List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6077197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compartmentalization at the interface of primary and alkaloid metabolism. Current Opinion in Plant Biology, 2022, 66, 102186.	7.1	9
2	Phloem-specific localization of benzylisoquinoline alkaloid metabolism in opium poppy. Journal of Plant Physiology, 2022, 271, 153641.	3.5	15
3	PR10/Bet v1â€like Proteins as Novel Contributors to Plant Biochemical Diversity. ChemBioChem, 2021, 22, 264-287.	2.6	30
4	Benzylisoquinoline alkaloid analysis using highâ€resolution Orbitrap LCâ€MS ⁿ . Journal of Mass Spectrometry, 2021, 56, e4683.	1.6	12
5	Structural studies of codeinone reductase reveal novel insights into aldo-keto reductase function in benzylisoquinoline alkaloid biosynthesis. Journal of Biological Chemistry, 2021, 297, 101211.	3.4	4
6	Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). Journal of Biological Chemistry, 2020, 295, 1598-1612.	3.4	29
7	A single residue determines substrate preference in benzylisoquinoline alkaloid N-methyltransferases. Phytochemistry, 2020, 170, 112193.	2.9	8
8	Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 815-828.	3.0	14
9	Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy. Nature Communications, 2020, 11, 1190.	12.8	40
10	Virus-Induced Gene Silencing to Investigate Alkaloid Biosynthesis in Opium Poppy. Methods in Molecular Biology, 2020, 2172, 75-92.	0.9	4
11	Structure–function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition. Journal of Biological Chemistry, 2019, 294, 14482-14498.	3.4	19
12	Molecular Origins of Functional Diversity in Benzylisoquinoline Alkaloid Methyltransferases. Frontiers in Plant Science, 2019, 10, 1058.	3.6	25
13	Purine Permease-Type Benzylisoquinoline Alkaloid Transporters in Opium Poppy. Plant Physiology, 2019, 181, 916-933.	4.8	46
14	Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nature Chemical Biology, 2019, 15, 384-390.	8.0	57
15	Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update. Phytochemistry Reviews, 2019, 18, 1457-1482.	6.5	64
16	Production of methylparaben in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 91-99.	3.0	6
17	Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Natural Product Reports, 2018, 35, 721-734.	10.3	33
18	Heterodimeric <i>O</i> â€methyltransferases involved in the biosynthesis of noscapine in opium poppy. Plant lournal, 2018, 95, 252-267.	5.7	25

#	Article	IF	CITATIONS
19	Benzylisoquinoline Alkaloids Biosynthesis in Sacred Lotus. Molecules, 2018, 23, 2899.	3.8	51
20	A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis. Nature Chemical Biology, 2018, 14, 738-743.	8.0	76
21	Codeinone reductase isoforms with differential stability, efficiency and product selectivity in opium poppy. Plant Journal, 2018, 95, 631-647.	5.7	18
22	An N-methyltransferase from Ephedra sinica catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production. Journal of Biological Chemistry, 2018, 293, 13364-13376.	3.4	31
23	Tying the knot: occurrence and possible significance of gene fusions in plant metabolism and beyond. Journal of Experimental Botany, 2017, 68, 4029-4043.	4.8	18
24	Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Scientific Reports, 2016, 6, 39256.	3.3	31
25	Characterization of aromatic aminotransferases from Ephedra sinica Stapf. Amino Acids, 2016, 48, 1209-1220.	2.7	16
26	Structural and Functional Studies of Pavine N-Methyltransferase from Thalictrum flavum Reveal Novel Insights into Substrate Recognition and Catalytic Mechanism. Journal of Biological Chemistry, 2016, 291, 23403-23415.	3.4	34
27	Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast. Methods in Enzymology, 2016, 575, 143-178.	1.0	13
28	Isolation and Characterization of Reticuline N-Methyltransferase Involved in Biosynthesis of the Aporphine Alkaloid Magnoflorine in Opium Poppy. Journal of Biological Chemistry, 2016, 291, 23416-23427.	3.4	42
29	Plant metabolons assembled on demand. Science, 2016, 354, 829-830.	12.6	10
30	Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biology, 2015, 15, 227.	3.6	70
31	Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biology, 2015, 15, 220.	3.6	49
32	Noscapine comes of age. Phytochemistry, 2015, 111, 7-13.	2.9	68
33	Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nature Chemical Biology, 2015, 11, 728-732.	8.0	123
34	Papaverine 7â€ <i>O</i> â€demethylase, a novel 2â€oxoglutarate/Fe ²⁺ â€dependent dioxygenase fro opium poppy. FEBS Letters, 2015, 589, 2701-2706.	2.8	19
35	Isolation and Characterization of <i>O</i> -methyltransferases Involved in the Biosynthesis of Glaucine in <i>Claucium flavum</i> Â. Plant Physiology, 2015, 169, 1127-1140.	4.8	47
36	Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nature Chemical Biology, 2015, 11, 104-106.	8.0	68

#	Article	IF	CITATIONS
37	Transcriptome Profiling of Khat (Catha edulis) and Ephedra sinica Reveals Gene Candidates Potentially Involved in Amphetamine-Type Alkaloid Biosynthesis. PLoS ONE, 2015, 10, e0119701.	2.5	25
38	Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Frontiers in Plant Science, 2014, 5, 524.	3.6	178
39	Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nature Communications, 2014, 5, 3283.	12.8	149
40	Shortâ€chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy. Plant Journal, 2014, 77, 173-184.	5.7	37
41	Cloning and characterization of canadine synthase involved in noscapine biosynthesis in opium poppy. FEBS Letters, 2014, 588, 198-204.	2.8	32
42	Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta, 2014, 240, 19-32.	3.2	201
43	CYP82Y1 Is N-Methylcanadine 1-Hydroxylase, a Key Noscapine Biosynthetic Enzyme in Opium Poppy. Journal of Biological Chemistry, 2014, 289, 2013-2026.	3.4	44
44	Morphine Biosynthesis in Opium Poppy Involves Two Cell Types: Sieve Elements and Laticifers. Plant Cell, 2013, 25, 4110-4122.	6.6	71
45	Benzylisoquinoline Alkaloid Metabolism: A Century of Discovery and a Brave New World. Plant and Cell Physiology, 2013, 54, 647-672.	3.1	330
46	Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis. Biochemical and Biophysical Research Communications, 2013, 431, 597-603.	2.1	56
47	Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 2013, 166, 122-134.	3.8	196
48	Role of the phloem in the biochemistry and ecophysiology of benzylisoquinoline alkaloid metabolism. Frontiers in Plant Science, 2013, 4, 182.	3.6	32
49	Dioxygenases Catalyze O-Demethylation and O,O-Demethylenation with Widespread Roles in Benzylisoquinoline Alkaloid Metabolism in Opium Poppy. Journal of Biological Chemistry, 2013, 288, 28997-29012.	3.4	51
50	Characterization of a Flavoprotein Oxidase from Opium Poppy Catalyzing the Final Steps in Sanguinarine and Papaverine Biosynthesis. Journal of Biological Chemistry, 2012, 287, 42972-42983.	3.4	48
51	Characterization of Three <i>O</i> -Methyltransferases Involved in Noscapine Biosynthesis in Opium Poppy Â. Plant Physiology, 2012, 159, 618-631.	4.8	85
52	Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant Journal, 2012, 72, 331-344.	5.7	80
53	Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp Phytochemistry, 2012, 81, 71-79.	2.9	20
54	Biosynthesis of amphetamine analogs in plants. Trends in Plant Science, 2012, 17, 404-412.	8.8	30

#	Article	IF	CITATIONS
55	Biochemical Genomics for Gene Discovery in Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy and Related Species. Methods in Enzymology, 2012, 515, 231-266.	1.0	38
56	Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Molecular Biology, 2012, 79, 295-313.	3.9	68
57	Subcellular localization of sanguinarine biosynthetic enzymes in cultured opium poppy cells. In Vitro Cellular and Developmental Biology - Plant, 2012, 48, 233-240.	2.1	25
58	Synthetic biosystems for the production of high-value plant metabolites. Trends in Biotechnology, 2012, 30, 127-131.	9.3	128
59	Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids. Phytochemistry, 2012, 77, 79-88.	2.9	50
60	Systematic knockdown of morphine pathway enzymes in opium poppy using virusâ€induced gene silencing. Plant Journal, 2012, 69, 1052-1063.	5.7	58
61	Expressed sequence tag analysis of khat (Catha edulis) provides a putative molecular biochemical basis for the biosynthesis of phenylpropylamino alkaloids. Genetics and Molecular Biology, 2011, 34, 640-646.	1.3	25
62	Tyrosine Aminotransferase Contributes to Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy Â. Plant Physiology, 2011, 157, 1067-1078.	4.8	74
63	Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biology, 2010, 10, 252.	3.6	99
64	Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nature Chemical Biology, 2010, 6, 273-275.	8.0	196
65	Biochemistry and occurrence of O-demethylation in plant metabolism. Frontiers in Physiology, 2010, 1, 14.	2.8	43
66	Removal of Substrate Inhibition and Increase in Maximal Velocity in the Short Chain Dehydrogenase/Reductase Salutaridine Reductase Involved in Morphine Biosynthesis. Journal of Biological Chemistry, 2009, 284, 26758-26767.	3.4	25
67	Plant Defense Responses in Opium Poppy Cell Cultures Revealed by Liquid Chromatography-Tandem Mass Spectrometry Proteomics. Molecular and Cellular Proteomics, 2009, 8, 86-98.	3.8	61
68	Targeted metabolite and transcript profiling for elucidating enzyme function: isolation of novel <i>Nâ€</i> methyltransferases from three benzylisoquinoline alkaloidâ€producing species. Plant Journal, 2009, 60, 729-743.	5.7	63
69	Evolution of morphine biosynthesis in opium poppy. Phytochemistry, 2009, 70, 1696-1707.	2.9	81
70	Quality Assessment of Ginseng by ¹ H NMR Metabolite Fingerprinting and Profiling Analysis. Journal of Agricultural and Food Chemistry, 2009, 57, 7513-7522.	5.2	101
71	Plant metabolomics: analytical platforms and integration with functional genomics. Phytochemistry Reviews, 2008, 7, 479-497.	6.5	58
72	Genetic transformation via somatic embryogenesis to establish herbicide-resistant opium poppy. Plant Cell Reports, 2008, 27, 719-727.	5.6	16

#	Article	IF	CITATIONS
73	Purification, crystallization and X-ray diffraction analysis of pavineN-methyltransferase fromThalictrum flavum. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1066-1069.	0.7	2
74	Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Current Opinion in Biotechnology, 2008, 19, 173-180.	6.6	67
75	Opium poppy and Madagascar periwinkle: model nonâ€model systems to investigate alkaloid biosynthesis in plants. Plant Journal, 2008, 54, 763-784.	5.7	232
76	Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biology, 2008, 8, 5.	3.6	96
77	Alkaloid Biosynthesis: Metabolism and Trafficking. Annual Review of Plant Biology, 2008, 59, 735-769.	18.7	558
78	Got milk? The secret life of laticifers. Trends in Plant Science, 2008, 13, 631-639.	8.8	269
79	Quantitative 1H Nuclear Magnetic Resonance Metabolite Profiling as a Functional Genomics Platform to Investigate Alkaloid Biosynthesis in Opium Poppy Â. Plant Physiology, 2008, 147, 1805-1821.	4.8	49
80	Molecular Cloning and Characterization of Tetrahydroprotoberberine cis-N-Methyltransferase, an Enzyme Involved in Alkaloid Biosynthesis in Opium Poppy*. Journal of Biological Chemistry, 2007, 282, 14741-14751.	3.4	103
81	High-yield expression and purification of isotopically labeled norcoclaurine synthase, a Bet v 1-homologous enzyme, from Thalictrum flavum for NMR studies. Protein Expression and Purification, 2007, 56, 197-204.	1.3	24
82	Mechanistic Studies on Norcoclaurine Synthase of Benzylisoquinoline Alkaloid Biosynthesis:  An Enzymatic Pictetâ^'Spengler Reaction. Biochemistry, 2007, 46, 10153-10161.	2.5	111
83	Opium poppy: blueprint for an alkaloid factory. Phytochemistry Reviews, 2007, 6, 97-124.	6.5	47
84	Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta, 2007, 225, 1085-1106.	3.2	98
85	Methods for Regeneration and Transformation in <1>Eschscholzia californica 1 : A Model Plant to Investigate Alkaloid Biosynthesis. , 2006, 318, 357-368.		3
86	Compartmentalization of Plant Secondary Metabolism. Recent Advances in Phytochemistry, 2006, , 53-83.	0.5	8
87	Chapter 1 Regulation of Alkaloid Biosynthesis in Plants. The Alkaloids Chemistry and Biology, 2006, 63, 1-44.	2.0	19
88	The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppyâ€. Plant Journal, 2006, 47, 547-563.	5.7	82
89	Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 2005, 66, 1374-1393.	2.9	175
90	Erratum to "Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms―[Phytochemistry 66 (2005) 1374–1393]. Phytochemistry, 2005, 66, 2500-2520.	2.9	52

#	Article	IF	CITATIONS
91	Synthesis and trafficking of alkaloid biosynthetic enzymes. Current Opinion in Plant Biology, 2005, 8, 657-666.	7.1	88
92	Elevated tyrosine decarboxylase and tyramine hydroxycinnamoyltransferase levels increase wound-induced tyramine-derived hydroxycinnamic acid amide accumulation in transgenic tobacco leaves. Planta, 2005, 221, 904-914.	3.2	55
93	Sanguinarine Biosynthesis Is Associated with the Endoplasmic Reticulum in Cultured Opium Poppy Cells after Elicitor Treatment. Plant Physiology, 2005, 138, 173-183.	4.8	80
94	Cell Type–Specific Localization of Transcripts Encoding Nine Consecutive Enzymes Involved in Protoberberine Alkaloid Biosynthesis. Plant Cell, 2005, 17, 915-926.	6.6	104
95	Opium poppy: a model system to investigate alkaloid biosynthesis in plants. Canadian Journal of Botany, 2005, 83, 1189-1206.	1.1	11
96	Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant Journal, 2004, 40, 302-313.	5.7	216
97	Can Arabidopsis make complex alkaloids?. Trends in Plant Science, 2004, 9, 116-122.	8.8	101
98	Modulation of berberine bridge enzyme levels in transgenic root cultures of California poppy alters the accumulation of benzophenanthridine alkaloids. Plant Molecular Biology, 2003, 51, 153-164.	3.9	59
99	Genetic transformation of the figwort, Scrophularia buergeriana Miq., an Oriental medicinal plant. Plant Cell Reports, 2003, 21, 1194-1198.	5.6	21
100	Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry, 2003, 64, 177-186.	2.9	118
101	A Tale of Three Cell Types: Alkaloid Biosynthesis Is Localized to Sieve Elements in Opium Poppy. Plant Cell, 2003, 15, 2626-2635.	6.6	170
102	Chapter seven Multiple levels of control in the regulation of alkaloid biosynthesis. Recent Advances in Phytochemistry, 2003, 37, 143-180.	0.5	2
103	Antisense RNA-Mediated Suppression of Benzophenanthridine Alkaloid Biosynthesis in Transgenic Cell Cultures of California Poppy. Plant Physiology, 2002, 128, 696-706.	4.8	79
104	Purification and Characterization of Norcoclaurine Synthase. Journal of Biological Chemistry, 2002, 277, 33878-33883.	3.4	104
105	Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Canadian Journal of Botany, 2002, 80, 577-589.	1.1	171
106	Cell type-specific protoberberine alkaloid accumulation inThalictrum flavum. Journal of Plant Physiology, 2002, 159, 1189-1196.	3.5	18
107	In vitro regeneration and genetic transformation of the berberine-producing plant,Thalictrum flavumssp.glaucum. Physiologia Plantarum, 2002, 116, 79-86.	5.2	14
108	ALKALOIDBIOSYNTHESIS INPLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. Annual Review of Plant Biology, 2001, 52, 29-66.	14.3	510

#	Article	IF	CITATIONS
109	Somatic embryogenesis from embryogenic cell suspension cultures of california poppy, Eschscholzia californica Cham. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 35-39.	2.1	7
110	Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy. Planta, 2001, 213, 898-906.	3.2	64
111	Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Planta, 2001, 213, 888-897.	3.2	60
112	Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000, 54, 121-138.	2.9	251
113	Molecular cloning and characterization of a type III glutathione S -transferase from cell suspension cultures of opium poppy treated with a fungal elicitor. Physiologia Plantarum, 2000, 108, 101-109.	5.2	18
114	Agrobacterium -mediated genetic transformation of California poppy, Eschscholzia californica Cham., via somatic embryogenesis. Plant Cell Reports, 2000, 19, 1006-1012.	5.6	35
115	High-efficiency somatic embryogenesis and plant regeneration in California poppy, Eschscholzia californica Cham Plant Cell Reports, 2000, 19, 421-426.	5.6	22
116	Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. Journal of Experimental Botany, 2000, 51, 1005-1016.	4.8	101
117	Agrobacterium-mediated transformation of opium poppy, Papaver somniferum, via shoot organogenesis. Journal of Plant Physiology, 2000, 157, 207-214.	3.5	27
118	Decreased Cell Wall Digestibility in Canola Transformed with Chimeric Tyrosine Decarboxylase Genes from Opium Poppy1. Plant Physiology, 1999, 120, 653-664.	4.8	44
119	Analysis of promoters from tyrosine/dihydroxyphenylalanine decarboxylase and berberine bridge enzyme genes involved in benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Molecular Biology, 1999, 40, 121-131.	3.9	37
120	Purification, characterization, and immunolocalization of hydroxycinnamoyl-CoA: tyramine N -(hydroxycinnamoyl)transferase from opium poppy. Planta, 1999, 209, 33-44.	3.2	33
121	Developmental regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy plants and tissue cultures. In Vitro Cellular and Developmental Biology - Plant, 1998, 34, 69-79.	2.1	28
122	Temporal Correlation of Tyramine Metabolism with Alkaloid and Amide Biosynthesis in Elicited Opium Poppy Cell Cultures fn1 fn1Dedicated to Professor G. H. Neil Towers on the occasion of his seventy-fifth birthday Phytochemistry, 1998, 49, 481-490.	2.9	24
123	Expression Patterns Conferred by Tyrosine/Dihydroxyphenylalanine Decarboxylase Promoters from Opium Poppy Are Conserved in Transgenic Tobacco1. Plant Physiology, 1998, 118, 69-81.	4.8	36
124	Molecular Characterization of Berberine Bridge Enzyme Genes from Opium Poppy. Plant Physiology, 1996, 112, 1669-1677.	4.8	121
125	Uncoupled Defense Gene Expression and Antimicrobial Alkaloid Accumulation in Elicited Opium Poppy Cell Cultures. Plant Physiology, 1996, 111, 687-697.	4.8	73
126	Expression in Escherichia coli and partial characterization of two tyrosine/dopa decarboxylases from opium poppy. Phytochemistry, 1995, 38, 1119-1126.	2.9	44

#	Article	IF	CITATIONS
127	Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy Plant Cell, 1995, 7, 1811-1821.	6.6	99
128	Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy. Plant Cell, 1995, 7, 1811.	6.6	34
129	Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy Journal of Biological Chemistry, 1994, 269, 26684-26690.	3.4	129
130	Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. Journal of Biological Chemistry, 1994, 269, 26684-90.	3.4	103
131	Gene family for an elicitor-induced sesquiterpene cyclase in tobacco Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11088-11092.	7.1	236
132	Plant cell bioreactor for the production of protoberberine alkaloids from immobilizedThalictrum rugosum cultures. Biotechnology and Bioengineering, 1991, 37, 397-403.	3.3	29
133	Secondary metabolite biosynthesis in cultured cells of Catharanthus roseus (L.) G. Don immobilized by adhesion to glass fibres. Applied Microbiology and Biotechnology, 1991, 35, 382-392.	3.6	47
134	Adhesion of various species of suspension-cultured plant cells to inert substrates: initial interactions. FEMS Microbiology Letters, 1990, 67, 313-318.	1.8	3
135	Plant cell adhesion to polymer surfaces as predicted by a thermodynamic model and modified by electrostatic interaction. Colloids and Surfaces, 1989, 42, 255-269.	0.9	5
136	Plant cell adhesion to polymer surfaces as predicted by a thermodynamic model and modified by electrostatic interaction. Colloids and Surfaces, 1989, 42, 255-269.	0.9	8
137	Adhesion ofCatharanthus roseus cells to surfaces: Effect of substrate hydrophobicity. Biotechnology and Bioengineering, 1988, 32, 935-938.	3.3	20
138	Thermodynamic aspects of plant cell adhesion to polymer surfaces. Applied Microbiology and Biotechnology, 1988, 29, 346-355.	3.6	25