
Thomas Wolfers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6077094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping Normative Trajectories of Cognitive Function and Its Relation to Psychopathology Symptoms and Genetic Risk in Youth. Biological Psychiatry Global Open Science, 2023, 3, 255-263.	2.2	8
2	Age-related brain deviations and aggression. Psychological Medicine, 2023, 53, 4012-4021.	4.5	10
3	A randomised controlled trial (MindChamp) of a mindfulnessâ€based intervention for children with ADHD and their parents. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2022, 63, 165-177.	5.2	24
4	Charting brain growth and aging at high spatial precision. ELife, 2022, 11, .	6.0	61
5	Boosting Schizophrenia Genetics by Utilizing Genetic Overlap With Brain Morphology. Biological Psychiatry, 2022, 92, 291-298.	1.3	20
6	Deep neural networks learn general and clinically relevant representations of the ageing brain. NeuroImage, 2022, 256, 119210.	4.2	46
7	Cerebellar Atypicalities in Autism?. Biological Psychiatry, 2022, 92, 674-682.	1.3	20
8	The normative modeling framework for computational psychiatry. Nature Protocols, 2022, 17, 1711-1734.	12.0	61
9	Atypical Brain Asymmetry in Autism—A Candidate for Clinically Meaningful Stratification. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 802-812.	1.5	36
10	Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. Human Brain Mapping, 2021, 42, 1714-1726.	3.6	68
11	Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder. Human Brain Mapping, 2021, 42, 2546-2555.	3.6	42
12	Fast qualitY conTrol meThod foR derIved diffUsion Metrics (YTTRIUM) in big data analysis: U.K. Biobank 18,608 example. Human Brain Mapping, 2021, 42, 3141-3155.	3.6	18
13	Phenotyping the Preterm Brain: Characterizing Individual Deviations From Normative Volumetric Development in Two Large Infant Cohorts. Cerebral Cortex, 2021, 31, 3665-3677.	2.9	19
14	Genetic Overlap Between Schizophrenia and Brain Morphology. Biological Psychiatry, 2021, 89, S85-S86.	1.3	0
15	Individual differences <i>v.</i> the average patient: mapping the heterogeneity in ADHD using normative models. Psychological Medicine, 2020, 50, 314-323.	4.5	113
16	Brain Connectome Mapping of Complex Human Traits and Their Polygenic Architecture Using Machine Learning. Biological Psychiatry, 2020, 87, 717-726.	1.3	23
17	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11, 4796.	12.8	61
18	Fractionating autism based on neuroanatomical normative modeling. Translational Psychiatry, 2020, 10, 384.	4.8	40

#	Article	IF	CITATIONS
19	Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups. American Journal of Psychiatry, 2020, 177, 834-843.	7.2	120
20	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	12.6	450
21	Modelling brain development to detect white matter injury in term and preterm born neonates. Brain, 2020, 143, 467-479.	7.6	44
22	Heterogeneity in Brain Microstructural Development Following Preterm Birth. Cerebral Cortex, 2020, 30, 4800-4810.	2.9	54
23	Hierarchical Bayesian Regression for Multi-site Normative Modeling of Neuroimaging Data. Lecture Notes in Computer Science, 2020, , 699-709.	1.3	28
24	From pattern classification to stratification: towards conceptualizing the heterogeneity of Autism Spectrum Disorder. Neuroscience and Biobehavioral Reviews, 2019, 104, 240-254.	6.1	88
25	Identification of neurobehavioural symptom groups based on shared brain mechanisms. Nature Human Behaviour, 2019, 3, 1306-1318.	12.0	37
26	Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Translational Psychiatry, 2019, 9, 12.	4.8	35
27	Conceptualizing mental disorders as deviations from normative functioning. Molecular Psychiatry, 2019, 24, 1415-1424.	7.9	222
28	86. Understanding the Heterogeneous Phenotype of Psychiatric Disorders Using Normative Models. Biological Psychiatry, 2019, 85, S36.	1.3	0
29	Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. American Journal of Psychiatry, 2019, 176, 531-542.	7.2	261
30	Phenomapping: Methods and Measures for Deconstructing Diagnosis in Psychiatry. , 2019, , 119-134.		28
31	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
32	Dissecting the Heterogeneous Cortical AnatomyÂof Autism Spectrum Disorder Using Normative Models. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 567-578.	1.5	97
33	Inter-individual differences in human brain structure and morphology link to variation in demographics and behavior. ELife, 2019, 8, .	6.0	86
34	Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models. JAMA Psychiatry, 2018, 75, 1146.	11.0	290
35	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250
36	Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry,the, 2017, 4, 310-319.	7.4	565

THOMAS WOLFERS

#	Article	IF	CITATIONS
37	Brain imaging genetics in ADHD and beyond – Mapping pathways from gene to disorder at different levels of complexity. Neuroscience and Biobehavioral Reviews, 2017, 80, 115-155.	6.1	83
38	Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 2017, 11, 1497-1514.	2.1	144
39	Refinement by integration: aggregated effects of multimodal imaging markers on adult ADHD. Journal of Psychiatry and Neuroscience, 2017, 42, 386-394.	2.4	39
40	Beyond Lumping and Splitting: A Review of Computational Approaches for Stratifying Psychiatric Disorders. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 433-447.	1.5	148
41	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
42	Quantifying patterns of brain activity: Distinguishing unaffected siblings from participants with ADHD and healthy individuals. NeuroImage: Clinical, 2016, 12, 227-233.	2.7	16
43	From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neuroscience and Biobehavioral Reviews, 2015, 57, 328-349.	6.1	241
44	Lower white matter microstructure in the superior longitudinal fasciculus is associated with increased response time variability in adults with attention-deficit/hyperactivity disorder. Journal of Psychiatry and Neuroscience, 2015, 40, 344-351.	2.4	42