
Stefan Oswald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/607448/publications.pdf Version: 2024-02-01

STEEAN OSWALD

#	Article	IF	CITATIONS
1	Protein Abundance of Clinically Relevant Multidrug Transporters along the Entire Length of the Human Intestine. Molecular Pharmaceutics, 2014, 11, 3547-3555.	4.6	211
2	Hepatic Uptake of the Magnetic Resonance Imaging Contrast Agent Gd-EOB-DTPA: Role of Human Organic Anion Transporters. Drug Metabolism and Disposition, 2010, 38, 1024-1028.	3.3	210
3	Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clinical Pharmacology and Therapeutics, 2006, 80, 607-620.	4.7	189
4	Visualization of Hepatic Uptake Transporter Function in Healthy Subjects by Using Gadoxetic Acid–enhanced MR Imaging. Radiology, 2012, 264, 741-750.	7.3	123
5	Protein Abundance of Clinically Relevant Drugâ€Metabolizing Enzymes in the Human Liver and Intestine: A Comparative Analysis in Paired Tissue Specimens. Clinical Pharmacology and Therapeutics, 2018, 104, 515-524.	4.7	106
6	Intestinal expression of P-glycoprotein (ABCB1), multidrug resistance associated protein 2 (ABCC2), and uridine diphosphate–glucuronosyltransferase 1A1 predicts the disposition and modulates the effects of the cholesterol absorption inhibitor ezetimibe in humans. Clinical Pharmacology and Therapeutics, 2006, 79, 206-217.	4.7	94
7	Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics. Journal of Pharmaceutical and Biomedical Analysis, 2014, 100, 393-401.	2.8	93
8	Protein Abundance of Clinically Relevant Drug Transporters in the Human Liver and Intestine: A Comparative Analysis in Paired Tissue Specimens. Clinical Pharmacology and Therapeutics, 2019, 105, 1204-1212.	4.7	92
9	Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1. Pharmacogenetics and Genomics, 2008, 18, 559-568.	1.5	87
10	Expression, regulation and function of intestinal drug transporters: an update. Biological Chemistry, 2017, 398, 175-192.	2.5	85
11	A LC–MS/MS method to quantify the novel cholesterol lowering drug ezetimibe in human serum, urine and feces in healthy subjects genotyped for SLCO1B1. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 830, 143-150.	2.3	68
12	Human Platelets Express Organic Anion-Transporting Peptide 2B1, an Uptake Transporter for Atorvastatin. Drug Metabolism and Disposition, 2009, 37, 1129-1137.	3.3	59
13	Oral Absorption of Clarithromycin Is Nearly Abolished by Chronic Comedication of Rifampicin in Foals. Drug Metabolism and Disposition, 2011, 39, 1643-1649.	3.3	52
14	Mass Spectrometry-Based Targeted Proteomics as a Tool to Elucidate the Expression and Function of Intestinal Drug Transporters. AAPS Journal, 2013, 15, 1128-1140.	4.4	52
15	Expression of clinically relevant drugâ€metabolizing enzymes along the human intestine and their correlation to drug transporters and nuclear receptors: An intraâ€subject analysis. Basic and Clinical Pharmacology and Toxicology, 2019, 124, 245-255.	2.5	52
16	The Organic Anion–Transporting Peptide 2B1 Is Localized in the Basolateral Membrane of the Human Jejunum and Caco-2 Monolayers. Journal of Pharmaceutical Sciences, 2017, 106, 2657-2663.	3.3	51
17	Quantitative chiral and achiral determination of ketamine and its metabolites by LC–MS/MS in human serum, urine and fecal samples. Journal of Pharmaceutical and Biomedical Analysis, 2017, 139, 87-97.	2.8	46
18	Characterization of the Intestinal and Hepatic Uptake/Efflux Transport of the Magnetic Resonance Imaging Contrast Agent Gadolinium-Ethoxylbenzyl-Diethylenetriamine-Pentaacetic Acid. Investigative Radiology, 2014, 49, 78-86.	6.2	43

STEFAN OSWALD

#	Article	IF	CITATIONS
19	Disposition and sterol-lowering effect of ezetimibe are influenced by single-dose coadministration of rifampin, an inhibitor of multidrug transport proteins. Clinical Pharmacology and Therapeutics, 2006, 80, 477-485.	4.7	41
20	Dysregulation of Mucosal Membrane Transporters and Drug-Metabolizing Enzymes in Ulcerative Colitis. Journal of Pharmaceutical Sciences, 2019, 108, 1035-1046.	3.3	41
21	Organic Anion Transporting Polypeptide (OATP) transporter expression, localization and function in the human intestine. , 2019, 195, 39-53.		39
22	LC–MS/MS method for the simultaneous determination of clarithromycin, rifampicin and their main metabolites in horse plasma, epithelial lining fluid and broncho-alveolar cells. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 194-201.	2.8	38
23	Impact of Efavirenz on Intestinal Metabolism and Transport: Insights From an Interaction Study With Ezetimibe in Healthy Volunteers. Clinical Pharmacology and Therapeutics, 2012, 91, 506-513.	4.7	38
24	Induction of Human Intestinal and Hepatic Organic Anion Transporting Polypeptides: Where Is the Evidence for Its Relevance in Drug-Drug Interactions?. Drug Metabolism and Disposition, 2020, 48, 205-216.	3.3	36
25	Quantitative characterization of UDP-glucuronosyltransferase 2B17 in human liver and intestine and its role in testosterone first-pass metabolism. Biochemical Pharmacology, 2018, 156, 32-42.	4.4	35
26	Clarithromycin Is Absorbed by an Intestinal Uptake Mechanism That Is Sensitive to Major Inhibition by Rifampicin: Results of a Short-Term Drug Interaction Study in Foals. Drug Metabolism and Disposition, 2012, 40, 522-528.	3.3	34
27	Protein Abundance of Clinically Relevant Drug Transporters in The Human Kidneys. International Journal of Molecular Sciences, 2019, 20, 5303.	4.1	34
28	Targeting OCT3 attenuates doxorubicin-induced cardiac injury. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
29	Gas Plasma-Conditioned Ringer's Lactate Enhances the Cytotoxic Activity of Cisplatin and Gemcitabine in Pancreatic Cancer In Vitro and In Ovo. Cancers, 2020, 12, 123.	3.7	32
30	Disposition and Sterol-Lowering Effect of Ezetimibe in Multidrug Resistance-Associated Protein 2-Deficient Rats. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1293-1299.	2.5	31
31	Clinically Relevant Multidrug Transporters Are Regulated by microRNAs along the Human Intestine. Molecular Pharmaceutics, 2017, 14, 2245-2253.	4.6	31
32	Comparative Hepatic and Intestinal Efflux Transport of Statins. Drug Metabolism and Disposition, 2021, 49, 750-759.	3.3	31
33	Ketamine metabolites with antidepressant effects: Fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 410-419.	2.8	30
34	Expression of Drug Transporters and Drug Metabolizing Enzymes in the Bladder Urothelium in Man and Affinity of the Bladder Spasmolytic Trospium Chloride to Transporters Likely Involved in Its Pharmacokinetics. Molecular Pharmaceutics, 2015, 12, 171-178.	4.6	29
35	In Vivo Probes of Drug Transport: Commonly Used Probe Drugs to Assess Function of Intestinal P-glycoprotein (ABCB1) in Humans. Handbook of Experimental Pharmacology, 2011, , 403-447.	1.8	28
36	Intestinal drug transporters in pathological states: an overview. Pharmacological Reports, 2020, 72, 1173-1194.	3.3	28

STEFAN OSWALD

#	Article	IF	CITATIONS
37	Regulation of Drug Transport Proteins—From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2022, 112, 461-484.	4.7	26
38	The Ussing Chamber Assay to Study Drug Metabolism and Transport in the Human Intestine. Current Protocols in Pharmacology, 2017, 77, 7.17.17.19.	4.0	25
39	Transcriptional and Post-Transcriptional Regulation of Duodenal P-Glycoprotein and MRP2 in Healthy Human Subjects after Chronic Treatment with Rifampin and Carbamazepine. Molecular Pharmaceutics, 2019, 16, 3823-3830.	4.6	24
40	Pharmacokinetic and Pharmacodynamic Interactions Between the Immunosuppressant Sirolimus and the Lipid-Lowering Drug Ezetimibe in Healthy Volunteers. Clinical Pharmacology and Therapeutics, 2010, 87, 663-667.	4.7	22
41	Affinity of Ketamine to Clinically Relevant Transporters. Molecular Pharmaceutics, 2018, 15, 326-331.	4.6	22
42	OATP1A2 and OATP2B1 Are Interacting with Dopamine-Receptor Agonists and Antagonists. Molecular Pharmaceutics, 2020, 17, 1987-1995.	4.6	22
43	Expression of Organic Anion Transporting Polypeptide 1A2 in Red Blood Cells and Its Potential Impact on Antimalarial Therapy. Drug Metabolism and Disposition, 2016, 44, 1562-1568.	3.3	19
44	Pharmacokinetics and Pulmonary Distribution of Clarithromycin and Rifampicin after Concomitant and Consecutive Administration in Foals. Molecular Pharmaceutics, 2016, 13, 1089-1099.	4.6	18
45	Extendedâ€release but not immediateâ€release and subcutaneous methylnaltrexone antagonizes the loperamideâ€induced delay of wholeâ€gut transit time in healthy subjects. Journal of Clinical Pharmacology, 2016, 56, 239-245.	2.0	17
46	Rapid LC–MS/MS method for the determination of 4-hydroxycholesterol/cholesterol ratio in serum as endogenous biomarker for CYP3A activity in human and foals. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 193-199.	2.3	17
47	The orphan solute carrier SLC10A7 is a novel negative regulator of intracellular calcium signaling. Scientific Reports, 2020, 10, 7248.	3.3	17
48	A LC–MS/MS method to evaluate the hepatic uptake of the liver-specific magnetic resonance imaging contrast agent gadoxetate (Gd-EOB-DTPA) in vitro and in humans. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 891-892, 20-26.	2.3	15
49	Oral absorption of propiverine solution and of the immediate and extended release dosage forms: influence of regioselective intestinal elimination. European Journal of Clinical Pharmacology, 2008, 64, 1085-1092.	1.9	13
50	Drug Interactions Between the Immunosuppressant Tacrolimus and the Cholesterol Absorption Inhibitor Ezetimibe in Healthy Volunteers. Clinical Pharmacology and Therapeutics, 2011, 89, 524-528.	4.7	13
51	Pretransplant 4βâ€hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation. British Journal of Clinical Pharmacology, 2017, 83, 2406-2415.	2.4	13
52	The reference liver – ABC and SLC drug transporters in healthy donor and metastatic livers. Pharmacological Reports, 2019, 71, 738-745.	3.3	13
53	Monocarboxylate Transporter 1 (MCT1) in Liver Pathology. International Journal of Molecular Sciences, 2020, 21, 1606.	4.1	13
54	LC–MS/MS method for the determination of clodronate in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 2014, 100, 341-347.	2.8	12

STEFAN OSWALD

#	Article	IF	CITATIONS
55	Extrahepatic Drug Transporters in Liver Failure: Focus on Kidney and Gastrointestinal Tract. International Journal of Molecular Sciences, 2020, 21, 5737.	4.1	11
56	Membrane Carriers and Transporters in Kidney Physiology and Disease. Biomedicines, 2021, 9, 426.	3.2	11
57	Expression and Functional Contribution of Different Organic Cation Transporters to the Cellular Uptake of Doxorubicin into Human Breast Cancer and Cardiac Tissue. International Journal of Molecular Sciences, 2022, 23, 255.	4.1	11
58	Synergistic influence of Abcb1 and Abcc2 on disposition and sterol lowering effects of ezetimibe in rats. Journal of Pharmaceutical Sciences, 2010, 99, 422-429.	3.3	10
59	LC–MS/MS method for the simultaneous quantification of intestinal CYP and UGT activity. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155, 194-201.	2.8	9
60	Organic Cation Transporter 1 an Intestinal Uptake Transporter: Fact or Fiction?. Frontiers in Pharmacology, 2021, 12, 648388.	3.5	9
61	Disposition of the cholesterol absorption inhibitor ezetimibe in mdr1a/b (â^'/â^') mice. Journal of Pharmaceutical Sciences, 2007, 96, 3478-3484.	3.3	7
62	Impact of kidney dysfunction on hepatic and intestinal drug transporters. Biomedicine and Pharmacotherapy, 2021, 143, 112125.	5.6	7
63	Quantitative determination of methylnaltrexone in human serum using liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 1079-1084.	2.8	2
64	Hepatic drug-metabolizing enzymes and drug transporters in Wilson's disease patients with liver failure. Pharmacological Reports, 2021, 73, 1427-1438.	3.3	2
65	Investigation of Relative Contribution of Intestinal and Hepatic UGT2B17 on Testosterone Firstâ€Pass Metabolism. FASEB Journal, 2018, 32, 564.17.	0.5	1