumoniae < /i>. FEBS Letters, 2011, 585, 357-363.	2.8	72
75	How \hat{I}^2 -Lactamases Have Driven Pharmaceutical Drug Discovery. Advances in Experimental Medicine and Biology, 1998, , 71-98.	1.6	72
76	The sentinel role of peptidoglycan recycling in the \hat{l}^2 -lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa. Bioorganic Chemistry, 2014, 56, 41-48.	4.1	70
77	Selection and Characterization of β-Lactam–β-Lactamase Inactivator-Resistant Mutants following PCR Mutagenesis of the TEM-1 β-Lactamase Gene. Antimicrobial Agents and Chemotherapy, 1998, 42, 1542-1548.	3.2	69
78	Shedding of Discoidin Domain Receptor 1 by Membrane-type Matrix Metalloproteinases. Journal of Biological Chemistry, 2013, 288, 12114-12129.	3.4	69
79	X-ray Absorption Studies of Human Matrix Metalloproteinase-2 (MMP-2) Bound to a Highly Selective Mechanism-based Inhibitor. Journal of Biological Chemistry, 2001, 276, 17125-17131.	3.4	68
80	Quest for Selectivity in Inhibition of Matrix Metalloproteinases. Current Topics in Medicinal Chemistry, 2004, 4, 1227-1238.	2.1	67
81	Prostate Cancer-Associated Membrane Type 1-Matrix Metalloproteinase. American Journal of Pathology, 2007, 170, 2100-2111.	3.8	66
82	Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant <i>Staphylococcus aureus</i> , Allosteric Communication Network and Enablement of Catalysis. Journal of the American Chemical Society, 2017, 139, 2102-2110.	13.7	65
83	Molecular Bases for Interactions between \hat{l}^2 -Lactam Antibiotics and \hat{l}^2 -Lactamases. Accounts of Chemical Research, 1997, 30, 162-168.	15.6	64
84	Roles of Matrix Metalloproteinases in Flow-Induced Outward Vascular Remodeling. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1547-1558.	4.3	64
85	Three Decades of the Class A & Deptide Science, 2009, 10, 401-407.	1.4	64
86	Nuances of Mechanisms and Their Implications for Evolution of the Versatile \hat{l}^2 -Lactamase Activity: $\hat{a} \in \mathbb{W}$. From Biosynthetic Enzymes to Drug Resistance Factors. Journal of the American Chemical Society, 1997, 119, 7619-7625.	13.7	63
87	The Importance of a Critical Protonation State and the Fate of the Catalytic Steps in Class A β-Lactamases and Penicillin-binding Proteins. Journal of Biological Chemistry, 2004, 279, 34665-34673.	3.4	63
88	Mechanism-Based Inactivation of Bacterial Aminoglycoside 3'-Phosphotransferases. Journal of the American Chemical Society, 1995, 117, 80-84.	13.7	62
89	Matrix Metalloproteinase 2 Inhibition: Combined Quantum Mechanics and Molecular Mechanics Studies of the Inhibition Mechanism of (4-Phenoxyphenylsulfonyl)methylthiirane and Its Oxirane Analogue. Biochemistry, 2009, 48, 9839-9847.	2.5	62
90	Effects on Substrate Profile by Mutational Substitutions at Positions 164 and 179 of the Class A TEMpUC19 β-Lactamase from Escherichia coli. Journal of Biological Chemistry, 1999, 274, 23052-23060.	3.4	61

#	Article	IF	Citations
91	Elucidation of the Molecular Recognition of Bacterial Cell Wall by Modular Pneumococcal Phage Endolysin CPL-1. Journal of Biological Chemistry, 2007, 282, 24990-24999.	3.4	61
92	Mechanistic Basis for the Emergence of Catalytic Competence against Carbapenem Antibiotics by the GES Family of \hat{l}^2 -Lactamases. Journal of Biological Chemistry, 2009, 284, 29509-29513.	3.4	61
93	Total Synthesis of <i>N</i> -Acetylglucosamine-1,6-anhydro- <i>N</i> -acetylmuramylpentapeptide and Evaluation of Its Turnover by AmpD from Escherichia coli. Journal of the American Chemical Society, 2009, 131, 5187-5193.	13.7	61
94	Crystal Structures of Penicillin-Binding Protein 6 from <i>Escherichia coli</i> Iournal of the American Chemical Society, 2009, 131, 14345-14354.	13.7	60
95	Synthesis of Chiral 2-(4-Phenoxyphenylsulfonylmethyl)thiiranes as Selective Gelatinase Inhibitors. Organic Letters, 2005, 7, 4463-4465.	4.6	59
96	Effect of synthetic matrix metalloproteinase inhibitors on lipopolysaccharide-induced blood–brain barrier opening in rodents: Differences in response based on strains and solvents. Brain Research, 2007, 1133, 186-192.	2.2	59
97	Insertion of Epicatechin Gallate into the Cytoplasmic Membrane of Methicillin-resistant Staphylococcus aureus Disrupts Penicillin-binding Protein (PBP) 2a-mediated \hat{I}^2 -Lactam Resistance by Delocalizing PBP2. Journal of Biological Chemistry, 2010, 285, 24055-24065.	3.4	59
98	Mechanism of turnover of imipenem by the TEM .betalactamase revisited. Journal of the American Chemical Society, 1995, 117, 7600-7605.	13.7	58
99	Insights into pneumococcal fratricide from the crystal structures of the modular killing factor LytC. Nature Structural and Molecular Biology, 2010, 17, 576-581.	8.2	57
100	An Antibiotic-Resistance Enzyme from a Deep-Sea Bacterium. Journal of the American Chemical Society, 2010, 132, 816-823.	13.7	57
101	Synthetic Peptidoglycan Substrates for Penicillin-Binding Protein 5 of Gram-Negative Bacteria. Journal of Organic Chemistry, 2004, 69, 778-784.	3.2	56
102	Crystal structure of CbpF, a bifunctional cholineâ€binding protein and autolysis regulator from <i>Streptococcus pneumoniae</i>): EMBO Reports, 2009, 10, 246-251.	4.5	56
103	\hat{l}^2 -Lactam Resistance Mechanisms: Gram-Positive Bacteria and $\langle i \rangle$ Mycobacterium tuberculosis $\langle i \rangle$. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a025221.	6.2	56
104	Molecular Dynamics at the Root of Expansion of Function in the M69L Inhibitor-Resistant TEM \hat{l}^2 -Lactamase from Escherichia coli. Journal of the American Chemical Society, 2002, 124, 9422-9430.	13.7	54
105	Synthetic Peptidoglycan Motifs for Germination of Bacterial Spores. ChemBioChem, 2010, 11, 2525-2529.	2.6	54
106	A Mechanism-Based Inhibitor Targeting thedd-Transpeptidase Activity of Bacterial Penicillin-Binding Proteins. Journal of the American Chemical Society, 2003, 125, 16322-16326.	13.7	52
107	Synthesis of a Fragment of Bacterial Cell Wall. Journal of Organic Chemistry, 2004, 69, 2137-2146.	3.2	52
108	Discrete steps in sensing of beta-lactam antibiotics by the BlaR1 protein of the methicillin-resistant Staphylococcus aureus bacterium. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10630-10635.	7.1	52

#	Article	IF	Citations
109	Bacterial AmpD at the Crossroads of Peptidoglycan Recycling and Manifestation of Antibiotic Resistance. Journal of the American Chemical Society, 2009, 131, 8742-8743.	13.7	52
110	Activation of BlaR1 Protein of Methicillin-resistant Staphylococcus aureus, Its Proteolytic Processing, and Recovery from Induction of Resistance. Journal of Biological Chemistry, 2011, 286, 38148-38158.	3.4	52
111	Î ² -Lactams against the Fortress of the Gram-Positive <i>Staphylococcus aureus</i> Bacterium. Chemical Reviews, 2021, 121, 3412-3463.	47.7	52
112	Design, Synthesis, and Evaluation of a Potent Mechanism-Based Inhibitor for the TEM .betaLactamase with Implications for the Enzyme Mechanism. Journal of the American Chemical Society, 1995, 117, 11055-11059.	13.7	51
113	Purification, characterization, and investigation of the mechanism of aminoglycoside 3'-phosphotransferase type Ia. Biochemistry, 1995, 34, 12681-12688.	2.5	51
114	The First Structural and Mechanistic Insights for Class D \hat{l}^2 -Lactamases: \hat{A} Evidence for a Novel Catalytic Process for Turnover of \hat{l}^2 -Lactam Antibiotics. Journal of the American Chemical Society, 2000, 122, 6132-6133.	13.7	51
115	X-ray Crystal Structure of the Acylated \hat{l}^2 -Lactam Sensor Domain of BlaR1 fromStaphylococcus aureusand the Mechanism of Receptor Activation for Signal Transduction. Journal of the American Chemical Society, 2004, 126, 13945-13947.	13.7	51
116	Structural Basis for Progression toward the Carbapenemase Activity in the GES Family of \hat{l}^2 -Lactamases. Journal of the American Chemical Society, 2012, 134, 19512-19515.	13.7	51
117	Characterization of the Bifunctional Aminoglycoside-Modifying Enzyme ANT(3â€~ â€~)-Ii/AAC(6â€~)-IId from Serratia marcescens. Biochemistry, 2006, 45, 8368-8377.	2.5	50
118	Reactions of the Three AmpD Enzymes of <i>Pseudomonas aeruginosa</i> . Journal of the American Chemical Society, 2013, 135, 4950-4953.	13.7	50
119	From Genome to Proteome to Elucidation of Reactions for All Eleven Known Lytic Transglycosylases from <i>Pseudomonas aeruginosa</i> Angewandte Chemie - International Edition, 2017, 56, 2735-2739.	13.8	50
120	Crystal Structures of Bacterial Peptidoglycan Amidase AmpD and an Unprecedented Activation Mechanism. Journal of Biological Chemistry, 2011, 286, 31714-31722.	3.4	49
121	Catalytic Mechanism of Penicillin-Binding Protein 5 of <i>Escherichia coli</i> li>. Biochemistry, 2007, 46, 10113-10121.	2.5	48
122	Structural and Functional Insights into Peptidoglycan Access for the Lytic Amidase LytA of Streptococcus pneumoniae. MBio, 2014, 5, e01120-13.	4.1	48
123	Three-dimensional QSAR analysis and design of new 1,2,4-oxadiazole antibacterials. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1011-1015.	2.2	48
124	Inhibition of the NMC-A \hat{I}^2 -Lactamase by a Penicillanic Acid Derivative and the Structural Bases for the Increase in Substrate Profile of This Antibiotic Resistance Enzyme. Journal of the American Chemical Society, 1998, 120, 9382-9383.	13.7	47
125	Cleavage at the stem region releases an active ectodomain of the membrane typeÂ1 matrix metalloproteinase. Biochemical Journal, 2005, 387, 497-506.	3.7	47
126	Dissection of Events in the Resistance to \hat{l}^2 -Lactam Antibiotics Mediated by the Protein BlaR1 from Staphylococcus aureus. Biochemistry, 2012, 51, 4642-4649.	2.5	47

#	Article	IF	Citations
127	A Light-Inactivated Antibiotic. Journal of Medicinal Chemistry, 2000, 43, 128-132.	6.4	46
128	Active Site Ringâ€Opening of a Thiirane Moiety and Picomolar Inhibition of Gelatinases. Chemical Biology and Drug Design, 2009, 74, 527-534.	3.2	46
129	Class C \hat{l}^2 -Lactamases Operate at the Diffusion Limit for Turnover of Their Preferred Cephalosporin Substrates. Antimicrobial Agents and Chemotherapy, 1999, 43, 1743-1746.	3.2	45
130	A Novel \hat{I}^2 -Lactamase Activity from a Penicillin-binding Protein of Treponema pallidum and Why Syphilis Is Still Treatable with Penicillin. Journal of Biological Chemistry, 2004, 279, 14917-14921.	3.4	45
131	Facile chloride substitution of activated alcohols by triphosgene: application to cephalosporin chemistry. Journal of Organic Chemistry, 1991, 56, 7186-7188.	3.2	44
132	Facilitation of the .DELTA.2 .fwdarwDELTA.1 pyrroline tautomerization of carbapenem antibiotics by the highly conserved arginine-244 of class A .betalactamases during the course of turnover. Journal of the American Chemical Society, 1992, 114, 1505-1506.	13.7	44
133	Structural Basis for Potent Slow Binding Inhibition of Human Matrix Metalloproteinase-2 (MMP-2). Journal of Biological Chemistry, 2003, 278, 27009-27015.	3.4	44
134	Design, Synthesis, and Evaluation of a Mechanism-Based Inhibitor for Gelatinase A. Journal of Organic Chemistry, 2005, 70, 5709-5712.	3.2	44
135	Selective Water-Soluble Gelatinase Inhibitor Prodrugs. Journal of Medicinal Chemistry, 2011, 54, 6676-6690.	6.4	44
136	Conscripting .betalactamase for use in drug delivery. Synthesis and biological activity of a cephalosporin C10-ester of an antibiotic dipeptide. Journal of the American Chemical Society, 1986, 108, 1685-1686.	13.7	43
137	Muropeptides in <i>Pseudomonas aeruginosa</i> and their Role as Elicitors of βâ€Lactamâ€Antibiotic Resistance. Angewandte Chemie - International Edition, 2016, 55, 6882-6886.	13.8	43
138	Penem BRL 42715: An Effective Inactivator for .betaLactamases. Journal of the American Chemical Society, 1995, 117, 4797-4801.	13.7	42
139	Mechanistic Characterization of the Bifunctional Aminoglycoside-Modifying Enzyme AAC(3)-lb/AAC(6â€~)-lbâ€~ from Pseudomonas aeruginosa. Biochemistry, 2007, 46, 5270-5282.	2.5	42
140	Muropeptide Binding and the X-ray Structure of the Effector Domain of the Transcriptional Regulator AmpR of <i>Pseudomonas aeruginosa</i>). Journal of the American Chemical Society, 2017, 139, 1448-1451.	13.7	42
141	Mutational Replacement of Leu-293 in the Class C Enterobacter cloacae P99 \hat{l}^2 -Lactamase Confers Increased MIC of Cefepime. Antimicrobial Agents and Chemotherapy, 2002, 46, 1966-1970.	3.2	41
142	Lysine carboxylation in proteins: OXA-10 \hat{l}^2 -lactamase. Proteins: Structure, Function and Bioinformatics, 2005, 61, 246-257.	2.6	41
143	Lytic Transglycosylase MltB of <i>Escherichia coli</i> and Its Role in Recycling of Peptidoglycan Strands of Bacterial Cell Wall. Journal of the American Chemical Society, 2008, 130, 11878-11879.	13.7	41
144	Restoration of Susceptibility of Methicillin-resistant Staphylococcus aureus to \hat{l}^2 -Lactam Antibiotics by Acidic pH. Journal of Biological Chemistry, 2008, 283, 12769-12776.	3.4	41

#	Article	IF	CITATIONS
145	Cell-Wall Remodeling by the Zinc-Protease AmpDh3 from Pseudomonas aeruginosa. Journal of the American Chemical Society, 2013, 135, 12604-12607.	13.7	41
146	Structure and Cell Wall Cleavage by Modular Lytic Transglycosylase MltC of <i>Escherichia coli</i> ACS Chemical Biology, 2014, 9, 2058-2066.	3.4	41
147	Constructing and deconstructing the bacterial cell wall. Protein Science, 2020, 29, 629-646.	7.6	41
148	Properties of a Bifunctional Bacterial Antibiotic Resistance Enzyme That Catalyzes ATP-Dependent 2â€~â€~-Phosphorylation and Acetyl-CoA-Dependent 6â€~-Acetylation of Aminoglycosides. Journal of the American Chemical Society, 1997, 119, 2317-2318.	13.7	40
149	Metabolism of a Highly Selective Gelatinase Inhibitor Generates Active Metabolite. Chemical Biology and Drug Design, 2007, 70, 371-382.	3.2	40
150	The bifunctional enzymes of antibiotic resistance. Current Opinion in Microbiology, 2009, 12, 505-511.	5.1	40
151	Structural Analysis of the Role of Pseudomonas aeruginosa Penicillin-Binding Protein 5 in \hat{l}^2 -Lactam Resistance. Antimicrobial Agents and Chemotherapy, 2013, 57, 3137-3146.	3.2	40
152	The oxadiazole antibacterials. Current Opinion in Microbiology, 2016, 33, 13-17.	5.1	40
153	The Quinazolinone Allosteric Inhibitor of PBP 2a Synergizes with Piperacillin and Tazobactam against Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	40
154	High-Resolution Crystal Structure of MltE, an Outer Membrane-Anchored Endolytic Peptidoglycan Lytic Transglycosylase from <i>Escherichia coli</i>). Biochemistry, 2011, 50, 2384-2386.	2.5	39
155	Regulation of the Expression of the \hat{I}^2 -Lactam Antibiotic-Resistance Determinants in Methicillin-Resistant Staphylococcus aureus (MRSA). Biochemistry, 2014, 53, 1548-1550.	2.5	39
156	Exploration of the structure–activity relationship of 1,2,4-oxadiazole antibiotics. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4854-4857.	2.2	39
157	Endless resistance. Endless antibiotics?. MedChemComm, 2016, 7, 37-49.	3.4	39
158	Identification of Colchicine in Placental Blood from Patients Using Herbal Medicines. Chemical Research in Toxicology, 2001, 14, 1254-1258.	3.3	38
159	Pronounced Diversity in Electronic and Chemical Properties between the Catalytic Zinc Sites of Tumor Necrosis Factor-α-converting Enzyme and Matrix Metalloproteinases despite Their High Structural Similarity. Journal of Biological Chemistry, 2004, 279, 31646-31654.	3.4	38
160	Interactions of Designer Antibiotics and the Bacterial Ribosomal Aminoacyl-tRNA Site. Chemistry and Biology, 2006, 13, 129-138.	6.0	38
161	Reaction Products and the X-ray Structure of AmpDh2, a Virulence Determinant of Pseudomonas aeruginosa. Journal of the American Chemical Society, 2013, 135, 10318-10321.	13.7	38
162	Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling and releasing peptidoglycan in <i>Neisseria gonorrhoeae</i> . Molecular Microbiology, 2016, 102, 865-881.	2.5	38

#	Article	IF	Citations
163	Strategy in Inhibition of Cathepsin B, A Target in Tumor Invasion and Metastasis. Journal of the American Chemical Society, 2004, 126, 10271-10277.	13.7	37
164	Testosterone-Induced Matrix Metalloproteinase Activation Is a Checkpoint for Neuronal Addition to the Adult Songbird Brain. Journal of Neuroscience, 2008, 28, 208-216.	3.6	37
165	Complications from Dual Roles of Sodium Hydride as a Base and as a Reducing Agent. Journal of Organic Chemistry, 2009, 74, 2567-2570.	3.2	37
166	Evidence for Structural Elasticity of Class A \hat{l}^2 -Lactamases in the Course of Catalytic Turnover of the Novel Cephalosporin Cefepime. Journal of the American Chemical Society, 1996, 118, 7441-7448.	13.7	36
167	Tethered Bisubstrate Derivatives as Probes for Mechanism and as Inhibitors of Aminoglycoside 3â€-Phosphotransferases. Journal of Organic Chemistry, 2000, 65, 7422-7431.	3.2	36
168	Phosphoryl transfer by aminoglycoside 3′-phosphotransferases and manifestation of antibiotic resistance. Bioorganic Chemistry, 2005, 33, 149-158.	4.1	36
169	Sulfonate-Containing Thiiranes as Selective Gelatinase Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 177-181.	2.8	36
170	Endogenous Matrix Metalloproteinases 2 and 9 Regulate Activation of CD4+and CD8+T cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 700-708.	2.9	36
171	Inhibitors for Bacterial Cell-Wall Recycling. ACS Medicinal Chemistry Letters, 2012, 3, 238-242.	2.8	36
172	The use of neamine as a molecular template: Inactivation of bacterial antibiotic resistance enzyme aminoglycoside 3′-phosphotransferase type IIa. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3483-3488.	2.2	35
173	Mechanistic Basis for the Action of New Cephalosporin Antibiotics Effective against Methicillin- and Vancomycin-resistant Staphylococcus aureus. Journal of Biological Chemistry, 2006, 281, 10035-10041.	3.4	35
174	Investigation of the Mechanism of the Cell Wall dd-Carboxypeptidase Reaction of Penicillin-Binding Protein 5 of Escherichia coli by Quantum Mechanics/Molecular Mechanics Calculations. Journal of the American Chemical Society, 2008, 130, 9293-9303.	13.7	35
175	Fluorinated Aminoglycosides and Their Mechanistic Implication for Aminoglycoside 3â€ ⁻ -Phosphotransferases from Gram-Negative Bacteriaâ€. Biochemistry, 2004, 43, 2373-2383.	2.5	34
176	Structure–Activity Relationship for Thiirane-Based Gelatinase Inhibitors. ACS Medicinal Chemistry Letters, 2012, 3, 490-495.	2.8	34
177	The Cell Shape-determining Csd6 Protein from Helicobacter pylori Constitutes a New Family of l,d-Carboxypeptidase. Journal of Biological Chemistry, 2015, 290, 25103-25117.	3.4	34
178	Source of Phosphate in the Enzymic Reaction as a Point of Distinction among Aminoglycoside 2″-Phosphotransferases. Journal of Biological Chemistry, 2009, 284, 6690-6696.	3.4	33
179	A Potent Gelatinase Inhibitor with Antiâ€Tumorâ€Invasive Activity and its Metabolic Disposition. Chemical Biology and Drug Design, 2009, 73, 189-202.	3.2	33
180	<i>O</i> -Phenyl Carbamate and Phenyl Urea Thiiranes as Selective Matrix Metalloproteinase-2 Inhibitors that Cross the Blood–Brain Barrier. Journal of Medicinal Chemistry, 2013, 56, 8139-8150.	6.4	33

#	Article	IF	Citations
181	Glycosylation at Asn211 Regulates the Activation State of the Discoidin Domain Receptor 1 (DDR1). Journal of Biological Chemistry, 2014, 289, 9275-9287.	3.4	33
182	N-Glycosylation pattern of the zymogenic form of human matrix metalloproteinase-9. Bioorganic Chemistry, 2002, 30, 356-370.	4.1	32
183	Thermodynamics of Interactions of Vancomycin and Synthetic Surrogates of Bacterial Cell Wall. Journal of the American Chemical Society, 2006, 128, 7736-7737.	13.7	32
184	Catalytic Spectrum of the Penicillin-Binding Protein 4 of $\langle i \rangle$ Pseudomonas aeruginosa $\langle i \rangle$, a Nexus for the Induction of \hat{l}^2 -Lactam Antibiotic Resistance. Journal of the American Chemical Society, 2015, 137, 190-200.	13.7	32
185	The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: An Achilles' Heel of Methicillin-Resistant Staphylococcus aureus. Current Medicinal Chemistry, 2015, 22, 1678-1686.	2.4	32
186	Phosphorylation of BlaR1 in Manifestation of Antibiotic Resistance in Methicillin-Resistant <i>Staphylococcus aureus</i> and Its Abrogation by Small Molecules. ACS Infectious Diseases, 2015, 1, 454-459.	3.8	31
187	Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of <i>Pseudomonas aeruginosa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4393-4398.	7.1	31
188	A Practical Synthesis of Nitrocefin. Journal of Organic Chemistry, 2005, 70, 367-369.	3.2	30
189	Selective Gelatinase Inhibitor Neuroprotective Agents Cross the Blood-Brain Barrier. ACS Chemical Neuroscience, 2012, 3, 730-736.	3.5	30
190	Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Scientific Reports, 2015, 5, 16198.	3.3	30
191	Preparation of ceph-3-em esters unaccompanied by .DELTA.3 .fwdarwDELTA.2 isomerization of the cephalosporin. Journal of Organic Chemistry, 1986, 51, 4723-4726.	3.2	29
192	Potent mechanism-based inhibition of the TEM-1 .betalactamase by novel N-sulfonyloxy .betalactams. Journal of the American Chemical Society, 1995, 117, 5938-5943.	13.7	29
193	Elucidation of Mechanism of Inhibition and X-ray Structure of the TEM-1 \hat{l}^2 -Lactamase from Escherichia coli Inhibited by a N-Sulfonyloxy- \hat{l}^2 -lactam. Journal of the American Chemical Society, 1999, 121, 5353-5359.	13.7	29
194	A Dynamic Structure for the Acylâ^Enzyme Species of the Antibiotic Aztreonam with theCitrobacter freundiiβ-Lactamase Revealed by Infrared Spectroscopy and Molecular Dynamics Simulationsâ€. Biochemistry, 2003, 42, 1950-1957.	2.5	29
195	<i>In Vitro</i> and <i>In Vivo</i> Synergy of the Oxadiazole Class of Antibacterials with \hat{l}^2 -Lactams. Antimicrobial Agents and Chemotherapy, 2016, 60, 5581-5588.	3.2	29
196	Allostery, Recognition of Nascent Peptidoglycan, and Cross-linking of the Cell Wall by the Essential Penicillin-Binding Protein 2x of <i>Streptococcus pneumoniae</i> . ACS Chemical Biology, 2018, 13, 694-702.	3.4	29
197	Structural basis of denuded glycan recognition by SPOR domains in bacterial cell division. Nature Communications, 2019, 10, 5567.	12.8	29
198	Design and Characterization of a Metalloproteinase Inhibitor-Tethered Resin for the Detection of Active MMPs in Biological Samples. Chemistry and Biology, 2006, 13, 379-386.	6.0	28

#	Article	IF	CITATIONS
199	Roles of Matrix Metalloproteinases in Cutaneous Wound Healing. , 0, , .		28
200	Catalytic Cycle of the <i>N</i> -Acetylglucosaminidase NagZ from <i>Pseudomonas aeruginosa</i> Journal of the American Chemical Society, 2017, 139, 6795-6798.	13.7	28
201	Whole-Genome Shotgun Sequencing of Two \hat{I}^2 -Proteobacterial Species in Search of the Bulgecin Biosynthetic Cluster. ACS Chemical Biology, 2017, 12, 2552-2557.	3.4	28
202	Slt, MltD, and MltG of <i>Pseudomonas aeruginosa</i> as Targets of Bulgecin A in Potentiation of \hat{l}^2 -Lactam Antibiotics. ACS Chemical Biology, 2019, 14, 296-303.	3.4	28
203	Exploration of the Structural Space in 4(3 <i>H</i>)-Quinazolinone Antibacterials. Journal of Medicinal Chemistry, 2020, 63, 5287-5296.	6.4	28
204	N-(tert-Butoxycarbonyloxy)-5-norbornene-endo-2,3-dicarboximide, a Reagent for the Regioselective Introduction of the tert-Butoxycarbonyl (BOC) Protective Group at Unhindered Amines: Application to Amino glycoside Chemistry. Journal of Organic Chemistry, 1994, 59, 1918-1922.	3.2	27
205	Conscripting the Active-Site Zinc Ion in Carboxypeptidase A in Inactivation Chemistry by a New Type of Irreversible Enzyme Inactivator. Journal of the American Chemical Society, 1994, 116, 7475-7480.	13.7	27
206	Structural Insights into the Catalytic Domains of Human Matrix Metalloprotease-2 and Human Matrix Metalloprotease-9: Implications for Substrate Specificities. Journal of Molecular Modeling, 1997, 3, 17-30.	1.8	27
207	1H-NMR analysis of copper-aminoglycoside complexes in solution and its implication for regioselective modification of multifunctional aminoglycoside antibiotics. Tetrahedron, 1998, 54, 7705-7720.	1.9	27
208	A Computational Evaluation of the Mechanism of Penicillin-Binding Protein-Catalyzed Cross-Linking of the Bacterial Cell Wall. Journal of the American Chemical Society, 2011, 133, 5274-5283.	13.7	27
209	Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound Lytic Transglycosylase from Pseudomonas aeruginosa. Structure, 2016, 24, 1729-1741.	3.3	27
210	Total Syntheses of Bulgecins A, B, and C and Their Bactericidal Potentiation of the \hat{I}^2 -Lactam Antibiotics. ACS Infectious Diseases, 2018, 4, 860-867.	3.8	27
211	Mechanism of the Escherichia coli MltE lytic transglycosylase, the cell-wall-penetrating enzyme for Type VI secretion system assembly. Scientific Reports, 2018, 8, 4110.	3.3	27
212	A new approach to the preparation of N-carboxy .alphaamino acid anhydrides. Journal of Organic Chemistry, 1985, 50, 2200-2202.	3.2	26
213	Insight into the Complex and Dynamic Process of Activation of Matrix Metalloproteinases. Journal of the American Chemical Society, 2001, 123, 3108-3113.	13.7	26
214	Synthesis of an Inhibitor-Tethered Resin for Detection of Active Matrix Metalloproteinases Involved in Disease. Journal of Organic Chemistry, 2006, 71, 5848-5854.	3.2	26
215	Lysine Nζ-Decarboxylation in the BlaR1 Protein fromStaphylococcus aureusat the Root of Its Function As an Antibiotic Sensor. Journal of the American Chemical Society, 2007, 129, 3834-3835.	13.7	26
216	The Tipper–Strominger Hypothesis and Triggering of Allostery in Penicillin-Binding Protein 2a of Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). Journal of the American Chemical Society, 2015, 137, 6500-6505.	13.7	26

#	Article	IF	CITATIONS
217	Amidase Activity of AmiC Controls Cell Separation and Stem Peptide Release and Is Enhanced by NlpD in Neisseria gonorrhoeae. Journal of Biological Chemistry, 2016, 291, 10916-10933.	3.4	26
218	A Renaissance of Interest in Aminoglycoside Antibiotics. Current Organic Chemistry, 2001, 5, 193-205.	1.6	25
219	Characterization of the \hat{I}^2 -Lactam Antibiotic Sensor Domain of the MecR1 Signal Sensor/Transducer Protein from Methicillin-Resistant Staphylococcus aureus. Biochemistry, 2007, 46, 7822-7831.	2.5	25
220	Lysine \hat{N}^{q} -Decarboxylation Switch and Activation of the \hat{I}^{2} -Lactam Sensor Domain of BlaR1 Protein of Methicillin-resistant Staphylococcus aureus*. Journal of Biological Chemistry, 2011, 286, 31466-31472.	3.4	25
221	Investigation of Signal Transduction Routes within the Sensor/Transducer Protein BlaR1 of <i>Staphylococcus aureus</i> . Biochemistry, 2015, 54, 1600-1610.	2.5	25
222	A type VI secretion system delivers a cell wall amidase to target bacterial competitors. Molecular Microbiology, 2020, 114, 308-321.	2.5	25
223	Conformational Transition in the Aminoacyl t-RNA Site of the Bacterial Ribosome both in the Presence and Absence of an Aminoglycoside Antibiotic. Chemical Biology and Drug Design, 2007, 69, 291-297.	3.2	24
224	N-Sulfonyloxy-Î ² -lactam Inhibitors for Î ² -Lactamases. Tetrahedron, 2000, 56, 5719-5728.	1.9	23
225	Metabolism of (4â€Phenoxyphenylsulfonyl)methylthiirane, a Selective Gelatinase Inhibitor. Chemical Biology and Drug Design, 2008, 71, 187-196.	3.2	23
226	DFT Studies of the Ring-Opening Mechanism of SB-3CT, a Potent Inhibitor of Matrix Metalloproteinase 2. Organic Letters, 2009, 11, 2559-2562.	4.6	23
227	Mechanism-Based Profiling of MMPs. Methods in Molecular Biology, 2010, 622, 471-487.	0.9	23
228	QM/MM Studies of the Matrix Metalloproteinase 2 (MMP2) Inhibition Mechanism of (<i>S</i>)-SB-3CT and its Oxirane Analogue. Journal of Chemical Theory and Computation, 2010, 6, 3580-3587.	5.3	23
229	Characterization of the Dimerization Interface of Membrane Type 4 (MT4)-Matrix Metalloproteinase. Journal of Biological Chemistry, 2011, 286, 33178-33189.	3.4	23
230	Orthologous and Paralogous AmpD Peptidoglycan Amidases from Gram-Negative Bacteria. Microbial Drug Resistance, 2016, 22, 470-476.	2.0	23
231	Transferase Versus Hydrolase: The Role of Conformational Flexibility in Reaction Specificity. Structure, 2017, 25, 295-304.	3.3	23
232	Hydrolysis of ATP by Aminoglycoside 3′-Phosphotransferases. Journal of Biological Chemistry, 2006, 281, 6964-6969.	3.4	22
233	Design and Synthesis of a Structurally Constrained Aminoglycoside. Journal of Organic Chemistry, 2007, 72, 5450-5453.	3.2	22
234	Shared Functional Attributes between the mecA Gene Product of Staphylococcus sciuri and Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus. Biochemistry, 2007, 46, 8050-8057.	2.5	22

#	Article	IF	Citations
235	Identification of Products of Inhibition of GES-2 \hat{l}^2 -Lactamase by Tazobactam by X-ray Crystallography and Spectrometry. Journal of Biological Chemistry, 2011, 286, 14396-14409.	3.4	22
236	The external PASTA domain of the essential serine/threonine protein kinase PknB regulates mycobacterial growth. Open Biology, 2015, 5, 150025.	3.6	22
237	Crystallographic and Computational Insight on the Mechanism of Zinc-Ion-Dependent Inactivation of Carboxypeptidase A by 2-Benzyl-3-iodopropanoate. Journal of the American Chemical Society, 1996, 118, 12479-12480.	13.7	21
238	Structural insight into the binding motifs for the calcium ion and the non-catalytic zinc in matrix metalloproteases. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 853-858.	2.2	21
239	Structure of Csd3 from <i>Helicobacter pylori</i> , a cell shape-determining metallopeptidase. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 675-686.	2.5	21
240	Inhibition of the Broad Spectrum Nonmetallocarbapenamase of Class A (NMC-A) β-Lactamase from Enterobacter cloacae by Monocyclic β-Lactams. Journal of Biological Chemistry, 1999, 274, 25260-25265.	3.4	20
241	Matrix Metalloproteinase 2 (MMP2) Inhibition: DFT and QM/MM Studies of the Deprotonation-Initialized Ring-Opening Reaction of the Sulfoxide Analogue of SB-3CT. Journal of Physical Chemistry B, 2010, 114, 1030-1037.	2.6	20
242	Structural basis for the recognition of muramyltripeptide by <i>Helicobacter pylori</i> Csd4, a <scp>D</scp> , <scp>L</scp> -carboxypeptidase controlling the helical cell shape. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2800-2812.	2.5	20
243	Water-Soluble MMP-9 Inhibitor Reduces Lesion Volume after Severe Traumatic Brain Injury. ACS Chemical Neuroscience, 2015, 6, 1658-1664.	3.5	20
244	Unconventional Antibacterials and Adjuvants. Accounts of Chemical Research, 2021, 54, 917-929.	15.6	20
245	6-(Hydroxyalkyl)penicillanates as Probes for Mechanisms of .BETALactamases Journal of Antibiotics, 2000, 53, 1022-1027.	2.0	19
246	A Convenient Synthesis of a Selective Gelatinase Inhibitor as an Antimetastatic Agent. Journal of Organic Chemistry, 2004, 69, 3572-3573.	3.2	19
247	Use of Silver Carbonate in the Wittig Reaction. Journal of Organic Chemistry, 2013, 78, 12224-12228.	3.2	19
248	Conjoint molecules of cephalosporins and aminoglycosides. Archiv Der Pharmazie, 2001, 334, 295.	4.1	18
249	Identification and Role of the Homodimerization Interface of the Glycosylphosphatidylinositol-anchored Membrane Type 6 Matrix Metalloproteinase (MMP25). Journal of Biological Chemistry, 2008, 283, 35023-35032.	3.4	18
250	Regioselective Control of the S _N Ar Amination of 5-Substituted-2,4-Dichloropyrimidines Using Tertiary Amine Nucleophiles. Journal of Organic Chemistry, 2015, 80, 7757-7763.	3.2	18
251	Potentiation of the activity of \hat{l}^2 -lactam antibiotics by farnesol and its derivatives. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 642-645.	2.2	18
252	Structure–Activity Relationship for the Oxadiazole Class of Antibacterials. ACS Medicinal Chemistry Letters, 2020, 11, 322-326.	2.8	18

#	Article	IF	CITATIONS
253	Quantification of the extent of attenuation of the rate of turnover chemistry of the TEM-1 \hat{l}^2 -lactamase by the $\hat{l}\pm -1$ R-hydroxyethyl group in substrates. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 319-322.	2.2	17
254	Mechanism-Based Inhibition of Zinc Proteases. Current Medicinal Chemistry, 2001, 8, 959-965.	2.4	17
255	Hostâ^'Guest Chemistry of the Peptidoglycan. Journal of Medicinal Chemistry, 2010, 53, 4813-4829.	6.4	17
256	Resistance to the Third-Generation Cephalosporin Ceftazidime by a Deacylation-Deficient Mutant of the TEM \hat{l}^2 -Lactamase by the Uncommon Covalent-Trapping Mechanism. Biochemistry, 2011, 50, 6387-6395.	2.5	17
257	Selective MMP-9 Inhibitor (<i>R</i>)-ND-336 Alone or in Combination with Linezolid Accelerates Wound Healing in Infected Diabetic Mice. ACS Pharmacology and Translational Science, 2021, 4, 107-117.	4.9	17
258	Structural Basis of the Heterodimer Formation between Cell Shape-Determining Proteins Csd1 and Csd2 from Helicobacter pylori. PLoS ONE, 2016, 11, e0164243.	2.5	17
259	Computational Investigation of Irreversible Inactivation of the Zinc-Dependent Protease Carboxypeptidase A. Journal of Physical Chemistry B, 2005, 109, 4761-4769.	2.6	16
260	Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of <i>Pseudomonas aeruginosa</i> . ACS Chemical Biology, 2016, 11, 1525-1531.	3.4	16
261	Early Abrogation of Gelatinase Activity Extends the Time Window for tPA Thrombolysis after Embolic Focal Cerebral Ischemia in Mice. ENeuro, 2018, 5, ENEURO.0391-17.2018.	1.9	16
262	An Atypical ABC Transporter Is Involved in Antifungal Resistance and Host Interactions in the Pathogenic Fungus Cryptococcus neoformans. MBio, 2022, 13, .	4.1	16
263	Regiospecific Syntheses of $6\hat{l}$ ±-(1R-Hydroxyoctyl)penicillanic Acid and $6\hat{l}$ ²-(1R-Hydroxyoctyl)penicillanic Acid as Mechanistic Probes of Class D \hat{l} ²-Lactamases. Organic Letters, 2009, 11, 2515-2518.	4.6	15
264	Hyperbaric oxygen therapy accelerates wound healing in diabetic mice by decreasing active matrix metalloproteinaseâ€9. Wound Repair and Regeneration, 2020, 28, 194-201.	3.0	15
265	The first mechanism-based inactivators for angiotensin-converting enzyme. Journal of Medicinal Chemistry, 1992, 35, 4175-4179.	6.4	14
266	Binding of the Gene Repressor Blal to the <i>bla</i> Operon in Methicillin-Resistant <i>Staphylococcus aureus</i> Biochemistry, 2010, 49, 7975-7977.	2.5	14
267	An Amino Acid Position at Crossroads of Evolution of Protein Function. Journal of Biological Chemistry, 2012, 287, 8232-8241.	3.4	14
268	AAC(3)-XI, a New Aminoglycoside 3- $\langle i \rangle N \langle i \rangle$ -Acetyltransferase from Corynebacterium striatum. Antimicrobial Agents and Chemotherapy, 2015, 59, 5647-5653.	3.2	14
269	The crystal structure of the major pneumococcal autolysin LytA in complex with a large peptidoglycan fragment reveals the pivotal role of glycans for lytic activity. Molecular Microbiology, 2016, 101, 954-967.	2.5	14
270	Peptidoglycan reshaping by a noncanonical peptidase for helical cell shape in Campylobacter jejuni. Nature Communications, 2020, 11, 458.	12.8	14

#	Article	IF	Citations
271	From genes to sequences to antibiotics: prospects for future developments from microbial genomics. Microbes and Infection, 2000, 2, 651-658.	1.9	13
272	Mutational and Structural Analyses of the Hinge Region of Membrane Type 1-Matrix Metalloproteinase and Enzyme Processing. Journal of Biological Chemistry, 2005, 280, 26160-26168.	3.4	13
273	Aminoglycoside 2″-Phosphotransferase Type Illa from Enterococcus. Journal of Biological Chemistry, 2008, 283, 7638-7647.	3.4	13
274	Synthesis, Kinetic Characterization and Metabolism of Diastereomeric 2â€(1â€(4â€Phenoxyphenylsulfonyl)ethyl)thiiranes as Potent Gelatinase and MT1â€MMP Inhibitors. Chemical Biology and Drug Design, 2009, 74, 535-546.	3.2	13
275	Revealing Cell-Surface Intramolecular Interactions in the BlaR1 Protein of Methicillin-Resistant <i>Staphylococcus aureus </i> by NMR Spectroscopy. Biochemistry, 2014, 53, 10-12.	2.5	13
276	Sulfonylation-Induced $\langle i \rangle N \langle i \rangle$ - to $\langle i \rangle O \langle i \rangle$ -Acetyl Migration in 2-Acetamidoethanol Derivatives. Journal of Organic Chemistry, 2010, 75, 3515-3517.	3.2	12
277	Synthesis and NMR Characterization of $(\langle i \rangle Z < i \rangle, \langle i \rangle E < i \rangle, i \rangle $	13.7	12
278	Mutations in <i>mmpL</i> and in the Cell Wall Stress Stimulon Contribute to Resistance to Oxadiazole Antibiotics in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 5841-5847.	3.2	12
279	Selective Inhibition of MMP-2 Does Not Alter Neurological Recovery after Spinal Cord Injury. ACS Chemical Neuroscience, 2016, 7, 1482-1487.	3.5	12
280	Deciphering the Nature of Enzymatic Modifications of Bacterial Cell Walls. ChemBioChem, 2017, 18, 1696-1702.	2.6	12
281	Hydrogen Bonding and Attenuation of the Rate of Enzymic Catalysis. Journal of the American Chemical Society, 1998, 120, 13003-13007.	13.7	11
282	Stereoselective Reduction of \hat{l}_{\pm} -Bromopenicillanates by Tributylphosphine. Organic Letters, 2000, 2, 2889-2892.	4.6	11
283	MT1-MMP shedding involves an ADAM and is independent of its localization in lipid rafts. Biochemical and Biophysical Research Communications, 2006, 350, 377-384.	2.1	11
284	Expression of active matrix metalloproteinase-9 as a likely contributor to the clinical failure of aclerastide in treatment of diabetic foot ulcers. European Journal of Pharmacology, 2018, 834, 77-83.	3.5	11
285	Activities of Oxadiazole Antibacterials against Staphylococcus aureus and Other Gram-Positive Bacteria. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	11
286	Catalytic Cycle of Glycoside Hydrolase BglX from <i>Pseudomonas aeruginosa</i> and Its Implications for Biofilm Formation. ACS Chemical Biology, 2020, 15, 189-196.	3.4	11
287	Targeting renal dipeptidase (dehydropeptidase I) for inactivation by mechanism-based inactivators. Journal of Medicinal Chemistry, 1991, 34, 1914-1916.	6.4	10
288	Templates for design of inhibitors for serine proteases: Application of the program dock to the discovery of novel inhibitors for thrombin. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2463-2466.	2.2	10

#	Article	IF	CITATIONS
289	The Xâ€Ray Structure of Carboxypeptidase A Inhibited by a Thiirane Mechanismâ€Based Inhibitor. Chemical Biology and Drug Design, 2010, 75, 29-34.	3.2	10
290	Characterization of a selective inhibitor for matrix metalloproteinase-8 (MMP-8). MedChemComm, 2014, 5, 1381-1383.	3.4	10
291	MMP-9 inhibitors impair learning in spontaneously hypertensive rats. PLoS ONE, 2018, 13, e0208357.	2.5	10
292	Cinnamonitrile Adjuvants Restore Susceptibility to \hat{l}^2 -Lactams against Methicillin-Resistant Staphylococcus aureus. ACS Medicinal Chemistry Letters, 2019, 10, 1148-1153.	2.8	10
293	A novel approach to deacylation of ceph-3-em esters. Tetrahedron Letters, 1986, 27, 3333-3336.	1.4	9
294	Cytoplasmic-Membrane Anchoring of a Class A \hat{l}^2 -Lactamase and Its Capacity in Manifesting Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2007, 51, 2937-2942.	3.2	9
295	Enzymology of Bacterial Resistance. , 2010, , 443-487.		9
296	Protonation states of activeâ€site lysines of penicillinâ€binding protein 6 from <i>Escherichia coli</i> and the mechanistic implications. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1348-1358.	2.6	9
297	The Natural Product Essramycin and Three of Its Isomers Are Devoid of Antibacterial Activity. Journal of Natural Products, 2016, 79, 1219-1222.	3.0	9
298	X-ray Structure of Catenated Lytic Transglycosylase SltB1. Biochemistry, 2017, 56, 6317-6320.	2.5	9
299	Conformational analyses of thiirane-based gelatinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3064-3067.	2.2	8
300	Elucidation of the Structure of the Membrane Anchor of Penicillin-Binding Protein 5 of Escherichia coli. Journal of the American Chemical Society, 2010, 132, 4110-4118.	13.7	8
301	Crystallization and preliminary X-ray diffraction analysis of the lytic transglycosylase MltE from <i>Escherichia coli</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 161-163.	0.7	8
302	Discovery of Mechanism-Based Inactivators for Human Pancreatic Carboxypeptidase A from a Focused Synthetic Library. ACS Medicinal Chemistry Letters, 2017, 8, 1122-1127.	2.8	8
303	Discovery of a Potent Picolinamide Antibacterial Active against <i>Clostridioides difficile</i> Infectious Diseases, 2020, 6, 2362-2368.	3.8	8
304	Insights into the three-dimensional structure of crotalase: Implications for biological activity and substrate specificity. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 3139-3144.	2.2	7
305	Evaluation of inhibition of the carbenicillin-hydrolyzing \hat{I}^2 -lactamase PSE-4 by the clinically used mechanism-based inhibitors. FEBS Letters, 2000, 470, 285-292.	2.8	7
306	Allosteric Inhibition of Bacterial Targets: An Opportunity for Discovery of Novel Antibacterial Classes. Topics in Medicinal Chemistry, 2017, , 119-147.	0.8	7

#	Article	IF	CITATIONS
307	Fluorescence Assessment of the AmpR-Signaling Network of $\langle i \rangle$ Pseudomonas aeruginosa $\langle i \rangle$ to Exposure to \hat{l}^2 -Lactam Antibiotics. ACS Chemical Biology, 2020, 15, 1184-1194.	3.4	7
308	Exploring the functional space of thiiranes as gelatinase inhibitors using click chemistry. Arkivoc, 2011, 2011, 221-236.	0.5	7
309	MMP-1 and ADAM10 as Targets for Therapeutic Intervention in Idiopathic Pulmonary Fibrosis. ACS Pharmacology and Translational Science, 0, , .	4.9	7
310	Inhibition of \hat{I}^2 -Lactamases by 6,6-Bis(hydroxylmethyl)penicillanate. Bioorganic Chemistry, 2001, 29, 140-145.	4.1	6
311	Exploitation of Conformational Dynamics in Imparting Selective Inhibition for Related Matrix Metalloproteinases. ACS Medicinal Chemistry Letters, 2017, 8, 654-659.	2.8	6
312	Production of Proteins of the SARS-CoV-2 Proteome for Drug Discovery. ACS Omega, 2021, 6, 19983-19994.	3.5	6
313	Horizontal-Acquisition of a Promiscuous Peptidoglycan-Recycling Enzyme Enables Aphids To Influence Symbiont Cell Wall Metabolism. MBio, 2021, 12, e0263621.	4.1	6
314	A mechanism-based inactivation study of neutral endopeptidase 24.11. Journal of Medicinal Chemistry, 1993, 36, 2408-2411.	6.4	5
315	The use of neamine as a molecular template: Identification of active site residues in the bacterial antibiotic resistance enzyme aminoglycoside 3′-phosphotransferase type IIa by mass spectroscopy. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3489-3494.	2.2	5
316	Synthetic Efforts in Preparations of Components of the Bacterial Cell Wall. ACS Symposium Series, 2008, , 54-78.	0.5	5
317	Facile Preparation of a Highly Functionalized Tetrahydropyran by Catalytic Hydrogenation of an Oxazoline. Journal of Organic Chemistry, 2008, 73, 7349-7352.	3.2	5
318	Exploration of mild copper-mediated coupling of organotrifluoroborates in the synthesis of thiirane-based inhibitors of matrix metalloproteinases. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2675-2678.	2.2	5
319	From Genome to Proteome to Elucidation of Reactions for All Eleven Known Lytic Transglycosylases from <i>Pseudomonas aeruginosa</i> . Angewandte Chemie, 2017, 129, 2779-2783.	2.0	5
320	Synthesis and shift-reagent-assisted full NMR assignment of bacterial (Z8,E2,ω)-undecaprenol. Chemical Communications, 2017, 53, 12774-12777.	4.1	5
321	Structure–activity relationship of the cinnamamide family of antibiotic potentiators for methicillin-resistant <i>Staphylococcus aureus</i> (MRSA). MedChemComm, 2018, 9, 2008-2016.	3.4	5
322	In Search of Selectivity in Inhibition of ADAM10. ACS Medicinal Chemistry Letters, 2018, 9, 708-713.	2.8	5
323	Bacterial Cell Wall: Morphology and Biochemistry. , 2021, , 167-204.		5
324	Evidence for a new enzyme-catalyzed reaction other than .betalactam hydrolysis in turnover of a penem by the TEM-1 .betalactamase. Journal of the American Chemical Society, 1993, 115, 4962-4965.	13.7	4

#	Article	IF	CITATIONS
325	Properties of analogues of an intermediate in the process of mechanism-based inactivation of carboxypeptidase A. Bioorganic and Medicinal Chemistry, 1996, 4, 1487-1492.	3.0	4
326	Prospects of therapies targeting resistant bacteriaâ€"New challenges 20 years post emergence of vancomycin-resistant enterococcus. Current Opinion in Microbiology, 2007, 10, 425-427.	5.1	4
327	Antibiotics as physiological stress inducers and bacterial response to the challenge. Current Opinion in Microbiology, 2012, 15, 553-554.	5.1	4
328	Metabolism of the Selective Matrix Metalloproteinase-9 Inhibitor (<i>R</i>)-ND-336. ACS Pharmacology and Translational Science, 2021, 4, 1204-1213.	4.9	4
329	Chapter 3. The Î ² -Lactam (Azetidin-2-one) as a Privileged Ring in Medicinal Chemistry. RSC Drug Discovery Series, 2015, , 64-97.	0.3	4
330	Mechanistic support for the stepwise process for inactivation of class A β-lactamases by clavulanate. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1043-1048.	2.2	3
331	Side Reaction of Significance in Preparation of Peptide- or Peptidomimetic-Based Hydroxamate Enzyme Inhibitors. Journal of Organic Chemistry, 2006, 71, 2885-2887.	3.2	3
332	Resistance to beta-Lactam Antibiotics Mediated by beta-Lactamases., 2007,, 103-132.		3
333	Bacterial Cell Wall: Morphology and Biochemistry. , 2015, , 221-264.		3
334	Muropeptides in Pseudomonas aeruginosa and their Role as Elicitors of Î²â€Łactamâ€Antibiotic Resistance. Angewandte Chemie, 2016, 128, 6996-7000.	2.0	3
335	Turnover Chemistry and Structural Characterization of the Cj0843c Lytic Transglycosylase of <i>Campylobacter jejuni</i> Biochemistry, 2021, 60, 1133-1144.	2.5	3
336	Inactivation of the catalytic subunit of bovine cAMP-dependent protein kinase by a peptide-based affinity inactivator. Biopolymers, 1990, 29, 131-138.	2.4	2
337	Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group. Chemical Papers, 2009, 63, 592-597.	2.2	2
338	A Structural Dissection of the Active Site of the Lytic Transglycosylase MltE from <i>Escherichia coli</i> . Biochemistry, 2018, 57, 6090-6098.	2.5	2
339	A positive positive to negative. Nature Chemistry, 2018, 10, 998-1000.	13.6	2
340	Susceptibility of Methicillin-Resistant Staphylococcus aureus to Five Quinazolinone Antibacterials. Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	2
341	Integrative structural biology of the penicillin-binding protein-1 from Staphylococcus aureus, an essential component of the divisome machinery. Computational and Structural Biotechnology Journal, 2021, 19, 5392-5405.	4.1	2
342	Proteomics Identification of Targets for Intervention in Pressure Ulcers. ACS Chemical Biology, 2022, 17, 1357-1363.	3.4	2

#	Article	IF	CITATIONS
343	Mechanisms Complex biological processes and their central chemical events. Current Opinion in Chemical Biology, 2003, 7, 525-527.	6.1	1
344	Enantiomers of a selective gelatinase inhibitor: (R)- and (S)-2-[(4-phenoxyphenyl)sulfonylmethyl]thiirane. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 1003-1006.	0.5	1
345	Chapter 10. Thiirane Class of Gelatinase Inhibitors as a Privileged Template that Crosses the Blood–Brain Barrier. RSC Drug Discovery Series, 2015, , 262-286.	0.3	1
346	Structure-based inhibitor design for reshaping bacterial morphology. Communications Biology, 2022, 5, 395.	4.4	1
347	A mechanism-based inactivation study of neutral endopeptidase 24.11. [Erratum to document cited in CA119(13):134114z]. Journal of Medicinal Chemistry, 1993, 36, 3746-3746.	6.4	0
348	Antibacterials as wonder drugs and how their effectiveness is being compromised. Pharmacochemistry Library, 2002, 32, 193-205.	0.1	0
349	Penicillin-Binding Protein 5 of Escherichia coli. , 2013, , 3474-3480.		0
350	Structure–Activity Relationship for the Picolinamide Antibacterials that Selectively Target Clostridioides difficile. ACS Medicinal Chemistry Letters, 2021, 12, 991-995.	2.8	0
351	Turnover chemistry and structural characterization of the Cj0843c lytic transglycosylase of Campylobacter jejuni. FASEB Journal, 2021, 35, .	0.5	0
352	Inhibition of Class A \hat{I}^2 -Lactamases. , 0, , 101-114.		0