Tadeusz J Sarna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6077331/publications.pdf

Version: 2024-02-01

	44069	37204
9,751	48	96
citations	h-index	g-index
136	136	9565
docs citations	times ranked	citing authors
	citations 136	9,751 48 citations h-index 136 136

#	Article	IF	CITATIONS
1	The physical and chemical properties of eumelanin. Pigment Cell & Melanoma Research, 2006, 19, 572-594.	3.6	828
2	Chemical and Structural Diversity in Eumelanins: Unexplored Bioâ€Optoelectronic Materials. Angewandte Chemie - International Edition, 2009, 48, 3914-3921.	13.8	517
3	Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Progress in Neurobiology, 2017, 155, 96-119.	5.7	490
4	Blue Light-induced Reactivity of Retinal Age Pigment. Journal of Biological Chemistry, 1995, 270, 18825-18830.	3.4	385
5	New trends in photobiology. Journal of Photochemistry and Photobiology B: Biology, 1992, 12, 215-258.	3.8	367
6	Melanins and melanogenesis: methods, standards, protocols. Pigment Cell and Melanoma Research, 2013, 26, 616-633.	3.3	365
7	Melanins and melanogenesis: from pigment cells toÂhuman health and technological applications. Pigment Cell and Melanoma Research, 2015, 28, 520-544.	3.3	347
8	Free radical scavenging properties of melanin. Free Radical Biology and Medicine, 1999, 26, 518-525.	2.9	282
9	Senescence, Stress, and Reactive Oxygen Species. Plants, 2015, 4, 393-411.	3. 5	260
10	Photodynamic therapy with fullerenes. Photochemical and Photobiological Sciences, 2007, 6, 1139-1149.	2.9	259
11	Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radical Biology and Medicine, 2007, 43, 711-719.	2.9	225
12	Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Experimental Eye Research, 2003, 76, 89-98.	2.6	218
13	Blue Light-Induced Singlet Oxygen Generation by Retinal Lipofuscin in Non-Polar Media. Free Radical Biology and Medicine, 1998, 24, 1107-1112.	2.9	212
14	Role of Ocular Melanin in Ophthalmic Physiology and Pathology ^{â€} . Photochemistry and Photobiology, 2008, 84, 639-644.	2.5	196
15	The Microenvironment Effect on the Generation of Reactive Oxygen Species by Pdâr'Bacteriopheophorbide. Journal of the American Chemical Society, 2005, 127, 6487-6497.	13.7	182
16	Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radical Biology and Medicine, 2001, 31, 256-265.	2.9	176
17	Neuromelanin can protect against ironâ€mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease. Journal of Neurochemistry, 2008, 106, 1866-1875.	3.9	174
18	Light-induced Damage to the Retina: Role of Rhodopsin Chromophore Revisited. Photochemistry and Photobiology, 2005, 81, 1305.	2.5	160

#	Article	IF	Citations
19	Interaction of melanin with oxygen. Archives of Biochemistry and Biophysics, 1980, 200, 140-148.	3.0	133
20	Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems. Free Radical Biology and Medicine, 2011, 50, 892-898.	2.9	125
21	The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1271, 343-348.	3.8	122
22	Photocatalytic Generation of Oxygen Radicals by the Water-Soluble Bacteriochlorophyll Derivative WST11, Noncovalently Bound to Serum Albumin. Journal of Physical Chemistry A, 2009, 113, 8027-8037.	2.5	119
23	Cooperation of antioxidants in protection against photosensitized oxidation. Free Radical Biology and Medicine, 2003, 35, 1319-1329.	2.9	116
24	Binding of Iron to Neuromelanin of Human Substantia Nigra and Synthetic Melanin: An Electron Paramagnetic Resonance Spectroscopy Study. Free Radical Biology and Medicine, 1997, 23, 110-119.	2.9	114
25	Paradoxical potentiation of methylene blue-mediated antimicrobial photodynamic inactivation by sodium azide: Role of ambient oxygen and azide radicals. Free Radical Biology and Medicine, 2012, 53, 2062-2071.	2.9	105
26	Potassium Iodide Potentiates Broad-Spectrum Antimicrobial Photodynamic Inactivation Using Photofrin. ACS Infectious Diseases, 2017, 3, 320-328.	3.8	105
27	Potassium lodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in <i>In Vitro</i> and <i>In Vivo</i> Studies. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	100
28	Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Frontiers in Oncology, 2022, 12, 842496.	2.8	99
29	Spectroscopic and morphological studies of human retinal lipofuscin granules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3179-3184.	7.1	95
30	Zeaxanthin in combination with ascorbic acid or \hat{l}_{\pm} -tocopherol protects ARPE-19 cells against photosensitized peroxidation of lipids. Free Radical Biology and Medicine, 2004, 36, 1094-1101.	2.9	91
31	Dynamics of H2O2 availability to ARPE-19 cultures in models of oxidative stress. Free Radical Biology and Medicine, 2010, 48, 1064-1070.	2.9	88
32	Antimicrobial photodynamic therapy with fulleropyrrolidine: photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies. Applied Microbiology and Biotechnology, 2015, 99, 4031-4043.	3.6	88
33	Photodegradation of Eumelanin and Pheomelanin and Its Pathophysiological Implications. Photochemistry and Photobiology, 2018, 94, 409-420.	2.5	86
34	Photoreactivity of aged human RPE melanosomes: a comparison with lipofuscin. Investigative Ophthalmology and Visual Science, 2002, 43, 2088-96.	3.3	85
35	Hydration-Controlled X-Band EPR Spectroscopy: A Tool for Unravelling the Complexities of the Solid-State Free Radical in Eumelanin. Journal of Physical Chemistry B, 2013, 117, 4965-4972.	2.6	84
36	Age-Related Changes in the Photoreactivity of Retinal Lipofuscin Granules: Role of Chloroform-Insoluble Components. Investigative Ophthalmology and Visual Science, 2004, 45, 1052-1060.	3.3	78

#	Article	IF	CITATIONS
37	Photoionization Thresholds of Melanins Obtained from Free Electron Laserâ€Photoelectron Emission Microscopy, Femtosecond Transient Absorption Spectroscopy and Electron Paramagnetic Resonance Measurements of Oxygen Photoconsumption. Photochemistry and Photobiology, 2006, 82, 733-737.	2.5	76
38	Effects of Photodegradation on the Physical and Antioxidant Properties of Melanosomes Isolated from Retinal Pigment Epithelium. Photochemistry and Photobiology, 2006, 82, 1024.	2.5	76
39	Comparison of the Aerobic Photoreactivity of A2E with its Precursor Retinal¶. Photochemistry and Photobiology, 2003, 77, 253.	2.5	67
40	Human RPE Melanosomes Protect from Photosensitized and Iron-Mediated Oxidation but Become Pro-oxidant in the Presence of Iron upon Photodegradation. Investigative Ophthalmology and Visual Science, 2008, 49, 2838-2847.	3.3	63
41	Oxidative stress in ARPE-19 cultures: Do melanosomes confer cytoprotection?. Free Radical Biology and Medicine, 2006, 40, 87-100.	2.9	62
42	New insight into singlet oxygen generation at surface modified nanocrystalline TiO2 – the effect of near-infrared irradiation. Dalton Transactions, 2013, 42, 9468.	3.3	60
43	A 3D model of tumour angiogenic microenvironment to monitor hypoxia effects on cell interactions and cancer stem cell selection. Cancer Letters, 2017, 396, 10-20.	7.2	59
44	The Role of Retinal Pigment Epithelium Melanin in Photoinduced Oxidation of Ascorbate*. Photochemistry and Photobiology, 1997, 65, 472-479.	2.5	58
45	The Phototoxicity of Aged Human Retinal Melanosomes ^{â€} . Photochemistry and Photobiology, 2008, 84, 650-657.	2.5	57
46	Pulse radiolysis and steady-state analyses of the reaction between hydroethidine and superoxide and other oxidants. Archives of Biochemistry and Biophysics, 2006, 456, 39-47.	3.0	55
47	The Physical Properties of Melanins. , 0, , 311-341.		54
48	Photobleaching of retinal pigment epithelium melanosomes reduces their ability to inhibit iron-induced peroxidation of lipids. Pigment Cell & Melanoma Research, 2007, 20, 52-60.	3.6	54
49	Photoaging of human retinal pigment epithelium is accompanied by oxidative modifications of its eumelanin. Pigment Cell and Melanoma Research, 2013, 26, 357-366.	3.3	50
50	Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion. Pigment Cell and Melanoma Research, 2016, 29, 669-678.	3.3	49
51	Thiocyanate potentiates antimicrobial photodynamic therapy: In situ generation of the sulfur trioxide radical anion by singlet oxygen. Free Radical Biology and Medicine, 2013, 65, 800-810.	2.9	46
52	Cell elasticity is an important indicator of the metastatic phenotype of melanoma cells. Experimental Dermatology, 2014, 23, 813-818.	2.9	45
53	Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts. Archives of Biochemistry and Biophysics, 2002, 403, 59-62.	3.0	43
54	Zincâ€induced Structural Effects Enhance Oxygen Consumption and Superoxide Generation in Synthetic Pheomelanins on UVA/Visible Light Irradiation (sup) †(sup). Photochemistry and Photobiology, 2010, 86, 757-764.	2,5	41

#	Article	IF	CITATIONS
55	Pulse radiolysis study of the interaction of retinoids with peroxyl radicals. Free Radical Biology and Medicine, 2005, 39, 1399-1405.	2.9	40
56	Primary Photophysical Properties of A2E in Solution. Journal of Physical Chemistry B, 2001, 105, 11507-11512.	2.6	39
57	Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation. PLoS ONE, 2015, 10, e0129301.	2.5	38
58	Roles of reactive oxygen species in <scp>UVA</scp> â€induced oxidation of 5,6â€dihydroxyindoleâ€2â€carboxylic acidâ€melanin as studied by differential spectrophotometric method. Pigment Cell and Melanoma Research, 2016, 29, 340-351.	3.3	38
59	Atomic Force Microscopy and Near-Field Scanning Optical Microscopy Measurements of Single Human Retinal Lipofuscin Granules. Journal of Physical Chemistry B, 2000, 104, 12098-12101.	2.6	34
60	Effect of untreated and photobleached bovine RPE melanosomes on the photoinduced peroxidation of lipids. Photochemical and Photobiological Sciences, 2009, 8, 830-837.	2.9	34
61	Structural Differences in Unbleached and Mildly-Bleached Synthetic Tyrosine-Derived Melanins Identified by Scanning Probe Microscopies. Pigment Cell & Melanoma Research, 2000, 13, 99-108.	3.6	33
62	Dynamic analyses reveal cytoprotection by RPE melanosomes against non-photic stress. Molecular Vision, 2011, 17, 2864-77.	1.1	33
63	Redox-Active Quinone Chelators: Properties, Mechanisms of Action, Cell Delivery, and Cell Toxicity. Antioxidants and Redox Signaling, 2018, 28, 1394-1403.	5.4	31
64	Photochemical studies of porphyrin–melanin interactions. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 1469-1474.	1.1	30
65	Different Molecular Constituents in Pheomelanin are Responsible for Emission, Transient Absorption and Oxygen Photoconsumption. Photochemistry and Photobiology, 2008, 84, 437-443.	2.5	28
66	Photobleaching of Melanosomes from Retinal Pigment Epithelium: I. Effects on Protein Oxidation. Photochemistry and Photobiology, 2007, 83, 920-924.	2.5	26
67	Melanosome–iron interactions within retinal pigment epitheliumâ€derived cells. Pigment Cell and Melanoma Research, 2012, 25, 804-814.	3.3	26
68	Neuromelanins in brain aging and Parkinson's disease: synthesis, structure, neuroinflammatory, and neurodegenerative role. IUBMB Life, 2023, 75, 55-65.	3.4	26
69	Photobleaching of Melanosomes from Retinal Pigment Epithelium: II. Effects on the Response of Living Cells to Photic Stress. Photochemistry and Photobiology, 2007, 83, 925-930.	2.5	25
70	Nanomechanical analysis of pigmented human melanoma cells. Pigment Cell and Melanoma Research, 2013, 26, 727-730.	3.3	25
71	Melanopsin: From a small molecule to brain functions. Neuroscience and Biobehavioral Reviews, 2020, 113, 190-203.	6.1	25
72	PHOTOLYSIS OF PHEOMELANIN PRECURSORS: AN ESR-SPIN TRAPPING STUDY. Photochemistry and Photobiology, 1986, 44, 689-696.	2.5	24

#	Article	IF	CITATIONS
73	On the Interaction of Anisyl-3,4-Semiquinone with Oxygen. Free Radical Research Communications, 1987, 4, 131-138.	1.8	23
74	Lipofuscin-mediated photic stress inhibits phagocytic activity of ARPE-19 cells; effect of donors' age and antioxidants. Free Radical Research, 2017, 51, 799-811.	3.3	21
75	Ultrafast Energy Transfer from Bound Tetra(4-N,N,N,N-trimethylanilinium)porphyrin to Synthetic Dopa and Cysteinyldopa Melanins¶. Photochemistry and Photobiology, 2003, 77, 1.	2.5	21
76	Comparison of the Aerobic Photoreactivity of A2E with its Precursor Retinal¶. Photochemistry and Photobiology, 2007, 77, 253-258.	2.5	20
77	Changes in production of reactive oxygen species in illuminated thylakoids isolated during development and senescence of barley. Journal of Plant Physiology, 2015, 184, 49-56.	3.5	20
78	The nanomechanical role of melanin granules in the retinal pigment epithelium. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 801-807.	3.3	20
79	Lipofuscin-mediated photodynamic stress induces adverse changes in nanomechanical properties of retinal pigment epithelium cells. Scientific Reports, 2018, 8, 17929.	3.3	20
80	Developing [60]Fullerene Nanomaterials for Better Photodynamic Treatment of Non-Melanoma Skin Cancers. ACS Biomaterials Science and Engineering, 2020, 6, 5930-5940.	5.2	20
81	FREE RADICALS FROM THE PHOTODECOMPOSITION OF BLEOMYCIN. Photochemistry and Photobiology, 1985, 41, 393-399.	2.5	19
82	Photosensitized Oxidative Stress to ARPE-19 Cells Decreases Protein Receptors that Mediate Photoreceptor Outer Segment Phagocytosis., 2013, 54, 2276.		18
83	Subâ€lethal Photodynamic Damage to ARPEâ€19 Cells Transiently Inhibits Their Phagocytic Activity ^{â€} . Photochemistry and Photobiology, 2010, 86, 772-780.	2.5	17
84	Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide. Cell Biochemistry and Biophysics, 2017, 75, 319-333.	1.8	17
85	The effect of aging and antioxidants on photoreactivity and phototoxicity of human melanosomes: An in vitro study. Pigment Cell and Melanoma Research, 2021, 34, 670-682.	3.3	17
86	Spectroscopic properties and reactivity of free radical forms of A2E. Free Radical Biology and Medicine, 2005, 38, 1037-1046.	2.9	16
87	Inhibition of phagocytic activity of ARPE-19 cells by free radical mediated oxidative stress. Free Radical Research, 2016, 50, 887-897.	3.3	16
88	Photobleaching of pheomelanin increases its phototoxic potential: Physicochemical studies of synthetic pheomelanin subjected to aerobic photolysis. Pigment Cell and Melanoma Research, 2019, 32, 359-372.	3.3	16
89	Interaction of Melanin with Metal Ions Modulates Their Cytotoxic Potential. Applied Magnetic Resonance, 2022, 53, 105-121.	1.2	16
90	Ascorbate Enhances Photogeneration of Hydrogen Peroxide Mediated by the Iris Melanin ⟨sup⟩â€⟨ sup⟩. Photochemistry and Photobiology, 2008, 84, 683-691.	2.5	15

#	Article	IF	Citations
91	Photic Injury to Cultured RPE Varies Among Individual Cells in Proportion to Their Endogenous Lipofuscin Content as Modulated by Their Melanosome Content., 2014, 55, 4982.		15
92	Zeaxanthin and $\hat{1}\pm$ -tocopherol reduce the inhibitory effects of photodynamic stress on phagocytosis by ARPE-19 cells. Free Radical Biology and Medicine, 2015, 89, 873-882.	2.9	15
93	Photoaging of retinal pigment epithelial melanosomes: The effect of photobleaching on morphology and reactivity of the pigment granules. Free Radical Biology and Medicine, 2016, 97, 320-329.	2.9	15
94	<i>In vitro</i> phototoxicity of rhodopsin photobleaching products in the retinal pigment epithelium (RPE). Free Radical Research, 2019, 53, 456-471.	3.3	15
95	Quercetin protects ARPE-19 cells against photic stress mediated by the products of rhodopsin photobleaching. Photochemical and Photobiological Sciences, 2020, 19, 1022-1034.	2.9	15
96	Structural Characterization of Plasmenylcholine Photooxidation Products¶. Photochemistry and Photobiology, 2003, 78, 323.	2.5	14
97	Antimicrobial photodynamic inactivation is potentiated by the addition of selenocyanate: Possible involvement of selenocyanogen?. Journal of Biophotonics, 2018, 11, e201800029.	2.3	14
98	Fine Particulate Matter-Induced Oxidative Stress Mediated by UVA-Visible Light Leads to Keratinocyte Damage. International Journal of Molecular Sciences, 2021, 22, 10645.	4.1	14
99	Oxidative Stress Increases HO-1 Expression in ARPE-19 Cells, But Melanosomes Suppress the Increase When Light Is the Stressor. , 2013, 54, 47.		13
100	EPR spin labeling measurements of thylakoid membrane fluidity during barley leaf senescence. Journal of Plant Physiology, 2014, 171, 1046-1053.	3.5	13
101	Amphiphilic tetracationic porphyrins are exceptionally active antimicrobial photosensitizers: In vitro and in vivo studies with the freeâ€base and Pdâ€chelate. Journal of Biophotonics, 2019, 12, e201800318.	2.3	13
102	Investigation of Photoexcited States in Porcine Eumelanin through Their Transient Radical Products. Journal of Physical Chemistry B, 2009, 113, 10480-10482.	2.6	12
103	Photoactivation and Detection of Photoexcited Molecules and Photochemical Products. Israel Journal of Chemistry, 2012, 52, 745-756.	2.3	12
104	The role of hydrogen peroxide and singlet oxygen in the photodegradation of melanin. Photochemical and Photobiological Sciences, 2020, 19, 654-667.	2.9	12
105	Carotenoid Radicalâ^'Melanin Interactions. Journal of Physical Chemistry B, 2000, 104, 7193-7196.	2.6	11
106	EPR Studies on the Properties of Model Photoreceptor Membranes Made of Natural and Synthetic Lipids. Cell Biochemistry and Biophysics, 2017, 75, 433-442.	1.8	11
107	The Ability of Functionalized Fullerenes and Surfaceâ€Modified TiO ₂ Nanoparticles to Photosensitize Peroxidation of Lipids in Selected Model Systems. Photochemistry and Photobiology, 2019, 95, 227-236.	2.5	11
108	Scavenging of Retinoid Cation Radicals by Urate, Trolox, and \hat{l}_{\pm} -, \hat{l}^2 -, \hat{l}^3 -, and \hat{l} -Tocopherols. International Journal of Molecular Sciences, 2019, 20, 2799.	4.1	11

#	Article	IF	Citations
109	Sodium nitrite potentiates antimicrobial photodynamic inactivation: possible involvement of peroxynitrate. Photochemical and Photobiological Sciences, 2019, 18, 505-515.	2.9	10
110	Comparison of thiocyanate and selenocyanate for potentiation of antimicrobial photodynamic therapy. Journal of Biophotonics, 2019, 12, e201800092.	2.3	9
111	The Effect of Antioxidants on Photoreactivity and Phototoxic Potential of RPE Melanolipofuscin Granules from Human Donors of Different Age. Antioxidants, 2020, 9, 1044.	5.1	9
112	Interaction of iron ions with melanin. Acta Biochimica Polonica, 2019, 66, 459-462.	0.5	9
113	Uniform field loop-gap resonator and rectangular TE UO2 for aqueous sample EPR at 94 GHz. Journal of Magnetic Resonance, 2017, 282, 129-135.	2.1	8
114	Removal of RPE lipofuscin results in rescue from retinal degeneration in a mouse model of advanced Stargardt disease: Role of reactive oxygen species. Free Radical Biology and Medicine, 2022, 182, 132-149.	2.9	8
115	Gallium Mesoporphyrin IX-Mediated Photodestruction: A Pharmacological Trojan Horse Strategy To Eliminate Multidrug-Resistant <i>Staphylococcus aureus</i> . Molecular Pharmaceutics, 2022, 19, 1434-1448.	4.6	8
116	Increased Oxidative Stress in Asthmaâ€"Relation to Inflammatory Blood and Lung Biomarkers and Airway Remodeling Indices. Biomedicines, 2022, 10, 1499.	3.2	8
117	The influence of iron on selected properties of synthetic pheomelanin. Cell Biochemistry and Biophysics, 2020, 78, 181-189.	1.8	7
118	Photoreactivity of Bis-retinoid A2E Complexed with a Model Protein in Selected Model Systems. Cell Biochemistry and Biophysics, 2020, 78, 415-427.	1.8	7
119	Farnesol potentiates photodynamic inactivation of Staphylococcus aureus with the use of red light-activated porphyrin TMPyP. Journal of Photochemistry and Photobiology B: Biology, 2020, 206, 111863.	3.8	7
120	9-cis Retinal Increased in Retina of RPE65 Knockout Mice with Decrease in Coat Pigmentation. Photochemistry and Photobiology, 2006, 82, 1461-1467.	2.5	6
121	Probing the Spatial Dependence of the Emission Spectrum of Single Human Retinal Lipofuscin Granules Using Near-field Scanning Optical Microscopy¶. Photochemistry and Photobiology, 2007, 74, 364-368.	2.5	6
122	Zeaxanthin and Lutein in the Management of Eye Diseases. Journal of Ophthalmology, 2016, 2016, 1-2.	1.3	5
123	Regulation of Melanopsin Signaling: Key Interactions of the Nonvisual Photopigment. Photochemistry and Photobiology, 2019, 95, 83-94.	2.5	5
124	Photoreactivity of Hair Melanin from Different Skin Phototypesâ€"Contribution of Melanin Subunits to the Pigments Photoreactive Properties. International Journal of Molecular Sciences, 2021, 22, 4465.	4.1	5
125	Phototoxicity of the Eye., 1994,, 125-141.		5
126	Ultrafast Energy Transfer from Bound Tetra(4-N,N,N,N-trimethylanilinium)porphyrin to Synthetic Dopa and Cysteinyldopa Melanins¶. Photochemistry and Photobiology, 2007, 77, 1-4.	2.5	4

#	Article	IF	CITATIONS
127	Oxidized Lipids Decrease Phagocytic Activity of ARPEâ€19 Cells In Vitro. European Journal of Lipid Science and Technology, 2019, 121, 1800476.	1.5	3
128	Ultrafast energy transfer from bound tetra (4-N,N,N,N-trimethylanilinium) porphyrin to synthetic dopa and cysteinyldopa melanins. Photochemistry and Photobiology, 2003, 77, 1-4.	2.5	3
129	Melanopsin Signaling Pathway in HEK293 Cell Line with Stable Expression of Human Melanopsin: Possible Participation of Phospholipase C beta 4 and Diacylglycerol. Photochemistry and Photobiology, 2021, 97, 1136-1144.	2.5	2
130	Structural Characterization of Plasmenylcholine Photooxidation Products¶. Photochemistry and Photobiology, 2007, 78, 323-330.	2.5	1
131	Melanin and Oxidative Reactions. , 2008, , 147-158.		1
132	Comparison of photodynamic efficiency of cholesterol, selected cholesterol esters, metabolites and oxidation products on lipid peroxidation processes. Acta Biochimica Polonica, 2021, 68, 527-533.	0.5	1
133	Potassium iodide potentiates antimicrobial photodynamic inactivation mediated by Rose Bengal: in vitro and in vivo studies. , $2018, \ldots$		0
134	The Inhibitory Effect of Blue Light on Phagocytic Activity by ARPEâ€19 Cells. Photochemistry and Photobiology, 2022, 98, 1110-1121.	2.5	0