Rinat Ankri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6074233/publications.pdf

Version: 2024-02-01

		687363	839539	
18	581	13	18	
papers	citations	h-index	g-index	
19	19	19	605	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Simultaneous Noninvasive Detection and Therapy of Atherosclerosis Using HDL Coated Gold Nanorods. Diagnostics, 2022, 12, 577.	2.6	3
2	Single-Photon, Time-Gated, Phasor-Based Fluorescence Lifetime Imaging through Highly Scattering Medium. ACS Photonics, 2020, 7, 68-79.	6.6	14
3	Diffusion Reflection Measurements of Antibodies Conjugated to Gold Nanoparticles as a Method to Identify Cutaneous Squamous Cell Carcinoma Borders. Materials, 2020, 13, 447.	2.9	4
4	Hyperlipidemic mice as a model for a realâ€time in vivo detection of atherosclerosis by gold nanorodsâ€based diffusion reflection technique. Journal of Biophotonics, 2019, 12, e201800218.	2.3	4
5	A 512 × 512 SPAD Image Sensor With Integrated Gating for Widefield FLIM. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-12.	2.9	109
6	Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection. Nano Research, 2018, 11, 1262-1273.	10.4	44
7	Three-Dimensional Highly Sensitive Diffusion Reflection-Based Imaging Method for the in Vivo Localization of Atherosclerosis Plaques Following Gold Nanorods Accumulation. ACS Omega, 2018, 3, 6134-6142.	3 . 5	6
8	Gold nanorods reflectance discriminate benign from malignant oral lesions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1333-1339.	3.3	24
9	Gold nanorods based diffusion reflection measurements: current status and perspectives for clinical applications. Nanophotonics, 2017, 6, 1031-1042.	6.0	41
10	Gold Nanorods Based Air Scanning Electron Microscopy and Diffusion Reflection Imaging for Mapping Tumor Margins in Squamous Cell Carcinoma. ACS Nano, 2016, 10, 2349-2356.	14.6	50
11	Nanoparticle uptake by macrophages in vulnerable plaques for atherosclerosis diagnosis. Journal of Biophotonics, 2015, 8, 871-883.	2.3	45
12	Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential tool for in vivo atherosclerosis tracking. International Journal of Nanomedicine, 2015, 10, 4437.	6.7	19
13	Gold Nanorods as Absorption Contrast Agents for the Noninvasive Detection of Arterial Vascular Disorders Based on Diffusion Reflection Measurements. Nano Letters, 2014, 14, 2681-2687.	9.1	42
14	Intercoupling surface plasmon resonance and diffusion reflection measurements for realâ€time cancer detection. Journal of Biophotonics, 2013, 6, 188-196.	2.3	29
15	New optical method for enhanced detection of colon cancer by capsule endoscopy. Nanoscale, 2013, 5, 9806.	5 . 6	9
16	A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods. International Journal of Nanomedicine, 2012, 7, 449.	6.7	27
17	<i>Inâ€vivo</i> Tumor detection using diffusion reflection measurements of targeted gold nanorods – a quantitative study. Journal of Biophotonics, 2012, 5, 263-273.	2.3	69
18	Reflected light intensity profile of two-layer tissues: phantom experiments. Journal of Biomedical Optics, 2011, 16, 085001.	2.6	41