Nick S Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6075176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain, 2003, 126, 2476-2496.	7.6	848
2	How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?. European Journal of Neuroscience, 2005, 22, 495-504.	2.6	681
3	Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. International Journal of Stroke, 2017, 12, 444-450.	5.9	624
4	Neural correlates of outcome after stroke: a crossâ€sectional fMRI study. Brain, 2003, 126, 1430-1448.	7.6	593
5	Mechanisms Underlying Recovery of Motor Function After Stroke. Archives of Neurology, 2004, 61, 1844-8.	4.5	527
6	Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain, 2004, 127, 220-230.	7.6	457
7	Age-related changes in the neural correlates of motor performance. Brain, 2003, 126, 873-888.	7.6	405
8	A Positron Emission Tomographic Study in Spontaneous Migraine. Archives of Neurology, 2005, 62, 1270.	4.5	395
9	Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain, 2006, 129, 809-819.	7.6	369
10	Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimulation, 2009, 2, 58-80.	1.6	299
11	Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2017, 12, 480-493.	5.9	266
12	Stages of Motor Output Reorganization after Hemispheric Stroke Suggested by Longitudinal Studies of Cortical Physiology. Cerebral Cortex, 2008, 18, 1909-1922.	2.9	257
13	Cortical Reorganization After Stroke. Neuroscientist, 2014, 20, 56-70.	3.5	249
14	Posterior Hypothalamic and Brainstem Activation in Hemicrania Continua. Headache, 2004, 44, 747-761.	3.9	244
15	Disability, atrophy and cortical reorganization following spinal cord injury. Brain, 2011, 134, 1610-1622.	7.6	238
16	Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabilitation and Neural Repair, 2017, 31, 793-799.	2.9	225
17	Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain, 2006, 129, 1844-1858.	7.6	218
18	Anatomy of Stroke Injury Predicts Gains From Therapy. Stroke, 2011, 42, 421-426.	2.0	215

#	Article	IF	CITATIONS
19	Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 498-506.	1.9	215
20	The Role of Contralesional Dorsal Premotor Cortex after Stroke as Studied with Concurrent TMS-fMRI. Journal of Neuroscience, 2010, 30, 11926-11937.	3.6	190
21	Compensatory mechanisms in the aging motor system. Ageing Research Reviews, 2006, 5, 239-254.	10.9	188
22	Age-dependent changes in the neural correlates of force modulation: An fMRI study. Neurobiology of Aging, 2008, 29, 1434-1446.	3.1	182
23	Beta oscillations reflect changes in motor cortex inhibition in healthy ageing. NeuroImage, 2014, 91, 360-365.	4.2	177
24	Dorsal Premotor Cortex Exerts State-Dependent Causal Influences on Activity in Contralateral Primary Motor and Dorsal Premotor Cortex. Cerebral Cortex, 2008, 18, 1281-1291.	2.9	173
25	Restoring brain function after stroke — bridging the gap between animals and humans. Nature Reviews Neurology, 2017, 13, 244-255.	10.1	158
26	Functional reorganization of the cerebral motor system after stroke. Current Opinion in Neurology, 2004, 17, 725-730.	3.6	148
27	Assessing the Integrity of Corticospinal Pathways From Primary and Secondary Cortical Motor Areas After Stroke. Stroke, 2012, 43, 2248-2251.	2.0	148
28	The effect of age on task-related modulation of interhemispheric balance. Experimental Brain Research, 2008, 186, 59-66.	1.5	147
29	Neural correlates of age-related changes in cortical neurophysiology. NeuroImage, 2008, 40, 1772-1781.	4.2	138
30	Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. International Journal of Stroke, 2016, 11, 454-458.	5.9	137
31	The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. European Journal of Neuroscience, 2007, 25, 1865-1873.	2.6	136
32	The Future of Restorative Neurosciences in Stroke: Driving the Translational Research Pipeline From Basic Science to Rehabilitation of People After Stroke. Neurorehabilitation and Neural Repair, 2009, 23, 97-107.	2.9	125
33	Computational neurorehabilitation: modeling plasticity and learning to predict recovery. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 42.	4.6	125
34	Biomarkers of Stroke Recovery: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2017, 31, 864-876.	2.9	124
35	Theta Burst Stimulation in the Rehabilitation of the Upper Limb. Neurorehabilitation and Neural Repair, 2012, 26, 976-987.	2.9	120
36	Do movement-related beta oscillations change after stroke?. Journal of Neurophysiology, 2014, 112, 2053-2058.	1.8	119

#	Article	IF	CITATIONS
37	The influence of time after stroke on brain activations during a motor task. Annals of Neurology, 2004, 55, 829-834.	5.3	118
38	Dose-controlled tDCS reduces electric field intensity variability at a cortical target site. Brain Stimulation, 2020, 13, 125-136.	1.6	101
39	Differential brain activations during intentionally simulated and subjectively experienced paralysis. Cognitive Neuropsychiatry, 2003, 8, 295-312.	1.3	98
40	Mechanisms underlying recovery of motor function after stroke. Postgraduate Medical Journal, 2005, 81, 510-514.	1.8	92
41	Intracerebral implantation of human neural stem cells and motor recovery after stroke: multicentre prospective single-arm study (PISCES-2). Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 396-401.	1.9	91
42	The effects of the dopamine agonist rotigotine on hemispatial neglect following stroke. Brain, 2012, 135, 2478-2491.	7.6	87
43	Post-stroke fatigue: a deficit in corticomotor excitability?. Brain, 2015, 138, 136-148.	7.6	84
44	Decoding post-stroke motor function from structural brain imaging. NeuroImage: Clinical, 2016, 12, 372-380.	2.7	84
45	The functional neuroimaging correlates of psychogenic versus organic dystonia. Brain, 2013, 136, 770-781.	7.6	83
46	Neural plasticity and recovery of function. Progress in Brain Research, 2005, 150, 527-535.	1.4	82
47	Re-thinking the role of motor cortex: Context-sensitive motor outputs?. NeuroImage, 2014, 91, 366-374.	4.2	81
48	Assessment of cortical reorganisation for hand function after stroke. Journal of Physiology, 2011, 589, 5625-5632.	2.9	76
49	How Useful is Imaging in Predicting Outcomes in Stroke Rehabilitation?. International Journal of Stroke, 2013, 8, 33-37.	5.9	69
50	Cortical Mechanisms of Mirror Therapy After Stroke. Neurorehabilitation and Neural Repair, 2015, 29, 444-452.	2.9	66
51	The Neural Substrates of Motor Recovery After Focal Damage to the Central Nervous System. Archives of Physical Medicine and Rehabilitation, 2006, 87, 30-35.	0.9	64
52	Assessing a standardised approach to measuring corticospinal integrity after stroke with DTI. NeuroImage: Clinical, 2013, 2, 521-533.	2.7	64
53	A stroke recovery trial development framework: Consensus-based core recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke, 2019, 14, 792-802.	5.9	64
54	Changes in the location of cortico-muscular coherence following stroke. NeuroImage: Clinical, 2013, 2, 50-55.	2.7	62

#	Article	IF	CITATIONS
55	Brain regions important for recovery after severe post-stroke upper limb paresis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 737-743.	1.9	62
56	Left Dorsal Premotor Cortex and Supramarginal Gyrus Complement Each Other during Rapid Action Reprogramming. Journal of Neuroscience, 2012, 32, 16162-16171.	3.6	61
57	Longitudinal Changes in Cerebral Response to Proprioceptive Input in Individual Patients after Stroke: An fMRI Study. Neurorehabilitation and Neural Repair, 2006, 20, 398-405.	2.9	60
58	A dynamic causal model for evoked and induced responses. NeuroImage, 2012, 59, 340-348.	4.2	56
59	Age-related changes in causal interactions between cortical motor regions during hand grip. NeuroImage, 2012, 59, 3398-3405.	4.2	54
60	Consensus-Based Core Set of Outcome Measures for Clinical Motor Rehabilitation After Stroke—A Delphi Study. Frontiers in Neurology, 2020, 11, 875.	2.4	54
61	The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.	3.6	54
62	The functional anatomy of cerebral reorganisation after focal brain injury. Journal of Physiology (Paris), 2006, 99, 425-436.	2.1	53
63	Low-Frequency Transcranial Magnetic Stimulation over Left Dorsal Premotor Cortex Improves the Dynamic Control of Visuospatially Cued Actions. Journal of Neuroscience, 2010, 30, 9216-9223.	3.6	53
64	Nonlinear Coupling in the Human Motor System. Journal of Neuroscience, 2010, 30, 8393-8399.	3.6	50
65	Plasticity and the functional reorganization of the human brain. International Journal of Psychophysiology, 2005, 58, 158-161.	1.0	49
66	Movement-related beta oscillations show high intra-individual reliability. NeuroImage, 2017, 147, 175-185.	4.2	49
67	Cortical beta oscillations are associated with motor performance following visuomotor learning. NeuroImage, 2019, 195, 340-353.	4.2	48
68	Damage to the right insula disrupts the perception of affective touch. ELife, 2020, 9, .	6.0	46
69	The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke. Neural Plasticity, 2016, 2016, 1-13.	2.2	41
70	Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex. Neurolmage, 2016, 133, 224-232.	4.2	40
71	Moving Rehabilitation Research Forward: Developing Consensus Statements for Rehabilitation and Recovery Research. Neurorehabilitation and Neural Repair, 2017, 31, 694-698.	2.9	40
72	Does neuroimaging help to deliver better recovery of movement after stroke?. Current Opinion in Neurology, 2015, 28, 323-329.	3.6	39

#	Article	IF	CITATIONS
73	Disrupted functional network integrity and flexibility after stroke: Relation to motor impairments. NeuroImage: Clinical, 2018, 19, 883-891.	2.7	38
74	The key features and role of peer support within group self-management interventions for stroke? A systematic review. Disability and Rehabilitation, 2020, 42, 307-316.	1.8	32
75	Dissecting Transient Burst Events. Trends in Cognitive Sciences, 2020, 24, 784-788.	7.8	32
76	Standardizing the intensity of upper limb treatment in rehabilitation medicine. Clinical Rehabilitation, 2010, 24, 471-478.	2.2	31
77	The contribution of lesion location to upper limb deficit after stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1283-1286.	1.9	31
78	Are current flow models for transcranial electrical stimulation fit for purpose?. Brain Stimulation, 2017, 10, 865-866.	1.6	29
79	Interrogating cortical function with transcranial magnetic stimulation: insights from neurodegenerative disease and stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 47-57.	1.9	29
80	Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke. Brain Communications, 2020, 2, fcaa161.	3.3	28
81	The Nottingham Fatigue after Stroke (NotFAST) study: factors associated with severity of fatigue in stroke patients without depression. Clinical Rehabilitation, 2017, 31, 1406-1415.	2.2	26
82	An investigation of cortical neuroplasticity following stroke in adults: is there evidence for a critical window for rehabilitation?. BMC Neurology, 2015, 15, 109.	1.8	25
83	A Stroke Recovery Trial Development Framework: Consensus-Based Core Recommendations from the Second Stroke Recovery and Rehabilitation Roundtable. Neurorehabilitation and Neural Repair, 2019, 33, 959-969.	2.9	24
84	Relationship between intensity and recovery in post-stroke rehabilitation: a retrospective analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 226-228.	1.9	23
85	One size does not fit all – Stroke survivor's views on group self-management interventions. Disability and Rehabilitation, 2018, 40, 569-576.	1.8	22
86	Welcoming back my arm: affective touch increases body ownership following right-hemisphere stroke. Brain Communications, 2020, 2, fcaa034.	3.3	22
87	Timing and Dose of Upper Limb Motor Intervention After Stroke: A Systematic Review. Stroke, 2021, 52, 3706-3717.	2.0	22
88	A model of poststroke fatigue based on sensorimotor deficits. Current Opinion in Neurology, 2015, 28, 582-586.	3.6	21
89	The Nottingham Fatigue After Stroke (NotFAST) study: results from follow-up six months after stroke. Topics in Stroke Rehabilitation, 2017, 24, 592-596.	1.9	21
90	A systematic review protocol of timing, efficacy and cost effectiveness of upper limb therapy for motor recovery post-stroke. Systematic Reviews, 2019, 8, 187.	5.3	21

#	Article	IF	CITATIONS
91	Neural effective connectivity explains subjective fatigue in stroke. Brain, 2022, 145, 285-294.	7.6	21
92	Can fully automated detection of corticospinal tract damage be used in stroke patients?. Neurology, 2013, 80, 2242-2245.	1.1	18
93	Motivating Stroke Rehabilitation Through Music. , 2016, , .		18
94	Scaling-up Health-Arts Programmes: the largest study in the world bringing arts-based mental health interventions into a national health service. BJPsych Bulletin, 2021, 45, 32-39.	1.1	18
95	Getting lost in translation. Current Opinion in Neurology, 2008, 21, 625-627.	3.6	17
96	Blowing up Neural Repair for Stroke Recovery. Stroke, 2020, 51, 3169-3173.	2.0	17
97	Limb Heaviness. Neurorehabilitation and Neural Repair, 2016, 30, 360-362.	2.9	15
98	Functional Strength Training and Movement Performance Therapy for Upper Limb Recovery Early Poststroke—Efficacy, Neural Correlates, Predictive Markers, and Cost-Effectiveness: FAST-INdiCATE Trial. Frontiers in Neurology, 2017, 8, 733.	2.4	15
99	Age-related changes in the topological architecture of the brain during hand grip. Neurobiology of Aging, 2012, 33, 833.e27-833.e37.	3.1	14
100	How broad is the phenotype of Hallervorden-Spatz disease?. Acta Neurologica Scandinavica, 2001, 103, 201-203.	2.1	13
101	Validation of a Quantitative Single-Subject Based Evaluation for Rehabilitation-Induced Improvement Assessment. Annals of Biomedical Engineering, 2015, 43, 2686-2698.	2.5	13
102	Functional strength training versus movement performance therapy for upper limb motor recovery early after stroke: a RCT. Efficacy and Mechanism Evaluation, 2018, 5, 1-112.	0.7	12
103	Idiopathic familial temporal lobe epilepsy with febrile convulsions. Seizure: the Journal of the British Epilepsy Association, 2002, 11, 16-19.	2.0	11
104	Non-invasive brain stimulation for stroke recovery: ready for the big time?. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 343-344.	1.9	11
105	Time for the next stage of stroke recovery trials. Lancet Neurology, The, 2020, 19, 636-637.	10.2	11
106	Neuro-Rehabilitation OnLine (N-ROL): description and evaluation of a group-based telerehabilitation programme for acquired brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, jnnp-2021-326809.	1.9	11
107	Using oscillations to understand recovery after stroke. Brain, 2015, 138, 2811-2813.	7.6	10
108	EEG Fractal Analysis Reflects Brain Impairment after Stroke. Entropy, 2021, 23, 592.	2.2	10

#	Article	IF	CITATIONS
109	Towards a New Mapping of Brain Cortex Function. Cerebrovascular Diseases, 2004, 17, 35-38.	1.7	9
110	Pushing the limits of recovery in chronic stroke survivors: a descriptive qualitative study of users perceptions of the Queen Square Upper Limb Neurorehabilitation Programme. BMJ Open, 2020, 10, e036481.	1.9	9
111	Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis. Journal of the American Heart Association, 2022, 11, e025109.	3.7	8
112	Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide. Brain Communications, 2021, 3, fcab254.	3.3	7
113	Telerehabilitation for Stroke is Here to Stay. But at What Cost?. Neurorehabilitation and Neural Repair, 2022, 36, 331-334.	2.9	7
114	Brain Plasticity Mechanisms Underlying Motor Control Reorganization: Pilot Longitudinal Study on Post-Stroke Subjects. Brain Sciences, 2021, 11, 329.	2.3	6
115	FAST INdiCATE Trial Protocol. Clinical Efficacy of Functional Strength Training for Upper Limb Motor Recovery Early after Stroke: Neural Correlates and Prognostic Indicators. International Journal of Stroke, 2014, 9, 240-245.	5.9	5
116	Prior physical exertion modulates allocentric distance perception: a demonstration of task-irrelevant cross-modal transfer. Experimental Brain Research, 2016, 234, 2363-2367.	1.5	4
117	Validity of a sensor-based table-top platform to measure upper limb function. , 2017, 2017, 652-657.		3
118	Differences in outcomes following an intensive upper-limb rehabilitation program for patients with common central nervous system-acting drug prescriptions. International Journal of Stroke, 2022, 17, 269-281.	5.9	3
119	Neurobiology of Stroke Recovery. , 2021, , 1-13.		3
120	Real-time auditory feedback may reduce abnormal movements in patients with chronic stroke. Disability and Rehabilitation, 2023, 45, 613-619.	1.8	3
121	Stroke: mechanisms, stratification and implementation. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 237-238.	1.9	2
122	Getting the right prescription for rehabilitation after stroke. Neurology, 2016, 86, 2120-2121.	1.1	2
123	fMRI in Cerebrovascular Disorders. Neuromethods, 2009, , 597-613.	0.3	2
124	Functional neuroimaging. , 2006, , 56-68.		1
125	Human brain mapping of the motor system after stroke. , 0, , 113-124.		1
126	A road map for transforming stroke recovery. Brain, 2018, 141, 3081-3082.	7.6	1

#	Article	IF	CITATIONS
127	Research protocol: investigating the feasibility of a group self-management intervention for stroke (the GUSTO study). Pilot and Feasibility Studies, 2018, 4, 31.	1.2	1
128	Patient-specific prediction of long-term outcomes will change stroke rehabilitation for the better. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 572-572.	1.9	1
129	Biomarkers of plasticity for stroke recovery. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 287-298.	1.8	1
130	Restorative and Rehabilitation Neurology. , 0, , 645-673.		0
131	Functional neuroimaging. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 110, 121-130.	1.8	0
132	Functional neuroimaging. , 0, , 84-94.		0
133	fMRI in Cerebrovascular Disorders. Neuromethods, 2016, , 639-655.	0.3	0
134	20â€Neural plasticity for functional rehabilitation after stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A10.2-A10.	1.9	0
135	Cerebral reprogramming underlying functional recovery following stroke. , 2006, , 273-284.		0