Michael Markl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6073830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Aortic Pulse Wave Velocity is Unchanged in Bicuspid Aortopathy With Normal Valve Function but Elevated in Patients With Aortic Valve Stenosis: Insights From a <scp>4D</scp> Flow <scp>MRI</scp> Study of 597 Subjects. Journal of Magnetic Resonance Imaging, 2023, 57, 126-136.	1.9	4
2	Comparison of Improved <scp>Unidirectional</scp> Dual <scp>Velocityâ€Encoding MRI</scp> Methods. Journal of Magnetic Resonance Imaging, 2023, 57, 763-773.	1.9	3
3	Fourâ€Dimensional flow Magnetic Resonance Imaging for Assessment of Pediatric Coarctation of the Aorta. Journal of Magnetic Resonance Imaging, 2022, 55, 200-208.	1.9	5
4	Association of Regional Wall Shear Stress and Progressive Ascending Aorta Dilation in Bicuspid Aortic Valve. JACC: Cardiovascular Imaging, 2022, 15, 33-42.	2.3	37
5	Cardiac Magnetic Resonance Imaging Feature Tracking Demonstrates Altered Biventricular Strain in Obese Subjects in the Absence of Clinically Apparent Cardiovascular Disease. Journal of Thoracic Imaging, 2022, 37, W1-W2.	0.8	4
6	Evaluation of Pulmonary Hypertension Using <scp>4D</scp> Flow <scp>MRI</scp> . Journal of Magnetic Resonance Imaging, 2022, 56, 234-245.	1.9	18
7	Pilot tone navigation for respiratory and cardiac motionâ€resolved freeâ€running 5D flow MRI. Magnetic Resonance in Medicine, 2022, 87, 718-732.	1.9	17
8	Segmentation of the Aorta and Pulmonary Arteries Based on <scp>4D</scp> Flow <scp>MRI</scp> in the Pediatric Setting Using Fully Automated Multiâ€Site, Multiâ€Vendor, and Multiâ€Label Dense Uâ€Net. Journal of Magnetic Resonance Imaging, 2022, 55, 1666-1680.	1.9	12
9	Aortic Pulse Wave Velocity Evaluated by <scp>4D</scp> Flow <scp>MRI</scp> Across the Adult Lifespan. Journal of Magnetic Resonance Imaging, 2022, 56, 464-473.	1.9	10
10	A multi-modality approach for enhancing 4D flow magnetic resonance imaging via sparse representation. Journal of the Royal Society Interface, 2022, 19, 20210751.	1.5	2
11	Why do humans undergo an adiposity rebound? Exploring links with the energetic costs of brain development in childhood using MRI-based 4D measures of total cerebral blood flow. International Journal of Obesity, 2022, 46, 1044-1050.	1.6	5
12	Intracranial Blood Flow Quantification by Accelerated Dualâ€ <i>venc</i> <scp>4D</scp> Flow <scp>MRI</scp> : Comparison With Transcranial Doppler Ultrasound. Journal of Magnetic Resonance Imaging, 2022, 56, 1256-1264.	1.9	3
13	Special Issue on 4D Flow MRI in Magnetic Resonance in Medical Sciences. Magnetic Resonance in Medical Sciences, 2022, 21, 257-257.	1.1	0
14	Two wrongs sometimes do make a right: errors in aortic valve stenosis assessment by same-day Doppler echocardiography and 4D flow MRI. International Journal of Cardiovascular Imaging, 2022, 38, 1815-1823.	0.7	0
15	Bicuspid aortic valve morphology and hemodynamics by same-day echocardiography and cardiac MRI. International Journal of Cardiovascular Imaging, 2022, 38, 2047-2056.	0.7	0
16	30-minute CMR for common clinical indications:ÂaÂSociety for Cardiovascular Magnetic Resonance white paper. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 13.	1.6	21
17	Deep <scp>learning–based</scp> velocity antialiasing of <scp>4D</scp> â€flow <scp>MRI</scp> . Magnetic Resonance in Medicine, 2022, 88, 449-463.	1.9	9
18	<scp>MRA</scp> of the Supraaortic Vasculature: Comparison of Gadobutrol and Gadoterate Meglumine at 1. <scp>5 T</scp> . Journal of Magnetic Resonance Imaging, 2022, 56, 440-449.	1.9	1

#	Article	IF	CITATIONS
19	4D flow MRI derived aortic hemodynamics multi-year follow-up in repaired coarctation with bicuspid aortic valve. Diagnostic and Interventional Imaging, 2022, 103, 418-426.	1.8	6
20	Multiparametric Cardiac Magnetic Resonance Imaging Detects Altered Myocardial Tissue and Function in Heart Transplantation Recipients Monitored for Cardiac Allograft Vasculopathy. Journal of Cardiovascular Imaging, 2022, 30, 263.	0.2	3
21	Enhanced 4D Flow MRI-Based CFD with Adaptive Mesh Refinement for Flow Dynamics Assessment in Coarctation of the Aorta. Annals of Biomedical Engineering, 2022, 50, 1001-1016.	1.3	9
22	Impact of sequence type and field strength (1.5, 3, and 7T) on 4D flow MRI hemodynamic aortic parameters in healthy volunteers. Magnetic Resonance in Medicine, 2021, 85, 721-733.	1.9	13
23	Cardiac MRI Reveals Late Diastolic Changes in Left Ventricular Relaxation Patterns During Healthy Aging. Journal of Magnetic Resonance Imaging, 2021, 53, 766-774.	1.9	5
24	Intracardiac and Vascular Hemodynamics with Cardiovascular Magnetic Resonance in Heart Failure. Heart Failure Clinics, 2021, 17, 135-147.	1.0	0
25	Aortic annular dimensions by non-contrast MRI using k–t accelerated 3D cine b-SSFP in pre-procedural assessment for transcatheter aortic valve implantation: a technical feasibility study. International Journal of Cardiovascular Imaging, 2021, 37, 651-661.	0.7	3
26	Highly accelerated aortic 4D flow MRI using compressed sensing: Performance at different acceleration factors in patients with aortic disease. Magnetic Resonance in Medicine, 2021, 85, 2174-2187.	1.9	18
27	Renin Angiotensin System Inhibitors Reduce Aortic Stiffness and Flow Reversal After a Cryptogenic Stroke. Journal of Magnetic Resonance Imaging, 2021, 53, 213-221.	1.9	2
28	Investigation of Aortic Wall Thickness, Stiffness and Flow Reversal in Patients With Cryptogenic Stroke: A 4D Flow MRI Study. Journal of Magnetic Resonance Imaging, 2021, 53, 942-952.	1.9	17
29	4D flow MRI for the assessment of renal transplant dysfunction: initial results. European Radiology, 2021, 31, 909-919.	2.3	6
30	Rapid reconstruction of highly undersampled, nonâ€Cartesian realâ€ŧime cine <i>k</i> â€space data using a perceptual complex neural network (PCNN). NMR in Biomedicine, 2021, 34, e4405.	1.6	16
31	Stochastic 4D Flow Vector-Field Signatures: A New Approach for Comprehensive 4D Flow MRI Quantification. Lecture Notes in Computer Science, 2021, , 215-224.	1.0	Ο
32	Cine <scp>MRI</scp> detects elevated left heart pressure in pulmonary hypertension. Journal of Magnetic Resonance Imaging, 2021, 54, 275-283.	1.9	4
33	Using 5D flow MRI to decode the effects of rhythm on left atrial 3D flow dynamics in patients with atrial fibrillation. Magnetic Resonance in Medicine, 2021, 85, 3125-3139.	1.9	14
34	4D flow MRI left atrial kinetic energy in hypertrophic cardiomyopathy is associated with mitral regurgitation and left ventricular outflow tract obstruction. International Journal of Cardiovascular Imaging, 2021, 37, 2755-2765.	0.7	3
35	4D flow MRI after aortic replacement with frozen elephant trunk using thoraflex hybrid graft. Journal of Cardiac Surgery, 2021, 36, 1543-1545.	0.3	1
36	Four-Dimensional Magnetic Resonance After Ross Procedure for Unicuspid Aortic Valve. Circulation: Cardiovascular Imaging, 2021, 14, e011500.	1.3	1

#	Article	lF	CITATIONS
37	Visceral adiposity, muscle composition, and exercise tolerance in heart failure with preserved ejection fraction. ESC Heart Failure, 2021, 8, 2535-2545.	1.4	21
38	Cine MRI characterizes HFpEF and HFrEF in post-capillary pulmonary hypertension. European Journal of Radiology, 2021, 139, 109679.	1.2	3
39	Complete Regional Absence of Vasa Vasorum in an Ascending Aortic Aneurysm. Circulation: Cardiovascular Imaging, 2021, 14, e012312.	1.3	1
40	Effect of age and sex on fully automated deep learning assessment of left ventricular function, volumes, and contours in cardiac magnetic resonance imaging. International Journal of Cardiovascular Imaging, 2021, 37, 3539-3547.	0.7	2
41	Summary: international consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. European Journal of Cardio-thoracic Surgery, 2021, 60, 481-496.	0.6	2
42	International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. European Journal of Cardio-thoracic Surgery, 2021, 60, 448-476.	0.6	61
43	International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Radiology: Cardiothoracic Imaging, 2021, 3, e200496.	0.9	15
44	Automated segmentation of biventricular contours in tissue phase mapping using deep learning. NMR in Biomedicine, 2021, 34, e4606.	1.6	2
45	International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Annals of Thoracic Surgery, 2021, 112, e203-e235.	0.7	25
46	International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, e383-e414.	0.4	47
47	Summary: International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional, and research purposes. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, 781-797.	0.4	6
48	Summary: International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. Annals of Thoracic Surgery, 2021, 112, 1005-1022.	0.7	1
49	Divergence-Free Constrained Phase Unwrapping and Denoising for 4D Flow MRI Using Weighted Least-Squares. IEEE Transactions on Medical Imaging, 2021, 40, 3389-3399.	5.4	5
50	Is cardiac magnetic resonance ready for aortic regurgitation?. Kardiologia Polska, 2021, 79, 945-946.	0.3	0
51	Accelerating compressed sensing reconstruction of subsampled radial k-space data using geometrically-derived density compensation. Physics in Medicine and Biology, 2021, 66, 21NT01.	1.6	2
52	Standards for writing Society for Cardiovascular Magnetic Resonance (SCMR) endorsed guidelines, expert consensus, and recommendations: a report of the publications committee. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 129.	1.6	2
53	Valvular regurgitation flow jet assessment using in vitro 4D flow MRI: Implication for mitral regurgitation. Magnetic Resonance in Medicine, 2021, , .	1.9	3
54	Multi-parametric cardiovascular magnetic resonance with regadenoson stress perfusion is safe following pediatric heart transplantation and identifies history of rejection and cardiac allograft vasculopathy. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 135.	1.6	14

#	Article	IF	CITATIONS
55	Direct mitral regurgitation quantification in hypertrophic cardiomyopathy using 4D flow CMR jet tracking: evaluation in comparison to conventional CMR. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 138.	1.6	6
56	Effect of Aortic Valve Disease on 3D Hemodynamics in Patients With Aortic Dilation and Trileaflet Aortic Valve Morphology. Journal of Magnetic Resonance Imaging, 2020, 51, 481-491.	1.9	11
57	Altered 4-D magnetic resonance imaging flow characteristics in complex congenital aortic arch repair. Pediatric Radiology, 2020, 50, 17-27.	1.1	2
58	Gluteal Vein Anatomy: Location, Caliber, Impact of Patient Positioning, and Implications for Fat Grafting. Aesthetic Surgery Journal, 2020, 40, 642-649.	0.9	22
59	Myocardial velocity, intraâ€; and interventricular dyssynchrony evaluated by tissue phase mapping in pediatric heart transplant recipients. Journal of Magnetic Resonance Imaging, 2020, 51, 1212-1222.	1.9	6
60	Efficient tripleâ€VENC phaseâ€contrast MRI for improved velocity dynamic range. Magnetic Resonance in Medicine, 2020, 83, 505-520.	1.9	14
61	Parametric Hemodynamic 4D Flow MRI Maps for the Characterization of Chronic Thoracic Descending Aortic Dissection. Journal of Magnetic Resonance Imaging, 2020, 51, 1357-1368.	1.9	27
62	Altered regional myocardial velocities by tissue phase mapping and feature tracking in pediatric patients with hypertrophic cardiomyopathy. Pediatric Radiology, 2020, 50, 168-179.	1.1	7
63	Seismocardiography and 4D flow MRI reveal impact of aortic valve replacement on chest acceleration and aortic hemodynamics. Journal of Cardiac Surgery, 2020, 35, 232-235.	0.3	3
64	Diffuse right ventricular fibrosis in heart failure with preserved ejection fraction and pulmonary hypertension. ESC Heart Failure, 2020, 7, 254-264.	1.4	39
65	Semi-quantitative myocardial perfusion MRI in heart transplant recipients at rest: repeatability in healthy controls and assessment of cardiac allograft vasculopathy. Clinical Imaging, 2020, 61, 62-68.	0.8	5
66	Four-dimensional Flow Magnetic Resonance Imaging Quantification of Blood Flow in Bicuspid Aortic Valve. Journal of Thoracic Imaging, 2020, Publish Ahead of Print, 383-388.	0.8	7
67	Complicated Double-Orifice Mitral Regurgitation: Combined Hemodynamic Assessment Using Echocardiography and Four-Dimensional Flow Magnetic Resonance Imaging. Case, 2020, 4, 494-499.	0.1	0
68	Hypertrophic Cardiomyopathy Is Associated with Altered Left Ventricular 3D Blood Flow Dynamics. Radiology: Cardiothoracic Imaging, 2020, 2, e190038.	0.9	7
69	How Well Does an Automated Approach Calculate and Visualize Blood Flow Vorticity at 4D Flow MRI?. Radiology: Cardiothoracic Imaging, 2020, 2, e190233.	0.9	4
70	Turning Up the Flow: Cardiovascular 4D Flow MRI during Exercise. Radiology: Cardiothoracic Imaging, 2020, 2, e200063.	0.9	1
71	Accelerated 3D Left Atrial Late Gadolinium Enhancement in Patients with Atrial Fibrillation at 1.5 T: Technical Development. Radiology: Cardiothoracic Imaging, 2020, 2, e200134.	0.9	5
72	Highlights of the 2020 23rd Society for Cardiovascular Magnetic Resonance Scientific Sessions. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 75.	1.6	1

#	Article	IF	CITATIONS
73	Multimodal imaging of a giant left ventricular basal aneurysm and resulting intracardiac flow disturbances. European Heart Journal Cardiovascular Imaging, 2020, 21, 1050-1050.	0.5	1
74	Applications of a Specialty Bicuspid Aortic Valve Program: Clinical Continuity and Translational Collaboration. Journal of Clinical Medicine, 2020, 9, 1354.	1.0	4
75	Cardiac MRI Myocardial Functional and Tissue Characterization Detects Early Cardiac Dysfunction in a Mouse Model of Chemotherapyâ€Induced Cardiotoxicity. NMR in Biomedicine, 2020, 33, e4327.	1.6	10
76	Detecting Aortic Valve-Induced Abnormal Flow with Seismocardiography and Cardiac MRI. Annals of Biomedical Engineering, 2020, 48, 1779-1792.	1.3	12
77	4D Flow with MRI. Annual Review of Biomedical Engineering, 2020, 22, 103-126.	5.7	53
78	Impact of age, sex, and global function on normal aortic hemodynamics. Magnetic Resonance in Medicine, 2020, 84, 2088-2102.	1.9	15
79	Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning. Magnetic Resonance in Medicine, 2020, 84, 2204-2218.	1.9	94
80	Development of a rotation phantom for phase contrast MRI sequence validation and quality control. Magnetic Resonance in Medicine, 2020, 84, 3333-3341.	1.9	5
81	Effect of Aortic Valve Disease on 3D Hemodynamics in Patients With Aortic Dilation and Trileaflet Aortic Valve Morphology. Journal of Magnetic Resonance Imaging, 2020, 51, spcone.	1.9	1
82	Evaluating Biventricular Myocardial Velocity and Interventricular Dyssynchrony in Adult Patients During the First Year After Heart Transplantation. Journal of Magnetic Resonance Imaging, 2020, 52, 920-929.	1.9	1
83	Highly accelerated, realâ€time phaseâ€contrast MRI using radial <i>k</i> â€space sampling and GROGâ€GRASP reconstruction: a feasibility study in pediatric patients with congenital heart disease. NMR in Biomedicine, 2020, 33, e4240.	1.6	13
84	Prognostic Value of Myocardial Extracellular Volume Fraction and T2-mapping in Heart Transplant Patients. JACC: Cardiovascular Imaging, 2020, 13, 1521-1530.	2.3	29
85	Identification of Vortex Cores in Cerebral Aneurysms on 4D Flow MRI. American Journal of Neuroradiology, 2020, 41, E26-E26.	1.2	2
86	5D Flow MRI: A Fully Self-gated, Free-running Framework for Cardiac and Respiratory Motion–resolved 3D Hemodynamics. Radiology: Cardiothoracic Imaging, 2020, 2, e200219.	0.9	30
87	Hemodynamic Aspects of Vessel Wall Imaging: 4D Flow. , 2020, , 297-330.		1
88	Cardiac Structure–Function MRI in Patients After Heart Transplantation. Journal of Magnetic Resonance Imaging, 2019, 49, 678-687.	1.9	14
89	Two-Minute k-Space and Time–accelerated Aortic Four-dimensional Flow MRI: Dual-Center Study of Feasibility and Impact on Velocity and Wall Shear Stress Quantification. Radiology: Cardiothoracic Imaging, 2019, 1, e180008.	0.9	10
90	Intracardiac 4D Flow MRI in Congenital Heart Disease: Recommendations on Behalf of the ISMRM Flow & Motion Study Group. Journal of Magnetic Resonance Imaging, 2019, 50, spcone.	1.9	35

#	Article	IF	CITATIONS
91	On the â€~cusp' of clinical feasibility: aortic wall shear stress derived non-invasively with 4D flow MRI. Journal of Thoracic Disease, 2019, 11, E96-E97.	0.6	2
92	Intracardiac 4D Flow MRI in Congenital Heart Disease: Recommendations on Behalf of the ISMRM Flow & Motion Study Group. Journal of Magnetic Resonance Imaging, 2019, 50, 677-681.	1.9	32
93	Reproducibility and Changes in Vena Caval Blood Flow by Using 4D Flow MRI in Pulmonary Emphysema and Chronic Obstructive Pulmonary Disease (COPD): The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Substudy. Radiology, 2019, 292, 585-594.	3.6	12
94	Comprehensive MR Analysis of Cardiac Function, Aortic Hemodynamics and Left Ventricular Strain in Pediatric Cohort with Isolated Bicuspid Aortic Valve. Pediatric Cardiology, 2019, 40, 1450-1459.	0.6	12
95	Four-dimensional Virtual Catheter: Noninvasive Assessment of Intra-aortic Hemodynamics in Bicuspid Aortic Valve Disease. Radiology, 2019, 293, 541-550.	3.6	21
96	Multi-modality cerebral aneurysm haemodynamic analysis: <i>in vivo</i> 4D flow MRI, <i>in vitro</i> volumetric particle velocimetry and <i>in silico</i> computational fluid dynamics. Journal of the Royal Society Interface, 2019, 16, 20190465.	1.5	40
97	Techniques in the Assessment of Cardiovascular Blood Flow and Velocity. Contemporary Cardiology, 2019, , 113-125.	0.0	1
98	The Role of Imaging of Flow Patterns by 4D Flow MRI in Aortic Stenosis. JACC: Cardiovascular Imaging, 2019, 12, 252-266.	2.3	120
99	Interval changes in aortic peak velocity and wall shear stress in patients with bicuspid aortic valve disease. International Journal of Cardiovascular Imaging, 2019, 35, 1925-1934.	0.7	19
100	Standardized Evaluation of Cerebral Arteriovenous Malformations Using Flow Distribution Network Graphs and Dualâ€ <i>venc</i> 4D Flow MRI. Journal of Magnetic Resonance Imaging, 2019, 50, 1718-1730.	1.9	28
101	Impact of Aortopathy and Aortic Valve Disease on 3D Blood Flow and Wall Shear Stress in the Thoracic Aorta: As Assessed by 4D Flow MRI. , 2019, , 447-464.		0
102	Detection and Hemodynamic Evaluation of Flap Fenestrations in Type B Aortic Dissection with 4D Flow MRI: Comparison with Conventional MRI and CT Angiography. Radiology: Cardiothoracic Imaging, 2019, 1, e180009.	0.9	34
103	Semiâ€automated analysis of 4D flow MRI to assess the hemodynamic impact of intracranial atherosclerotic disease. Magnetic Resonance in Medicine, 2019, 82, 749-762.	1.9	32
104	Multiparametric Cardiac Magnetic Resonance Imaging Can Detect AcuteÂCardiac Allograft Rejection AfterÂHeart Transplantation. JACC: Cardiovascular Imaging, 2019, 12, 1632-1641.	2.3	60
105	Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive kâ€space reordering, and inline reconstruction. Magnetic Resonance in Medicine, 2019, 81, 3675-3690.	1.9	70
106	Impact of age and cardiac disease on regional left and right ventricular myocardial motion in healthy controls and patients with repaired tetralogy of fallot. International Journal of Cardiovascular Imaging, 2019, 35, 1119-1132.	0.7	12
107	Standardized Evaluation of Cerebral Arteriovenous Malformations Using Flow Distribution Network Graphs and Dualâ€ <i>venc</i> 4D Flow MRI. Journal of Magnetic Resonance Imaging, 2019, 50, spcone. 	1.9	0
108	Donor and Recipient Characteristics in Heart Transplantation Are Associated with Altered Myocardial Tissue Structure and Cardiac Function. Radiology: Cardiothoracic Imaging, 2019, 1, e190009.	0.9	2

#	Article	IF	CITATIONS
109	Aortic stenosis exacerbates flow aberrations related to the bicuspid aortic valve fusion pattern and the aortopathy phenotype. European Journal of Cardio-thoracic Surgery, 2019, 55, 534-542.	0.6	20
110	4-D flow MRI aortic 3-D hemodynamics and wall shear stress remain stable over short-term follow-up in pediatric and young adult patients with bicuspid aortic valve. Pediatric Radiology, 2019, 49, 57-67.	1.1	16
111	Comprehensive evaluation of macroscopic and microscopic myocardial fibrosis by cardiac MR: intra-individual comparison of gadobutrol versus gadoterate meglumine. European Radiology, 2019, 29, 4357-4367.	2.3	8
112	Hemodynamic measurements with an abdominal 4D flow MRI sequence with spiral sampling and compressed sensing in patients with chronic liver disease. Journal of Magnetic Resonance Imaging, 2019, 49, 994-1005.	1.9	24
113	4-D flow magnetic-resonance-imaging-derived energetic biomarkers are abnormal in children with repaired tetralogy of Fallot and associated with disease severity. Pediatric Radiology, 2019, 49, 308-317.	1.1	22
114	Autocalibrated multiband CAIPIRINHA with throughâ€ŧime encoding: Proof of principle and application to cardiac tissue phase mapping. Magnetic Resonance in Medicine, 2019, 81, 1016-1030.	1.9	15
115	Caval to pulmonary 3D flow distribution in patients with Fontan circulation and impact of potential 4D flow MRI error sources. Magnetic Resonance in Medicine, 2019, 81, 1205-1218.	1.9	8
116	Assessing wall stresses in bicuspid aortic valve-associated aortopathy: Forecasting the perfect storm?. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 471-472.	0.4	8
117	Accelerated real-time cardiac MRI using iterative sparse SENSE reconstruction: comparing performance in patients with sinus rhythm and atrial fibrillation. European Radiology, 2018, 28, 3088-3096.	2.3	17
118	Perioperative evaluation of regional aortic wall shear stress patterns in patients undergoing aortic valve and/or proximal thoracic aortic replacement. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 2277-2286.e2.	0.4	33
119	Valve mediated hemodynamics and their association with distal ascending aortic diameter in bicuspid aortic valve subjects. Journal of Magnetic Resonance Imaging, 2018, 47, 246-254.	1.9	24
120	kâ€ŧ accelerated aortic 4D flow <scp>MRI</scp> in under two minutes: Feasibility and impact of resolution, kâ€space sampling patterns, and respiratory navigator gating on hemodynamic measurements. Magnetic Resonance in Medicine, 2018, 79, 195-207.	1.9	42
121	Distribution of blood flow velocity in the normal aorta: Effect of age and gender. Journal of Magnetic Resonance Imaging, 2018, 47, 487-498.	1.9	52
122	Voxelâ€byâ€voxel 4D flow MRIâ€based assessment of regional reverse flow in the aorta. Journal of Magnetic Resonance Imaging, 2018, 47, 1276-1286.	1.9	16
123	4D flow MRI, cardiac function, and T ₁ â€mapping: Association of valveâ€mediated changes in aortic hemodynamics with left ventricular remodeling. Journal of Magnetic Resonance Imaging, 2018, 48, 121-131.	1.9	24
124	Altered Aortic 3-Dimensional Hemodynamics in Patients With Functionally Unicuspid Aortic Valves. Circulation: Cardiovascular Imaging, 2018, 11, e007915.	1.3	2
125	Variability of native T1 values: implication for defining regional myocardial changes using MRI. International Journal of Cardiovascular Imaging, 2018, 34, 1637-1645.	0.7	4
126	Aortic valve-mediated wall shear stress is heterogeneous and predicts regional aortic elastic fiber thinning in bicuspid aortic valve-associated aortopathy. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 2112-2120.e2.	0.4	103

#	Article	IF	CITATIONS
127	The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve–related aortopathy: Executive summary. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 473-480.	0.4	70
128	The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve–related aortopathy: Full online-only version. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, e41-e74.	0.4	202
129	The growth and evolution of cardiovascular magnetic resonance: a 20-year history of the Society for Cardiovascular Magnetic Resonance (SCMR) annual scientific sessions. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 8.	1.6	12
130	Abstract TP119: Feasibility of Automated Analysis of Dual- Venc 4d Flow Mri to Assess Hemodynamics in Patients With Intracranial Atherosclerotic Disease. Stroke, 2018, 49, .	1.0	1
131	4D flow MR imaging of the portal venous system: a feasibility study in children. European Radiology, 2017, 27, 832-840.	2.3	20
132	In Vivo Assessment of the Impact of Regional Intracranial Atherosclerotic Lesions on Brain Arterial 3D Hemodynamics. American Journal of Neuroradiology, 2017, 38, 515-522.	1.2	18
133	Accelerated dual- <i>venc</i> 4D flow MRI for neurovascular applications. Journal of Magnetic Resonance Imaging, 2017, 46, 102-114.	1.9	76
134	Acute Cerebral Venous Thrombosis. Stroke, 2017, 48, 671-677.	1.0	20
135	The consistency of myocardial strain derived from heart deformation analysis. International Journal of Cardiovascular Imaging, 2017, 33, 1169-1177.	0.7	7
136	Aortic shear stress in patients with bicuspid aortic valve with stenosis and insufficiency. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 1263-1272.e1.	0.4	50
137	Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome. Pediatric Radiology, 2017, 47, 382-390.	1.1	13
138	Importance of variants in cerebrovascular anatomy for potential retrograde embolization in cryptogenic stroke. European Radiology, 2017, 27, 4145-4152.	2.3	9
139	JOURNAL CLUB: Four-Dimensional Flow MRI–Based Splenic Flow Index for Predicting Cirrhosis-Associated Hypersplenism. American Journal of Roentgenology, 2017, 209, 46-54.	1.0	14
140	Automated Description of Regional Left Ventricular Motion in Patients With Cardiac Amyloidosis: A Quantitative Study Using Heart Deformation Analysis. American Journal of Roentgenology, 2017, 209, W57-W63.	1.0	7
141	Superior Abdominal 4D Flow MRI Data Consistency with Adjusted Preprocessing Workflow and Noncontrast Acquisitions. Academic Radiology, 2017, 24, 350-358.	1.3	5
142	Aortic Valve Stenosis Alters Expression of Regional Aortic Wall Shear Stress: New Insights From a 4â€Dimensional Flow Magnetic Resonance Imaging Study of 571 Subjects. Journal of the American Heart Association, 2017, 6, .	1.6	126
143	Cardiovascular MRI in Thoracic Aortopathy: A Focused Review of Recent Literature Updates. Current Radiology Reports, 2017, 5, 1.	0.4	1
144	Heart deformation analysis: the distribution of regional myocardial motion patterns at left ventricle. International Journal of Cardiovascular Imaging, 2017, 33, 351-359.	0.7	7

#	Article	IF	CITATIONS
145	Volumetric quantification of absolute local normalized helicity in patients with bicuspid aortic valve and aortic dilatation. Magnetic Resonance in Medicine, 2017, 78, 689-701.	1.9	45
146	Quantification and comparison of 4Dâ€flow MRIâ€derived wall shear stress and MREâ€derived wall stiffness of the abdominal aorta. Journal of Magnetic Resonance Imaging, 2017, 45, 771-778.	1.9	27
147	T1 mapping in children and young adults with hypertrophic cardiomyopathy. International Journal of Cardiovascular Imaging, 2017, 33, 109-117.	0.7	24
148	Reproducibility of cine displacement encoding with stimulated echoes (DENSE) in human subjects. Magnetic Resonance Imaging, 2017, 35, 148-153.	1.0	24
149	Spatial phenotyping of the endocardial endothelium as a function of intracardiac hemodynamic shear stress. Journal of Biomechanics, 2017, 50, 11-19.	0.9	12
150	Evolution of Precision Medicine and Surgical Strategies for Bicuspid Aortic Valve-Associated Aortopathy. Frontiers in Physiology, 2017, 8, 475.	1.3	9
151	Towards highâ€resolution 4D flow MRI in the human aorta using ktâ€GRAPPA and B1+ shimming at 7T. Journal of Magnetic Resonance Imaging, 2016, 44, 486-499.	1.9	25
152	Evaluation of Left Ventricular Outflow Tract Obstruction With Four-Dimensional Phase Contrast Magnetic Resonance Imaging in Patients with Hypertrophic Cardiomyopathy—A Pilot Study. Journal of Computer Assisted Tomography, 2016, 40, 937-940.	0.5	4
153	Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. Journal of Magnetic Resonance Imaging, 2016, 43, 236-248.	1.9	81
154	Reply. Journal of the American College of Cardiology, 2016, 67, 735-736.	1.2	0
155	4D flow MRI and <i>T</i> ₁ -Mapping: Assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy. Journal of Magnetic Resonance Imaging, 2016, 43, 107-114.	1.9	36
156	Assessment of left and right atrial 3D hemodynamics in patients with atrial fibrillation: a 4D flow MRI study. International Journal of Cardiovascular Imaging, 2016, 32, 807-815.	0.7	33
157	Integrated Regional Cardiac Hemodynamic Imaging and RNA Sequencing Reveal Corresponding Heterogeneity of Ventricular Wall Shear Stress and Endocardial Transcriptome. Journal of the American Heart Association, 2016, 5, e003170.	1.6	14
158	Response to Letter Regarding Article, "Evaluating the Atrial Myopathy Underlying Atrial Fibrillation: Identifying the Arrhythmogenic and Thrombogenic Substrate― Circulation, 2016, 133, e431.	1.6	0
159	Heart deformation analysis for automated quantification of cardiac function and regional myocardial motion patterns: A proof of concept study in patients with cardiomyopathy and healthy subjects. European Journal of Radiology, 2016, 85, 1811-1817.	1.2	15
160	Altered aortic shape in bicuspid aortic valve relatives influences blood flow patterns. European Heart Journal Cardiovascular Imaging, 2016, 17, 1239-1247.	0.5	42
161	Left Atrial and Left Atrial Appendage 4D Blood Flow Dynamics in Atrial Fibrillation. Circulation: Cardiovascular Imaging, 2016, 9, e004984.	1.3	91
162	Improved Semiautomated 4D Flow MRI Analysis in the Aorta in Patients With Congenital Aortic Valve Anomalies Versus Tricuspid Aortic Valves. Journal of Computer Assisted Tomography, 2016, 40, 102-108.	0.5	30

#	Article	IF	CITATIONS
163	Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. International Journal of Cardiovascular Imaging, 2016, 32, 1529-1541.	0.7	51
164	Optimized AIR and investigational MOLLI cardiac <i>T</i> ₁ mapping pulse sequences produce similar intraâ€scan repeatability in patients at 3T. NMR in Biomedicine, 2016, 29, 1454-1463.	1.6	7
165	Hemodynamic evaluation in patients with transposition of the great arteries after the arterial switch operation: 4D flow and 2D phase contrast cardiovascular magnetic resonance compared with Doppler echocardiography. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 59.	1.6	19
166	Ageâ€related changes in aortic 3D blood flow velocities and wall shear stress: Implications for the identification of altered hemodynamics in patients with aortic valve disease. Journal of Magnetic Resonance Imaging, 2016, 43, 1239-1249.	1.9	66
167	Reduction of aberrant aortic haemodynamics following aortic root replacement with a mechanical valved conduitâ€. Interactive Cardiovascular and Thoracic Surgery, 2016, 23, 416-423.	0.5	18
168	Highly accelerated cardiac MRI using iterative SENSE reconstruction: initial clinical experience. International Journal of Cardiovascular Imaging, 2016, 32, 955-963.	0.7	14
169	MR and CT Imaging for the Evaluation ofÂPulmonary Hypertension. JACC: Cardiovascular Imaging, 2016, 9, 715-732.	2.3	72
170	Analyzing myocardial torsion based on tissue phase mapping cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 15.	1.6	12
171	Three-dimensional left atrial blood flow characteristics in patients with atrial fibrillation assessed by 4D flow CMR. European Heart Journal Cardiovascular Imaging, 2016, 17, 1259-1268.	0.5	46
172	Heart deformation analysis: measuring regional myocardial velocity with MR imaging. International Journal of Cardiovascular Imaging, 2016, 32, 1103-1111.	0.7	14
173	Reproducibility and observer variability of tissue phase mapping for the quantification of regional myocardial velocities. International Journal of Cardiovascular Imaging, 2016, 32, 1227-1234.	0.7	14
174	Efficient method for volumetric assessment of peak blood flow velocity using 4D flow MRI. Journal of Magnetic Resonance Imaging, 2016, 44, 1673-1682.	1.9	66
175	Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI. Pediatric Radiology, 2016, 46, 1507-1519.	1.1	26
176	Left Atrial 4-Dimensional Flow Magnetic Resonance Imaging. Investigative Radiology, 2016, 51, 147-154.	3.5	65
177	Re: Blood flow analysis of the aortic arch using computational fluid dynamics. European Journal of Cardio-thoracic Surgery, 2016, 49, 1586-1587.	0.6	7
178	Automated Assessment of Left Ventricular Function and Mass Using Heart Deformation Analysis:. Academic Radiology, 2016, 23, 321-325.	1.3	18
179	Ageâ€Related Changes of Normal Cerebral and Cardiac Blood Flow in Children and Adults Aged 7ÂMonths to 61ÂYears. Journal of the American Heart Association, 2016, 5,	1.6	105
180	Influence of beta-blocker therapy on aortic blood flow in patients with bicuspid aortic valve. International Journal of Cardiovascular Imaging, 2016, 32, 621-628.	0.7	18

#	Article	lF	CITATIONS
181	Evaluation of Aortic Blood Flow and Wall Shear Stress in Aortic Stenosis and Its Association With Left Ventricular Remodeling. Circulation: Cardiovascular Imaging, 2016, 9, e004038.	1.3	77
182	Four-dimensional flow magnetic resonance imaging-based characterization of aortic morphometry and haemodynamics: impact of age, aortic diameter, and valve morphology. European Heart Journal Cardiovascular Imaging, 2016, 17, 877-884.	0.5	56
183	Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement. International Journal of Cardiovascular Imaging, 2016, 32, 461-467.	0.7	38
184	Altered aortic 3D hemodynamics and geometry in pediatric Marfan syndrome patients. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 30.	1.6	38
185	Longitudinal Evaluation of Aortic Hemodynamics in Marfan Syndrome: New Insights from a 4D Flow Cardiovascular Magnetic Resonance Multi-Year Follow-Up Study. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 33.	1.6	55
186	Complex Alterations of Intracranial 4-Dimensional Hemodynamics in Vein of Galen Aneurysmal Malformations During Staged Endovascular Embolization. Operative Neurosurgery, 2016, 12, 239-249.	0.4	4
187	Assessment of altered threeâ€dimensional blood characteristics in aortic disease by velocity distribution analysis. Magnetic Resonance in Medicine, 2015, 74, 817-825.	1.9	17
188	A methodology to detect abnormal relative wall shear stress on the full surface of the thoracic aorta using four-dimensional flow MRI. Magnetic Resonance in Medicine, 2015, 73, 1216-1227.	1.9	67
189	Three-dimensional haemodynamics in patients with obstructive and non-obstructive hypertrophic cardiomyopathy assessed by cardiac magnetic resonance. European Heart Journal Cardiovascular Imaging, 2015, 16, 29-36.	0.5	22
190	Interpretation of an aneurysm:. European Heart Journal, 2015, 36, 2403-2403.	1.0	2
191	Thoracic aorta 3D hemodynamics in pediatric and young adult patients with bicuspid aortic valve. Journal of Magnetic Resonance Imaging, 2015, 42, 954-963.	1.9	39
192	K-t GRAPPA-accelerated 4D flow MRI of liver hemodynamics: influence of different acceleration factors on qualitative and quantitative assessment of blood flow. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2015, 28, 149-159.	1.1	18
193	4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography. Pediatric Radiology, 2015, 45, 804-813.	1.1	58
194	Evaluating the Atrial Myopathy Underlying Atrial Fibrillation. Circulation, 2015, 132, 278-291.	1.6	196
195	Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI. European Radiology, 2015, 25, 2634-2640.	2.3	36
196	Impact of Ascending to Descending Aortic Bypass for Aortic Coarctation on 3-Dimensional Hemodynamics. Circulation, 2015, 131, 1036-1038.	1.6	2
197	Extracellular Volume Fraction Is More Closely Associated With Altered Regional Left Ventricular Velocities Than Left Ventricular Ejection Fraction in Nonischemic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2015, 8, .	1.3	13
198	Abdominal 4D Flow MR Imaging in a Breath Hold: Combination of Spiral Sampling and Dynamic Compressed Sensing for Highly Accelerated Acquisition. Radiology, 2015, 275, 245-254.	3.6	85

#	Article	IF	CITATIONS
199	Congenital heart disease in adults: Quantitative and qualitative evaluation of IR FLASH and IR SSFP MRA techniques using a blood pool contrast agent in the steady state and comparison to first pass MRA. European Journal of Radiology, 2015, 84, 1921-1929.	1.2	10
200	Valve-Related Hemodynamics Mediate Human Bicuspid Aortopathy. Journal of the American College of Cardiology, 2015, 66, 892-900.	1.2	360
201	4D flow cardiovascular magnetic resonance consensus statement. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 72.	1.6	642
202	The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics. Journal of Biomechanics, 2015, 48, 2984-2989.	0.9	52
203	Cardiovascular magnetic resonance phase contrast imaging. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 71.	1.6	184
204	Comparison of Hemodynamics After Aortic Root Replacement Using Valve-Sparing or Bioprosthetic Valved Conduit. Annals of Thoracic Surgery, 2015, 100, 1556-1562.	0.7	37
205	Improved respiratory navigator gating for thoracic 4D flow MRI. Magnetic Resonance Imaging, 2015, 33, 992-999.	1.0	16
206	MRI-based Protocol to Characterize the Relationship Between Bicuspid Aortic Valve Morphology and Hemodynamics. Annals of Biomedical Engineering, 2015, 43, 1815-1827.	1.3	11
207	Characterization of Abnormal Wall Shear Stress Using 4D Flow MRI in Human Bicuspid Aortopathy. Annals of Biomedical Engineering, 2015, 43, 1385-1397.	1.3	82
208	Velocity Quantification by Electrocardiography-Gated Phase Contrast Magnetic Resonance Imaging in Patients With Cardiac Arrhythmia. Journal of Computer Assisted Tomography, 2015, 39, 1.	0.5	11
209	Response to Letter Regarding Article, "Bicuspid Aortic Cusp Fusion Morphology Alters Aortic Three-Dimensional Outflow Patterns, Wall Shear Stress, and Expression of Aortopathy― Circulation, 2014, 130, e171.	1.6	6
210	Bicuspid Aortic Cusp Fusion Morphology Alters Aortic Three-Dimensional Outflow Patterns, Wall Shear Stress, and Expression of Aortopathy. Circulation, 2014, 129, 673-682.	1.6	350
211	Reproducibility study of fourâ€dimensional flow MRI of arterial and portal venous liver hemodynamics: Influence of spatioâ€temporal resolution. Magnetic Resonance in Medicine, 2014, 72, 477-484.	1.9	35
212	Association between leaflet fusion pattern and thoracic aorta morphology in patients with bicuspid aortic valve. Journal of Magnetic Resonance Imaging, 2014, 40, 294-300.	1.9	12
213	<i>kâ€ŧ</i> GRAPPA accelerated fourâ€dimensional flow MRI in the aorta: Effect on scan time, image quality, and quantification of flow and wall shear stress. Magnetic Resonance in Medicine, 2014, 72, 522-533.	1.9	76
214	Response to Letter Regarding Article, "Aortic Dilation in Bicuspid Aortic Valve Disease: Flow Pattern Is a Major Contributor and Differs With Valve Fusion Typeâ€: Circulation: Cardiovascular Imaging, 2014, 7, 214-214.	1.3	3
215	Blood flow characteristics in the ascending aorta after aortic valve replacement—a pilot study using 4D-flow MRI. International Journal of Cardiology, 2014, 170, 426-433.	0.8	81
216	Postoperative pulmonary and aortic 3D haemodynamics in patients after repair of transposition of the great arteries. European Radiology, 2014, 24, 200-208.	2.3	41

#	Article	IF	CITATIONS
217	Ascending aorta flow derangement is a marker of outflow obstruction in hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P293.	1.6	1
218	Evaluation of left ventricular outflow tract obstruction with 4D phase contrast in patients with hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P312.	1.6	1
219	Evaluation of aortic stenosis severity using 4D flow jet shear layer detection for the measurement of valve effective orifice area. Magnetic Resonance Imaging, 2014, 32, 891-898.	1.0	24
220	Haemodynamic outcome at four-dimensional flow magnetic resonance imaging following valve-sparing aortic root replacement with tricuspid and bicuspid valve morphology. European Journal of Cardio-thoracic Surgery, 2014, 45, 818-825.	0.6	28
221	Viscous energy loss in the presence of abnormal aortic flow. Magnetic Resonance in Medicine, 2014, 72, 620-628.	1.9	129
222	Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3T. European Journal of Radiology, 2014, 83, 1875-1880.	1.2	16
223	4D Flow Imaging: Current Status to Future Clinical Applications. Current Cardiology Reports, 2014, 16, 481.	1.3	45
224	From unicuspid to quadricuspid: Influence of aortic valve morphology on aortic threeâ€dimensional hemodynamics. Journal of Magnetic Resonance Imaging, 2014, 40, 1342-1346.	1.9	28
225	4D flow imaging with MRI. Cardiovascular Diagnosis and Therapy, 2014, 4, 173-92.	0.7	227
226	MRI in Repaired Congenital Heart Disease. , 2014, , 451-479.		0
226 227	MRI in Repaired Congenital Heart Disease. , 2014, , 451-479. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Experiments in Fluids, 2013, 54, 1.	1.1	0 22
226 227 228	MRI in Repaired Congenital Heart Disease., 2014, , 451-479. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Experiments in Fluids, 2013, 54, 1. Aortic coarctation augments changes in thoracic aortic hemodynamics in pediatric and young adult patients with bicuspid aortic valve. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P300.	1.1	0 22 3
226 227 228 229	MRI in Repaired Congenital Heart Disease., 2014, , 451-479. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Experiments in Fluids, 2013, 54, 1. Aortic coarctation augments changes in thoracic aortic hemodynamics in pediatric and young adult patients with bicuspid aortic valve. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P300. From unicuspid to quadricuspid: the impact of aortic valve morphology on 3D hemodynamics. Journal of Cardiovascular Magnetic Resonance, 2013, 15, O79.	1.1 1.6 1.6	0 22 3 2
226 227 228 229 230	MRI in Repaired Congenital Heart Disease. , 2014, , 451-479. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Experiments in Fluids, 2013, 54, 1. Aortic coarctation augments changes in thoracic aortic hemodynamics in pediatric and young adult patients with bicuspid aortic valve. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P300. From unicuspid to quadricuspid: the impact of aortic valve morphology on 3D hemodynamics. Journal of Cardiovascular Magnetic Resonance, 2013, 15, O79. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. European Heart Journal Cardiovascular Imaging, 2013, 14, 797-804.	1.1 1.6 1.6 0.5	0 22 3 2 133
226 227 228 229 230 231	MRI in Repaired Congenital Heart Disease., 2014,, 451-479. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Experiments in Fluids, 2013, 54, 1. Aortic coarctation augments changes in thoracic aortic hemodynamics in pediatric and young adult patients with bicuspid aortic valve. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P300. From unicuspid to quadricuspid: the impact of aortic valve morphology on 3D hemodynamics. Journal of Cardiovascular Magnetic Resonance, 2013, 15, O79. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. European Heart Journal Cardiovascular Imaging, 2013, 14, 797-804. Intracranial artery velocity measurement using 4D PC MRI at 3ÂT: comparison with transcranial ultrasound techniques and 2D PC MRI. Neuroradiology, 2013, 55, 389-398.	1.1 1.6 1.6 0.5	0 22 3 2 133 62
226 227 228 229 230 231 232	MRI in Repaired Congenital Heart Disease. , 2014, , 451-479. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Experiments in Fluids, 2013, 54, 1. Aortic coarctation augments changes in thoracic aortic hemodynamics in pediatric and young adult patients with bicuspid aortic valve. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P300. From unicuspid to quadricuspid: the impact of aortic valve morphology on 3D hemodynamics. Journal of Cardiovascular Magnetic Resonance, 2013, 15, O79. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. European Heart Journal Cardiovascular Imaging, 2013, 14, 797-804. Intracranial artery velocity measurement using 4D PC MRI at 3ÂT: comparison with transcranial ultrasound techniques and 2D PC MRI. Neuroradiology, 2013, 55, 389-398. Bicuspid Aortic Valve Phenotype and Aortopathy: Nomenclature and Role of Aortic Hemodynamics. JACC: Cardiovascular Imaging, 2013, 6, 921.	1.1 1.6 1.6 0.5 1.1 2.3	0 22 3 2 133 62 6
226 227 228 229 230 231 232 232	MRI in Repaired Congenital Heart Disease., 2014, , 451-479. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator. Experiments in Fluids, 2013, 54, 1. Aortic coarctation augments changes in thoracic aortic hemodynamics in pediatric and young adult patients with bicuspid aortic valve. Journal of Cardiovascular Magnetic Resonance, 2013, 15, P300. From unicuspid to quadricuspid: the impact of aortic valve morphology on 3D hemodynamics. Journal of Cardiovascular Magnetic Resonance, 2013, 15, O79. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. European Heart Journal Cardiovascular Imaging, 2013, 14, 797-804. Intracranial artery velocity measurement using 4D PC MRI at 3ÅT: comparison with transcranial ultrasound techniques and 2D PC MRI. Neuroradiology, 2013, 55, 389-398. Bicuspid Aortic Valve Phenotype and Aortopathy: Nomenclature and Role of Aortic Hemodynamics. JACC: Cardiovascular Imaging, 2013, 6, 921. Coregistration of the distribution of wall shear stress and 140 complex plaques of the aorta. Magnetic Resonance Imaging, 2013, 31, 1156-1162.	1.1 1.6 1.6 0.5 1.1 2.3 1.0	0 22 3 2 133 62 6 28

#	Article	IF	CITATIONS
235	Myocardial T2â€mapping and velocity mapping: Changes in regional left ventricular structure and function after heart transplantation. Magnetic Resonance in Medicine, 2013, 70, 517-526.	1.9	28
236	Time-resolved three-dimensional phase contrast MRI evaluation of bicuspid aortic valve and coarctation of the aorta. European Heart Journal Cardiovascular Imaging, 2013, 14, 399-399.	0.5	11
237	Intracardiac flow visualization: current status and future directions. European Heart Journal Cardiovascular Imaging, 2013, 14, 1029-1038.	0.5	105
238	Aortic Dilation in Bicuspid Aortic Valve Disease. Circulation: Cardiovascular Imaging, 2013, 6, 499-507.	1.3	329
239	Left atrial flow velocity distribution and flow coherence using fourâ€dimensional FLOW MRI: A pilot study investigating the impact of age and Pre―and Postintervention atrial fibrillation on atrial hemodynamics. Journal of Magnetic Resonance Imaging, 2013, 38, 580-587.	1.9	67
240	Cerebral arteriovenous malformation: Complex 3D hemodynamics and 3D blood flow alterations during staged embolization. Journal of Magnetic Resonance Imaging, 2013, 38, 946-950.	1.9	28
241	Aortic wall shear stress in Marfan syndrome. Magnetic Resonance in Medicine, 2013, 70, 1137-1144.	1.9	37
242	A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4D MRI compared with Doppler ultrasound in patients with cirrhosis and controls. European Journal of Gastroenterology and Hepatology, 2013, 25, 669-675.	0.8	42
243	Normal and Altered Three-dimensional Portal Venous Hemodynamics in Patients with Liver Cirrhosis. Radiology, 2012, 262, 862-873.	3.6	75
244	Usefulness of 4D MRI Flow Imaging to Control TIPS Function. American Journal of Gastroenterology, 2012, 107, 327-328.	0.2	20
245	Cardiac Magnetic Resonance T2 Mapping in the Monitoring and Follow-up of Acute Cardiac Transplant Rejection. Circulation: Cardiovascular Imaging, 2012, 5, 782-790.	1.3	105
246	Bicuspid Aortic Valve Is Associated With Altered Wall Shear Stress in the Ascending Aorta. Circulation: Cardiovascular Imaging, 2012, 5, 457-466.	1.3	376
247	Three-Dimensional Blood Flow Alterations After Transcatheter Aortic Valve Implantation. Circulation, 2012, 125, e573-5.	1.6	9
248	4D flow MRI. Journal of Magnetic Resonance Imaging, 2012, 36, spcone-spcone.	1.9	3
249	4D flow MRI. Journal of Magnetic Resonance Imaging, 2012, 36, 1015-1036.	1.9	583
250	Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 80.	1.6	171
251	In vivo wall shear stress patterns in carotid bifurcations assessed by 4D MRI. Perspectives in Medicine, 2012, 1, 137-138.	0.4	0
252	A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 87.	1.6	34

#	Article	IF	CITATIONS
253	Analysis of pulse wave velocity in the thoracic aorta by flowâ€sensitive fourâ€dimensional MRI: Reproducibility and correlation with characteristics in patients with aortic atherosclerosis. Journal of Magnetic Resonance Imaging, 2012, 35, 1162-1168.	1.9	59
254	Noninvasive evaluation of 3D hemodynamics in a complex case of single ventricle physiology. Journal of Magnetic Resonance Imaging, 2012, 35, spcone-spcone.	1.9	0
255	Gradient echo imaging. Journal of Magnetic Resonance Imaging, 2012, 35, 1274-1289.	1.9	72
256	Flowâ€sensitive 4D MRI of the thoracic aorta: Comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T. Journal of Magnetic Resonance Imaging, 2012, 36, 1097-1103.	1.9	52
257	Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla. European Radiology, 2012, 22, 1122-1130.	2.3	88
258	Improved method for quantification of regional cardiac function in mice using phase ontrast MRI. Magnetic Resonance in Medicine, 2012, 67, 541-551.	1.9	25
259	Aortic Hemodynamics in Patients With and Without Repair of Aortic Coarctation. Investigative Radiology, 2011, 46, 317-325.	3.5	95
260	Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2011, 13, 7.	1.6	379
261	Reproducibility of flow and wall shear stress analysis using flowâ€sensitive fourâ€dimensional MRI. Journal of Magnetic Resonance Imaging, 2011, 33, 988-994.	1.9	144
262	On the undersampling strategies to accelerate timeâ€resolved 3D imaging using kâ€tâ€GRAPPA. Magnetic Resonance in Medicine, 2011, 66, 966-975.	1.9	41
263	In vivo noninvasive 4D pressure difference mapping in the human aorta: Phantom comparison and application in healthy volunteers and patients. Magnetic Resonance in Medicine, 2011, 66, 1079-1088.	1.9	106
264	Comprehensive 4-Dimensional Magnetic Resonance Flow Analysis After Successful Heart Transplantation Resolves Controversial Intraoperative Findings and Reveals Complex Hemodynamic Alterations. Circulation, 2011, 123, e381-3.	1.6	11
265	Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. European Journal of Cardio-thoracic Surgery, 2011, 39, 206-212.	0.6	78
266	Marked three-dimensional flow pattern changes in distorted aortic geometry. European Heart Journal, 2011, 32, 679-679.	1.0	1
267	Editorial. European Journal of Cardio-thoracic Surgery, 2011, 39, 805-806.	0.6	38
268	Impaired continuity of flow in congenital heart disease with single ventricle physiologyâ~†. Interactive Cardiovascular and Thoracic Surgery, 2011, 12, 87-90.	0.5	7
269	MRâ€based visualization and quantification of threeâ€dimensional flow characteristics in the portal venous system. Journal of Magnetic Resonance Imaging, 2010, 32, 466-475.	1.9	54
270	4D phase contrast MRI at 3 T: Effect of standard and bloodâ€pool contrast agents on SNR, PCâ€MRA, and blood flow visualization. Magnetic Resonance in Medicine, 2010, 63, 330-338.	1.9	146

#	Article	IF	CITATIONS
271	Improved SNR in phase contrast velocimetry with fiveâ€point balanced flow encoding. Magnetic Resonance in Medicine, 2010, 63, 349-355.	1.9	124
272	Estimation of global aortic pulse wave velocity by flowâ€sensitive 4D MRI. Magnetic Resonance in Medicine, 2010, 63, 1575-1582.	1.9	101
273	In vivo assessment of wall shear stress in the atherosclerotic aorta using flowâ€sensitive 4D MRI. Magnetic Resonance in Medicine, 2010, 63, 1529-1536.	1.9	108
274	Magnetic Resonance Tissue Phase Mapping of Myocardial Motion. Circulation: Cardiovascular Imaging, 2010, 3, 54-64.	1.3	79
275	Complex Plaques in the Proximal Descending Aorta. Stroke, 2010, 41, 1145-1150.	1.0	138
276	In Vivo Wall Shear Stress Distribution in the Carotid Artery. Circulation: Cardiovascular Imaging, 2010, 3, 647-655.	1.3	181
277	Visualization of multidirectional regional left ventricular dynamics by highâ€temporalâ€resolution tissue phase mapping. Journal of Magnetic Resonance Imaging, 2009, 29, 1043-1052.	1.9	35
278	Threeâ€dimensional analysis of segmental wall shear stress in the aorta by flowâ€sensitive fourâ€dimensionalâ€MRI. Journal of Magnetic Resonance Imaging, 2009, 30, 77-84.	1.9	153
279	Retrograde Embolism From the Descending Aorta. Stroke, 2009, 40, 1505-1508.	1.0	70
280	Three-Dimensional Flow Characteristics in Aortic Coarctation and Poststenotic Dilatation. Journal of Computer Assisted Tomography, 2009, 33, 776-778.	0.5	20
281	Optimized 3D bright blood MRI of aortic plaque at 3 T. Magnetic Resonance Imaging, 2008, 26, 330-336.	1.0	11
282	In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with flow-sensitized 4-D MR imaging at 3ÂT. Neuroradiology, 2008, 50, 473-484.	1.1	69
283	Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 30.	1.6	65
284	Parallel MRI with extended and averaged GRAPPA kernels (PEAKâ€GRAPPA): Optimized spatiotemporal dynamic imaging. Journal of Magnetic Resonance Imaging, 2008, 28, 1226-1232.	1.9	66
285	Highly <i>kâ€t</i> â€space–accelerated phaseâ€contrast MRI. Magnetic Resonance in Medicine, 2008, 60, 1169-1177.	1.9	79
286	Time-resolved magnetic resonance angiography and flow-sensitive 4-dimensional magnetic resonance imaging at 3 Tesla for blood flow and wall shear stress analysis. Journal of Thoracic and Cardiovascular Surgery, 2008, 136, 400-407.	0.4	66
287	In Vivo 3-Dimensional Flow Connectivity Mapping After Extracardiac Total Cavopulmonary Connection. Circulation, 2008, 118, e16-7.	1.6	22
288	Flow-sensitive four-dimensional magnetic resonance imaging: flow patterns in ascending aortic aneurysms. European Journal of Cardio-thoracic Surgery, 2008, 34, 11-16.	0.6	75

#	Article	IF	CITATIONS
289	Techniques in the Assessment of Cardiovascular Blood Flow and Velocity. , 2008, , 195-210.		1
290	Sclerotic Aortic Valve. Circulation, 2007, 116, e336-7.	1.6	16
291	Time-resolved, 3-Dimensional Magnetic Resonance Flow Analysis at 3 T. Journal of Computer Assisted Tomography, 2007, 31, 9-15.	0.5	90
292	Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. Journal of Magnetic Resonance Imaging, 2007, 25, 473-478.	1.9	64
293	Time-resolved 3D MR velocity mapping at 3T: Improved navigator-gated assessment of vascular anatomy and blood flow. Journal of Magnetic Resonance Imaging, 2007, 25, 824-831.	1.9	363
294	Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3D phase contrast MRI at 3T. Journal of Magnetic Resonance Imaging, 2007, 25, 1085-1092.	1.9	54
295	Comparison of flow patterns in ascending aortic aneurysms and volunteers using fourâ€dimensional magnetic resonance velocity mapping. Journal of Magnetic Resonance Imaging, 2007, 26, 1471-1479.	1.9	198
296	Plaques in the descending aorta: A new risk factor for stroke? Visualization of potential embolization pathways by 4D MRI. Journal of Magnetic Resonance Imaging, 2007, 26, 1651-1655.	1.9	31
297	Three-dimensional magnetic resonance flow analysis in a ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 1471-1476.	0.4	24
298	High resolution 3T MRI for the assessment of cervical and superficial cranial arteries in giant cell arteritis. Journal of Magnetic Resonance Imaging, 2006, 24, 423-427.	1.9	44
299	Detailed analysis of myocardial motion in volunteers and patients using high-temporal-resolution MR tissue phase mapping. Journal of Magnetic Resonance Imaging, 2006, 24, 1033-1039.	1.9	92
300	Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 456-463.	0.4	145
301	Rapid vessel prototyping: vascular modeling using 3t magnetic resonance angiography and rapid prototyping technology. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2005, 18, 288-292.	1.1	45
302	On flow effects in balanced steady-state free precession imaging: Pictorial description, parameter dependence, and clinical implications. Journal of Magnetic Resonance Imaging, 2004, 20, 697-705.	1.9	58
303	Time-Resolved 3-Dimensional Velocity Mapping in the Thoracic Aorta. Journal of Computer Assisted Tomography, 2004, 28, 459-468.	0.5	183
304	Time-resolved three-dimensional phase-contrast MRI. Journal of Magnetic Resonance Imaging, 2003, 17, 499-506.	1.9	365
305	Fast phase contrast cardiac magnetic resonance imaging: Improved assessment and analysis of left ventricular wall motion. Journal of Magnetic Resonance Imaging, 2002, 15, 642-653.	1.9	49
306	Cardiac phase contrast gradient echo MRI: measurement of myocardial wall motion in healthy volunteers and patients. International Journal of Cardiovascular Imaging, 1999, 15, 441-452.	0.2	34

#	Article	IF	CITATIONS
307	Spiral reconstruction by regridding to a large rectilinear matrix: A practical solution for routine systems. Journal of Magnetic Resonance Imaging, 1999, 10, 84-92.	1.9	30
308	Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient-echo sequence: Methodology and applications to normal volunteers and patients. Journal of Magnetic Resonance Imaging, 1998, 8, 868-877.	1.9	72
309	Baseline 4D Flow-Derived in vivo Hemodynamic Parameters Stratify Descending Aortic Dissection Patients With Enlarging Aortas. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	9
310	Cine magnetic resonance imaging detects shorter cardiac rest periods in postcapillary pulmonary hypertension. European Heart Journal Cardiovascular Imaging, 0, , .	0.5	1
311	Medial Collagen Type and Quantity Influence Mechanical Properties of Aneurysm Wall in Bicuspid Aortic Valve Patients. Frontiers in Mechanical Engineering, 0, 8, .	0.8	0