Peter J Facchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6077197/publications.pdf

Version: 2024-02-01

138	9,789	56	93
papers	citations	h-index	g-index
145	145	145	6513 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Alkaloid Biosynthesis: Metabolism and Trafficking. Annual Review of Plant Biology, 2008, 59, 735-769.	18.7	558
2	ALKALOIDBIOSYNTHESIS INPLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. Annual Review of Plant Biology, 2001, 52, 29-66.	14.3	510
3	Benzylisoquinoline Alkaloid Metabolism: A Century of Discovery and a Brave New World. Plant and Cell Physiology, 2013, 54, 647-672.	3.1	330
4	Got milk? The secret life of laticifers. Trends in Plant Science, 2008, 13, 631-639.	8.8	269
5	Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000, 54, 121-138.	2.9	251
6	Gene family for an elicitor-induced sesquiterpene cyclase in tobacco Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11088-11092.	7.1	236
7	Opium poppy and Madagascar periwinkle: model nonâ€model systems to investigate alkaloid biosynthesis in plants. Plant Journal, 2008, 54, 763-784.	5.7	232
8	Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant Journal, 2004, 40, 302-313.	5.7	216
9	Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta, 2014, 240, 19-32.	3.2	201
10	Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nature Chemical Biology, 2010, 6, 273-275.	8.0	196
11	Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 2013, 166, 122-134.	3.8	196
12	Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Frontiers in Plant Science, 2014, 5, 524.	3.6	178
13	Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry, 2005, 66, 1374-1393.	2.9	175
14	Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Canadian Journal of Botany, 2002, 80, 577-589.	1.1	171
15	A Tale of Three Cell Types: Alkaloid Biosynthesis Is Localized to Sieve Elements in Opium Poppy. Plant Cell, 2003, 15, 2626-2635.	6.6	170
16	Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nature Communications, 2014, 5, 3283.	12.8	149
17	Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy Journal of Biological Chemistry, 1994, 269, 26684-26690.	3.4	129
18	Synthetic biosystems for the production of high-value plant metabolites. Trends in Biotechnology, 2012, 30, 127-131.	9.3	128

#	Article	IF	CITATIONS
19	Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nature Chemical Biology, 2015, 11, 728-732.	8.0	123
20	Molecular Characterization of Berberine Bridge Enzyme Genes from Opium Poppy. Plant Physiology, 1996, 112, 1669-1677.	4.8	121
21	Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry, 2003, 64, 177-186.	2.9	118
22	Mechanistic Studies on Norcoclaurine Synthase of Benzylisoquinoline Alkaloid Biosynthesis:  An Enzymatic Pictetâ~Spengler Reaction. Biochemistry, 2007, 46, 10153-10161.	2.5	111
23	Purification and Characterization of Norcoclaurine Synthase. Journal of Biological Chemistry, 2002, 277, 33878-33883.	3.4	104
24	Cell Type–Specific Localization of Transcripts Encoding Nine Consecutive Enzymes Involved in Protoberberine Alkaloid Biosynthesis. Plant Cell, 2005, 17, 915-926.	6.6	104
25	Molecular Cloning and Characterization of Tetrahydroprotoberberine cis-N-Methyltransferase, an Enzyme Involved in Alkaloid Biosynthesis in Opium Poppy*. Journal of Biological Chemistry, 2007, 282, 14741-14751.	3.4	103
26	Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. Journal of Biological Chemistry, 1994, 269, 26684-90.	3.4	103
27	Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. Journal of Experimental Botany, 2000, 51, 1005-1016.	4.8	101
28	Can Arabidopsis make complex alkaloids?. Trends in Plant Science, 2004, 9, 116-122.	8.8	101
29	Quality Assessment of Ginseng by ¹ H NMR Metabolite Fingerprinting and Profiling Analysis. Journal of Agricultural and Food Chemistry, 2009, 57, 7513-7522.	5.2	101
30	Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy Plant Cell, 1995, 7, 1811-1821.	6.6	99
31	Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biology, 2010, 10, 252.	3.6	99
32	Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta, 2007, 225, 1085-1106.	3.2	98
33	Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biology, 2008, 8, 5.	3.6	96
34	Synthesis and trafficking of alkaloid biosynthetic enzymes. Current Opinion in Plant Biology, 2005, 8, 657-666.	7.1	88
35	Characterization of Three <i>O</i> -Methyltransferases Involved in Noscapine Biosynthesis in Opium Poppy Â. Plant Physiology, 2012, 159, 618-631.	4.8	85
36	The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppyâ€. Plant Journal, 2006, 47, 547-563.	5.7	82

#	Article	IF	CITATIONS
37	Evolution of morphine biosynthesis in opium poppy. Phytochemistry, 2009, 70, 1696-1707.	2.9	81
38	Sanguinarine Biosynthesis Is Associated with the Endoplasmic Reticulum in Cultured Opium Poppy Cells after Elicitor Treatment. Plant Physiology, 2005, 138, 173-183.	4.8	80
39	Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant Journal, 2012, 72, 331-344.	5.7	80
40	Antisense RNA-Mediated Suppression of Benzophenanthridine Alkaloid Biosynthesis in Transgenic Cell Cultures of California Poppy. Plant Physiology, 2002, 128, 696-706.	4.8	79
41	A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis. Nature Chemical Biology, 2018, 14, 738-743.	8.0	76
42	Tyrosine Aminotransferase Contributes to Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy Â. Plant Physiology, 2011, 157, 1067-1078.	4.8	74
43	Uncoupled Defense Gene Expression and Antimicrobial Alkaloid Accumulation in Elicited Opium Poppy Cell Cultures. Plant Physiology, 1996, 111, 687-697.	4.8	73
44	Morphine Biosynthesis in Opium Poppy Involves Two Cell Types: Sieve Elements and Laticifers. Plant Cell, 2013, 25, 4110-4122.	6.6	71
45	Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biology, 2015, 15, 227.	3.6	70
46	Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Molecular Biology, 2012, 79, 295-313.	3.9	68
47	Noscapine comes of age. Phytochemistry, 2015, 111, 7-13.	2.9	68
48	Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nature Chemical Biology, 2015, 11, 104-106.	8.0	68
49	Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Current Opinion in Biotechnology, 2008, 19, 173-180.	6.6	67
50	Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline alkaloid biosynthesis, from opium poppy. Planta, 2001, 213, 898-906.	3.2	64
51	Benzylisoquinoline alkaloid biosynthesis in opium poppy: an update. Phytochemistry Reviews, 2019, 18, 1457-1482.	6.5	64
52	Targeted metabolite and transcript profiling for elucidating enzyme function: isolation of novel <i>Nâ€√/i>methyltransferases from three benzylisoquinoline alkaloidâ€producing species. Plant Journal, 2009, 60, 729-743.</i>	5.7	63
53	Plant Defense Responses in Opium Poppy Cell Cultures Revealed by Liquid Chromatography-Tandem Mass Spectrometry Proteomics. Molecular and Cellular Proteomics, 2009, 8, 86-98.	3.8	61
54	Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Planta, 2001, 213, 888-897.	3.2	60

#	Article	IF	Citations
55	Modulation of berberine bridge enzyme levels in transgenic root cultures of California poppy alters the accumulation of benzophenanthridine alkaloids. Plant Molecular Biology, 2003, 51, 153-164.	3.9	59
56	Plant metabolomics: analytical platforms and integration with functional genomics. Phytochemistry Reviews, 2008, 7, 479-497.	6.5	58
57	Systematic knockdown of morphine pathway enzymes in opium poppy using virusâ€induced gene silencing. Plant Journal, 2012, 69, 1052-1063.	5.7	58
58	Neopinone isomerase is involved in codeine and morphine biosynthesis in opium poppy. Nature Chemical Biology, 2019, 15, 384-390.	8.0	57
59	Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis. Biochemical and Biophysical Research Communications, 2013, 431, 597-603.	2.1	56
60	Elevated tyrosine decarboxylase and tyramine hydroxycinnamoyltransferase levels increase wound-induced tyramine-derived hydroxycinnamic acid amide accumulation in transgenic tobacco leaves. Planta, 2005, 221, 904-914.	3.2	55
61	Erratum to "Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms―[Phytochemistry 66 (2005) 1374–1393]. Phytochemistry, 2005, 66, 2500-2520.	2.9	52
62	Dioxygenases Catalyze O-Demethylation and O,O-Demethylenation with Widespread Roles in Benzylisoquinoline Alkaloid Metabolism in Opium Poppy. Journal of Biological Chemistry, 2013, 288, 28997-29012.	3.4	51
63	Benzylisoquinoline Alkaloids Biosynthesis in Sacred Lotus. Molecules, 2018, 23, 2899.	3.8	51
64	Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids. Phytochemistry, 2012, 77, 79-88.	2.9	50
65	Quantitative 1H Nuclear Magnetic Resonance Metabolite Profiling as a Functional Genomics Platform to Investigate Alkaloid Biosynthesis in Opium Poppy Â. Plant Physiology, 2008, 147, 1805-1821.	4.8	49
66	Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biology, 2015, 15, 220.	3.6	49
67	Characterization of a Flavoprotein Oxidase from Opium Poppy Catalyzing the Final Steps in Sanguinarine and Papaverine Biosynthesis. Journal of Biological Chemistry, 2012, 287, 42972-42983.	3.4	48
68	Secondary metabolite biosynthesis in cultured cells of Catharanthus roseus (L.) G. Don immobilized by adhesion to glass fibres. Applied Microbiology and Biotechnology, 1991, 35, 382-392.	3.6	47
69	Opium poppy: blueprint for an alkaloid factory. Phytochemistry Reviews, 2007, 6, 97-124.	6.5	47
70	Isolation and Characterization of $\langle i \rangle O \langle i \rangle$ -methyltransferases Involved in the Biosynthesis of Glaucine in $\langle i \rangle$ Glaucium flavum $\langle i \rangle$ Â. Plant Physiology, 2015, 169, 1127-1140.	4.8	47
71	Purine Permease-Type Benzylisoquinoline Alkaloid Transporters in Opium Poppy. Plant Physiology, 2019, 181, 916-933.	4.8	46
72	Expression in Escherichia coli and partial characterization of two tyrosine/dopa decarboxylases from opium poppy. Phytochemistry, 1995, 38, 1119-1126.	2.9	44

#	Article	IF	Citations
73	Decreased Cell Wall Digestibility in Canola Transformed with Chimeric Tyrosine Decarboxylase Genes from Opium Poppy1. Plant Physiology, 1999, 120, 653-664.	4.8	44
74	CYP82Y1 Is N-Methylcanadine 1-Hydroxylase, a Key Noscapine Biosynthetic Enzyme in Opium Poppy. Journal of Biological Chemistry, 2014, 289, 2013-2026.	3.4	44
75	Biochemistry and occurrence of O-demethylation in plant metabolism. Frontiers in Physiology, 2010, 1, 14.	2.8	43
76	Isolation and Characterization of Reticuline N-Methyltransferase Involved in Biosynthesis of the Aporphine Alkaloid Magnoflorine in Opium Poppy. Journal of Biological Chemistry, 2016, 291, 23416-23427.	3.4	42
77	Gene clustering and copy number variation in alkaloid metabolic pathways of opium poppy. Nature Communications, 2020, 11, 1190.	12.8	40
78	Biochemical Genomics for Gene Discovery in Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy and Related Species. Methods in Enzymology, 2012, 515, 231-266.	1.0	38
79	Analysis of promoters from tyrosine/dihydroxyphenylalanine decarboxylase and berberine bridge enzyme genes involved in benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Molecular Biology, 1999, 40, 121-131.	3.9	37
80	Shortâ€chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy. Plant Journal, 2014, 77, 173-184.	5.7	37
81	Expression Patterns Conferred by Tyrosine/Dihydroxyphenylalanine Decarboxylase Promoters from Opium Poppy Are Conserved in Transgenic Tobacco1. Plant Physiology, 1998, 118, 69-81.	4.8	36
82	Agrobacterium -mediated genetic transformation of California poppy, Eschscholzia californica Cham., via somatic embryogenesis. Plant Cell Reports, 2000, 19, 1006-1012.	5.6	35
83	Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy. Plant Cell, 1995, 7, 1811.	6.6	34
84	Structural and Functional Studies of Pavine N-Methyltransferase from Thalictrum flavum Reveal Novel Insights into Substrate Recognition and Catalytic Mechanism. Journal of Biological Chemistry, 2016, 291, 23403-23415.	3.4	34
85	Purification, characterization, and immunolocalization of hydroxycinnamoyl-CoA: tyramine N -(hydroxycinnamoyl)transferase from opium poppy. Planta, 1999, 209, 33-44.	3.2	33
86	Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Natural Product Reports, 2018, 35, 721-734.	10.3	33
87	Role of the phloem in the biochemistry and ecophysiology of benzylisoquinoline alkaloid metabolism. Frontiers in Plant Science, 2013, 4, 182.	3.6	32
88	Cloning and characterization of canadine synthase involved in noscapine biosynthesis in opium poppy. FEBS Letters, 2014, 588, 198-204.	2.8	32
89	Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Scientific Reports, 2016, 6, 39256.	3.3	31
90	An N-methyltransferase from Ephedra sinica catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production. Journal of Biological Chemistry, 2018, 293, 13364-13376.	3.4	31

#	Article	IF	CITATIONS
91	Biosynthesis of amphetamine analogs in plants. Trends in Plant Science, 2012, 17, 404-412.	8.8	30
92	PR10/Bet v1â€like Proteins as Novel Contributors to Plant Biochemical Diversity. ChemBioChem, 2021, 22, 264-287.	2.6	30
93	Plant cell bioreactor for the production of protoberberine alkaloids from immobilizedThalictrum rugosum cultures. Biotechnology and Bioengineering, 1991, 37, 397-403.	3.3	29
94	Isolation and characterization of two O-methyltransferases involved in benzylisoquinoline alkaloid biosynthesis in sacred lotus (Nelumbo nucifera). Journal of Biological Chemistry, 2020, 295, 1598-1612.	3.4	29
95	Developmental regulation of benzylisoquinoline alkaloid biosynthesis in opium poppy plants and tissue cultures. In Vitro Cellular and Developmental Biology - Plant, 1998, 34, 69-79.	2.1	28
96	Agrobacterium-mediated transformation of opium poppy, Papaver somniferum, via shoot organogenesis. Journal of Plant Physiology, 2000, 157, 207-214.	3.5	27
97	Thermodynamic aspects of plant cell adhesion to polymer surfaces. Applied Microbiology and Biotechnology, 1988, 29, 346-355.	3.6	25
98	Removal of Substrate Inhibition and Increase in Maximal Velocity in the Short Chain Dehydrogenase/Reductase Salutaridine Reductase Involved in Morphine Biosynthesis. Journal of Biological Chemistry, 2009, 284, 26758-26767.	3.4	25
99	Expressed sequence tag analysis of khat (Catha edulis) provides a putative molecular biochemical basis for the biosynthesis of phenylpropylamino alkaloids. Genetics and Molecular Biology, 2011, 34, 640-646.	1.3	25
100	Subcellular localization of sanguinarine biosynthetic enzymes in cultured opium poppy cells. In Vitro Cellular and Developmental Biology - Plant, 2012, 48, 233-240.	2.1	25
101	Heterodimeric <i>O</i> â€methyltransferases involved in the biosynthesis of noscapine in opium poppy. Plant Journal, 2018, 95, 252-267.	5.7	25
102	Molecular Origins of Functional Diversity in Benzylisoquinoline Alkaloid Methyltransferases. Frontiers in Plant Science, 2019, 10, 1058.	3.6	25
103	Transcriptome Profiling of Khat (Catha edulis) and Ephedra sinica Reveals Gene Candidates Potentially Involved in Amphetamine-Type Alkaloid Biosynthesis. PLoS ONE, 2015, 10, e0119701.	2.5	25
104	Temporal Correlation of Tyramine Metabolism with Alkaloid and Amide Biosynthesis in Elicited Opium Poppy Cell Cultures fn1 fn1Dedicated to Professor G. H. Neil Towers on the occasion of his seventy-fifth birthday Phytochemistry, 1998, 49, 481-490.	2.9	24
105	High-yield expression and purification of isotopically labeled norcoclaurine synthase, a Bet v 1-homologous enzyme, from Thalictrum flavum for NMR studies. Protein Expression and Purification, 2007, 56, 197-204.	1.3	24
106	High-efficiency somatic embryogenesis and plant regeneration in California poppy, Eschscholzia californica Cham Plant Cell Reports, 2000, 19, 421-426.	5.6	22
107	Genetic transformation of the figwort, Scrophularia buergeriana Miq., an Oriental medicinal plant. Plant Cell Reports, 2003, 21, 1194-1198.	5.6	21
108	Adhesion of Catharanthus roseus cells to surfaces: Effect of substrate hydrophobicity. Biotechnology and Bioengineering, 1988, 32, 935-938.	3.3	20

#	Article	IF	CITATIONS
109	Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp Phytochemistry, 2012, 81, 71-79.	2.9	20
110	Chapter 1 Regulation of Alkaloid Biosynthesis in Plants. The Alkaloids Chemistry and Biology, 2006, 63, 1-44.	2.0	19
111	Papaverine 7â€ <i>O</i> à€demethylase, a novel 2â€oxoglutarate/Fe ²⁺ â€dependent dioxygenase fro opium poppy. FEBS Letters, 2015, 589, 2701-2706.	m 2.8	19
112	Structure–function studies of tetrahydroprotoberberine N-methyltransferase reveal the molecular basis of stereoselective substrate recognition. Journal of Biological Chemistry, 2019, 294, 14482-14498.	3.4	19
113	Molecular cloning and characterization of a type III glutathione S -transferase from cell suspension cultures of opium poppy treated with a fungal elicitor. Physiologia Plantarum, 2000, 108, 101-109.	5.2	18
114	Cell type-specific protoberberine alkaloid accumulation inThalictrum flavum. Journal of Plant Physiology, 2002, 159, 1189-1196.	3.5	18
115	Tying the knot: occurrence and possible significance of gene fusions in plant metabolism and beyond. Journal of Experimental Botany, 2017, 68, 4029-4043.	4.8	18
116	Codeinone reductase isoforms with differential stability, efficiency and product selectivity in opium poppy. Plant Journal, 2018, 95, 631-647.	5.7	18
117	Genetic transformation via somatic embryogenesis to establish herbicide-resistant opium poppy. Plant Cell Reports, 2008, 27, 719-727.	5.6	16
118	Characterization of aromatic aminotransferases from Ephedra sinica Stapf. Amino Acids, 2016, 48, 1209-1220.	2.7	16
119	Phloem-specific localization of benzylisoquinoline alkaloid metabolism in opium poppy. Journal of Plant Physiology, 2022, 271, 153641.	3.5	15
120	In vitro regeneration and genetic transformation of the berberine-producing plant, Thalictrum flavumssp.glaucum. Physiologia Plantarum, 2002, 116, 79-86.	5.2	14
121	Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 815-828.	3.0	14
122	Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast. Methods in Enzymology, 2016, 575, 143-178.	1.0	13
123	Benzylisoquinoline alkaloid analysis using highâ€resolution Orbitrap LCâ€MS ⁿ . Journal of Mass Spectrometry, 2021, 56, e4683.	1.6	12
124	Opium poppy: a model system to investigate alkaloid biosynthesis in plants. Canadian Journal of Botany, 2005, 83, 1189-1206.	1.1	11
125	Plant metabolons assembled on demand. Science, 2016, 354, 829-830.	12.6	10
126	Compartmentalization at the interface of primary and alkaloid metabolism. Current Opinion in Plant Biology, 2022, 66, 102186.	7.1	9

#	ARTICLE	IF	CITATIONS
127	Plant cell adhesion to polymer surfaces as predicted by a thermodynamic model and modified by electrostatic interaction. Colloids and Surfaces, 1989, 42, 255-269.	0.9	8
128	Compartmentalization of Plant Secondary Metabolism. Recent Advances in Phytochemistry, 2006, , 53-83.	0.5	8
129	A single residue determines substrate preference in benzylisoquinoline alkaloid N-methyltransferases. Phytochemistry, 2020, 170, 112193.	2.9	8
130	Somatic embryogenesis from embryogenic cell suspension cultures of california poppy, Eschscholzia californica Cham. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 35-39.	2.1	7
131	Production of methylparaben in $\langle i \rangle$ Escherichia coli $\langle i \rangle$. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 91-99.	3.0	6
132	Plant cell adhesion to polymer surfaces as predicted by a thermodynamic model and modified by electrostatic interaction. Colloids and Surfaces, 1989, 42, 255-269.	0.9	5
133	Structural studies of codeinone reductase reveal novel insights into aldo-keto reductase function in benzylisoquinoline alkaloid biosynthesis. Journal of Biological Chemistry, 2021, 297, 101211.	3.4	4
134	Virus-Induced Gene Silencing to Investigate Alkaloid Biosynthesis in Opium Poppy. Methods in Molecular Biology, 2020, 2172, 75-92.	0.9	4
135	Adhesion of various species of suspension-cultured plant cells to inert substrates: initial interactions. FEMS Microbiology Letters, 1990, 67, 313-318.	1.8	3
136	Methods for Regeneration and Transformation in <1>Eschscholzia californica 1 : A Model Plant to Investigate Alkaloid Biosynthesis. , 2006, 318, 357-368.		3
137	Chapter seven Multiple levels of control in the regulation of alkaloid biosynthesis. Recent Advances in Phytochemistry, 2003, 37, 143-180.	0.5	2
138	Purification, crystallization and X-ray diffraction analysis of pavineN-methyltransferase fromThalictrum flavum. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1066-1069.	0.7	2