Burkhard Ludewig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6073589/publications.pdf

Version: 2024-02-01

187 papers 13,801 citations

63 h-index 109 g-index

195 all docs 195 docs citations

195 times ranked 19095 citing authors

#	Article	IF	CITATIONS
1	A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity. Science Immunology, 2022, 7, eabj0641.	11.9	27
2	Neonatal LTÎ^2R signaling is required for the accumulation of eosinophils in the inflamed adult mesenteric lymph node. Mucosal Immunology, 2022, , .	6.0	1
3	Visualization and functional characterization of lymphoid organ fibroblasts*. Immunological Reviews, 2022, 306, 108-122.	6.0	10
4	Intestinal fibroblastic reticular cell niches control innate lymphoid cell homeostasis and function. Nature Communications, 2022, 13, 2027.	12.8	8
5	Multitier mechanics control stromal adaptations in the swelling lymph node. Nature Immunology, 2022, 23, 1246-1255.	14.5	19
6	Fibroblastâ€derived ILâ€33 is dispensable for lymph node homeostasis but critical for CD8 Tâ€cell responses to acute and chronic viral infection. European Journal of Immunology, 2021, 51, 76-90.	2.9	24
7	Distinct microbial communities colonize tonsillar squamous cell carcinoma. Oncolmmunology, 2021, 10, 1945202.	4.6	13
8	Development and Immunological Function of Lymph Node Stromal Cells. Journal of Immunology, 2021, 206, 257-263.	0.8	40
9	PPARÎ 3 is essential for the development of bone marrow erythroblastic island macrophages and splenic red pulp macrophages. Journal of Experimental Medicine, 2021, 218, .	8.5	23
10	Insights into coronavirus immunity taught by the murine coronavirus. European Journal of Immunology, 2021, 51, 1062-1070.	2.9	14
11	Fibroblastic reticular cell lineage convergence in Peyer's patches governs intestinal immunity. Nature Immunology, 2021, 22, 510-519.	14.5	35
12	Fibroblasts as immune regulators in infection, inflammation and cancer. Nature Reviews Immunology, 2021, 21, 704-717.	22.7	229
13	Differentiation and activation of fibroblastic reticular cells. Immunological Reviews, 2021, 302, 32-46.	6.0	25
14	Anti-SARS-CoV-2 mRNA vaccine in patients with rheumatoid arthritis. Lancet Rheumatology, The, 2021, 3, e470-e472.	3.9	44
15	Adenovirus vector vaccination reprograms pulmonary fibroblastic niches to support protective inflating memory CD8+ T cells. Nature Immunology, 2021, 22, 1042-1051.	14.5	30
16	Viral vector-mediated reprogramming of the fibroblastic tumor stroma sustains curative melanoma treatment. Nature Communications, 2021, 12, 4734.	12.8	11
17	Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks. Trends in Immunology, 2021, 42, 782-794.	6.8	31
18	Keratinocyte differentiation antigen-specific T cells in immune checkpoint inhibitor-treated NSCLC patients are associated with improved survival. Oncolmmunology, 2021, 10, 2006893.	4.6	4

#	Article	IF	Citations
19	Heart non-specific effector CD4+ T cells protect from postinflammatory fibrosis and cardiac dysfunction in experimental autoimmune myocarditis. Basic Research in Cardiology, 2020, 115, 6.	5.9	17
20	B cell zone reticular cell microenvironments shape CXCL13 gradient formation. Nature Communications, 2020, 11, 3677.	12.8	52
21	Group 3 Innate Lymphoid Cells Program a Distinct Subset of IL-22BP-Producing Dendritic Cells Demarcating Solitary Intestinal Lymphoid Tissues. Immunity, 2020, 53, 1015-1032.e8.	14.3	41
22	Type I interferon signaling in fibroblastic reticular cells prevents exhaustive activation of antiviral CD8 ⁺ T cells. Science Immunology, 2020, 5, .	11.9	34
23	Remodeling of light and dark zone follicular dendritic cells governs germinal center responses. Nature Immunology, 2020, 21, 649-659.	14.5	80
24	GCNT1-Mediated <i>O</i> -Glycosylation of the Sialomucin CD43 Is a Sensitive Indicator of Notch Signaling in Activated T Cells. Journal of Immunology, 2020, 204, 1674-1688.	0.8	17
25	YAP/TAZ direct commitment and maturation of lymph node fibroblastic reticular cells. Nature Communications, 2020, 11, 519.	12.8	35
26	Topological Structure and Robustness of the Lymph Node Conduit System. Cell Reports, 2020, 30, 893-904.e6.	6.4	35
27	Lymph node stromal CCL2 limits antibody responses. Science Immunology, 2020, 5, .	11.9	30
28	Visualization of T Cell Migration in the Spleen Reveals a Network of Perivascular Pathways that Guide Entry into T Zones. Immunity, 2020, 52, 794-807.e7.	14.3	37
29	Numbers Game and Immune Geography as Determinants of Coronavirus Pathogenicity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 559209.	3.9	6
30	Divergent memory responses driven by adenoviral vectors are impacted by epitope competition. European Journal of Immunology, 2019, 49, 1356-1363.	2.9	2
31	Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science, 2019, 366, 881-886.	12.6	179
32	FRI-121-Portal hypertension in nodular regenerative hyperplasia is caused by vascular remodeling with extensive regression of portal vein branches. Journal of Hepatology, 2019, 70, e440-e441.	3.7	0
33	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
34	Type I interferon induces CXCL13 to support ectopic germinal center formation. Journal of Experimental Medicine, 2019, 216, 621-637.	8.5	130
35	Lymph Node Mesenchymal and Endothelial Stromal Cells Cooperate via the RANK-RANKL Cytokine Axis to Shape the Sinusoidal Macrophage Niche. Immunity, 2019, 50, 1467-1481.e6.	14.3	78
36	Systems analysis reveals complex biological processes during virus infection fate decisions. Genome Research, 2019, 29, 907-919.	5.5	21

#	Article	IF	Citations
37	Association of Checkpoint Inhibitor–Induced Toxic Effects With Shared Cancer and Tissue Antigens in Non–Small Cell Lung Cancer. JAMA Oncology, 2019, 5, 1043.	7.1	266
38	TLR7 Controls VSV Replication in CD169+ SCS Macrophages and Associated Viral Neuroinvasion. Frontiers in Immunology, 2019, 10, 466.	4.8	11
39	Legends of allergy/immunology: Rolf Zinkernagel and the coâ€discovery of MHC restriction together with Peter Doherty. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1409-1411.	5.7	0
40	Origin and differentiation trajectories of fibroblastic reticular cells in the splenic white pulp. Nature Communications, 2019, 10, 1739.	12.8	73
41	Fibroblastic reticular cells at the nexus of innate and adaptive immune responses. Immunological Reviews, 2019, 289, 31-41.	6.0	79
42	Antibodies as biomarker candidates for response and survival to checkpoint inhibitors in melanoma patients., 2019, 7, 50.		44
43	Early-life programming of mesenteric lymph node stromal cell identity by the lymphotoxin pathway regulates adult mucosal immunity. Science Immunology, 2019, 4, .	11.9	23
44	Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. Journal of Clinical Investigation, 2019, 129, 4922-4936.	8.2	109
45	Dll1 and Dll4 Notch Ligands Prime T Cell Alloimmunity and Are Expressed in Non-Overlapping Populations of Fibroblastic Stromal Cells in Spleen and Lymph Nodes at the Onset of Gvhd. Blood, 2019, 134, 588-588.	1.4	0
46	Non-Hematopoietic Lymphoid Stromal Cells Prime Alloreactive CD4+ T Cells in Acute Graft-Versus-Host Disease. Blood, 2019, 134, 4421-4421.	1.4	0
47	CCL19-producing fibroblastic stromal cells restrain lung carcinoma growth by promoting local antitumor T-cell responses. Journal of Allergy and Clinical Immunology, 2018, 142, 1257-1271.e4.	2.9	60
48	Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation. Immunity, 2018, 48, 120-132.e8.	14.3	149
49	Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. Oncolmmunology, 2018, 7, e1414129.	4.6	39
50	Integrative Computational Modeling of the Lymph Node Stromal Cell Landscape. Frontiers in Immunology, 2018, 9, 2428.	4.8	27
51	Essential Role of Canonical NF-κB Activity in the Development of Stromal Cell Subsets in Secondary Lymphoid Organs. Journal of Immunology, 2018, 201, 3580-3586.	0.8	9
52	Myocarditis Elicits Dendritic Cell and Monocyte Infiltration in the Heart and Self-Antigen Presentation by Conventional Type 2 Dendritic Cells. Frontiers in Immunology, 2018, 9, 2714.	4.8	28
53	A Distinct Subset of Fibroblastic Stromal Cells Constitutes the Cortex-Medulla Boundary Subcompartment of the Lymph Node. Frontiers in Immunology, 2018, 9, 2196.	4.8	23
54	Redefining the Nature of Lymphoid Tissue Organizer Cells: Response to â€~Complexity of Lymphoid Tissue Organizers' by Koning and Mebius. Trends in Immunology, 2018, 39, 952-953.	6.8	2

#	Article	IF	Citations
55	Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. PLoS Pathogens, 2018, 14, e1006993.	4.7	47
56	Basic Principles of Building aÂMathematical Model of Immune Response. , 2018, , 15-34.		0
57	Multi-scale and Integrative Modelling Approaches. , 2018, , 221-242.		2
58	Parameter Estimation and Model Selection. , 2018, , 35-95.		1
59	A Fresh View on Lymph Node Organogenesis. Trends in Immunology, 2018, 39, 775-787.	6.8	53
60	Fibroblastic reticular cells initiate immune responses in visceral adipose tissues and secure peritoneal immunity. Science Immunology, $2018, 3, .$	11.9	44
61	Mathematical Immunology of Virus Infections. , 2018, , .		42
62	Modelling of Experimental Infections. , 2018, , 97-152.		0
63	Stromal Cell Niches in the Inflamed Central Nervous System. Journal of Immunology, 2017, 198, 1775-1781.	0.8	32
64	Myocardial Infarction Primes Autoreactive T Cells through Activation of Dendritic Cells. Cell Reports, 2017, 18, 3005-3017.	6.4	104
65	Graph Theory-Based Analysis of the Lymph Node Fibroblastic Reticular Cell Network. Methods in Molecular Biology, 2017, 1591, 43-57.	0.9	7
66	Guidelines for the use of flow cytometry and cell sorting in immunological studies (sup)* . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
67	Lymphatic Endothelial Cells Control Initiation of Lymph Node Organogenesis. Immunity, 2017, 47, 80-92.e4.	14.3	107
68	Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis. Nature Communications, 2017, 8, 367.	12.8	49
69	Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands. Journal of Clinical Investigation, 2017, 127, 1574-1588.	8.2	72
70	Evolution of Salmonella Typhi outer membrane protein-specific T and B cell responses in humans following oral Ty21a vaccination: A randomized clinical trial. PLoS ONE, 2017, 12, e0178669.	2.5	15
71	Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathogens, 2017, 13, e1006195.	4.7	184
72	Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality. PLoS Biology, 2016, 14, e1002515.	5.6	96

#	Article	IF	CITATIONS
73	Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL. PLoS ONE, 2016, 11, e0151848.	2.5	46
74	PLGA-microencapsulation protects Salmonella typhi outer membrane proteins from acidic degradation and increases their mucosal immunogenicity. Vaccine, 2016, 34, 4263-4269.	3.8	17
75	Lymphotoxin-Dependent B Cell-FRC Crosstalk Promotes De Novo Follicle Formation and Antibody Production following Intestinal Helminth Infection. Cell Reports, 2016, 15, 1527-1541.	6.4	44
76	Heterogeneity of Cancer Stem Cells: Rationale for Targeting the Stem Cell Niche. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 276-289.	7.4	42
77	Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs. Nature Immunology, 2016, 17, 1388-1396.	14.5	72
78	Central Nervous System Stromal Cells Control Local CD8 + T Cell Responses during Virus-Induced Neuroinflammation. Immunity, 2016, 44, 622-633.	14.3	79
79	Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility. ELife, 2016, 5, e10561.	6.0	45
80	Alternative NFâ€PB signaling regulates mTEC differentiation from podoplaninâ€expressing precursors in the corticoâ€medullary junction. European Journal of Immunology, 2015, 45, 2218-2231.	2.9	77
81	Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage. Immunity, 2015, 43, 974-986.	14.3	50
82	Another TLO in the Wall: Education and Control of T Cells in Atherosclerotic Arteries. Immunity, 2015, 42, 981-983.	14.3	2
83	Tuning up FALCs: immunological shielding in the body cavities. Nature Immunology, 2015, 16, 796-798.	14.5	2
84	Phenotypic and Morphological Properties of Germinal Center Dark Zone <i>Cxcl12</i> -Expressing Reticular Cells. Journal of Immunology, 2015, 195, 4781-4791.	0.8	109
85	The CLEC-2–podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nature Immunology, 2015, 16, 75-84.	14.5	233
86	The NFκB-inducing kinase is essential for the developmental programming of skin-resident and IL-17-producing γl´T cells. ELife, 2015, 4, .	6.0	36
87	HDAC1 Controls CD8+ T Cell Homeostasis and Antiviral Response. PLoS ONE, 2014, 9, e110576.	2.5	16
88	Thromboxane A2 acts as tonic immunoregulator by preferential disruption of low-avidity CD4+ T cellâ€"dendritic cell interactions. Journal of Experimental Medicine, 2014, 211, 2507-2517.	8.5	61
89	Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division. Journal of Mathematical Biology, 2014, 69, 1547-1583.	1.9	21
90	Plasticity and complexity of B cell responses against persisting pathogens. Immunology Letters, 2014, 162, 53-58.	2.5	7

#	Article	IF	CITATIONS
91	MHC Class II–Restricted Antigen Presentation by Plasmacytoid Dendritic Cells Drives Proatherogenic T Cell Immunity. Circulation, 2014, 130, 1363-1373.	1.6	79
92	Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. Journal of Experimental Medicine, 2014, 211, 2265-2279.	8.5	133
93	IFN-γâ€"Producing CD4+ T Cells Promote Generation of Protective Germinal Centerâ€"Derived IgM+ B Cell Memory against <i>Salmonella</i> Typhi. Journal of Immunology, 2014, 192, 5192-5200.	0.8	35
94	B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nature Immunology, 2014, 15, 973-981.	14.5	237
95	Delta-like Ligands Expressed By Stromal Cells in Secondary Lymphoid Organs Deliver an Early Pulse of Notch Signaling and Drive T Cell Pathogenicity in Acute Graft-Versus-Host Disease. Blood, 2014, 124, 841-841.	1.4	2
96	Systemic minor histocompatibility antigen expression in blood endothelial cells prevents <scp>T</scp> cellâ€mediated vascular immunopathology. European Journal of Immunology, 2013, 43, 3233-3243.	2.9	0
97	Naive B-cell trafficking is shaped by local chemokine availability and LFA-1–independent stromal interactions. Blood, 2013, 121, 4101-4109.	1.4	32
98	Endothelial cell–specific lymphotoxin-β receptor signaling is critical for lymph node and high endothelial venule formation. Journal of Experimental Medicine, 2013, 210, 465-473.	8.5	135
99	Maturation of Lymph Node Fibroblastic Reticular Cells from Myofibroblastic Precursors Is Critical for Antiviral Immunity. Immunity, 2013, 38, 1013-1024.	14.3	219
100	Asymmetry of Cell Division in CFSE-Based Lymphocyte Proliferation Analysis. Frontiers in Immunology, 2013, 4, 264.	4.8	34
101	A New Model for CD8+ T Cell Memory Inflation Based upon a Recombinant Adenoviral Vector. Journal of Immunology, 2013, 190, 4162-4174.	0.8	41
102	Interleukin-7 is produced by afferent lymphatic vessels and supports lymphatic drainage. Blood, 2013, 122, 2271-2281.	1.4	58
103	Dendritic Cell-Specific Delivery of Flt3L by Coronavirus Vectors Secures Induction of Therapeutic Antitumor Immunity. PLoS ONE, 2013, 8, e81442.	2.5	7
104	Efficient boosting of the antiviral T cell response in B cell-depleted patients with autoimmune rheumatic diseases following influenza vaccination. Clinical and Experimental Rheumatology, 2013, 31, 723-30.	0.8	11
105	Identification of Protective B Cell Antigens of <i>Legionella pneumophila</i> . Journal of Immunology, 2012, 189, 841-849.	0.8	21
106	Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. Journal of Experimental Medicine, 2012, 209, 2485-2499.	8.5	167
107	T helper cell- and CD40-dependent germline IgM prevents chronic virus-induced demyelinating disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1233-1238.	7.1	22
108	Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3012-3017.	7.1	185

#	Article	IF	Citations
109	Regulatory T Cells Selectively Preserve Immune Privilege of Self-Antigens during Viral Central Nervous System Infection. Journal of Immunology, 2012, 188, 3678-3685.	0.8	41
110	Tight control \hat{a} €" decision-making during T cell \hat{a} €"vascular endothelial cell interaction. Frontiers in Immunology, 2012, 3, 279.	4.8	13
111	A global "imaging'' view on systems approaches in immunology. European Journal of Immunology, 20 42, 3116-3125.	12, 2.9	32
112	CD169+ macrophages take the bullet. Nature Immunology, 2012, 13, 13-14.	14.5	10
113	IL-7–producing stromal cells are critical for lymph node remodeling. Blood, 2012, 120, 4675-4683.	1.4	151
114	Ciprofloxacin and Epirubicin Synergistically Induce Apoptosis in Human Urothelial Cancer Cell Lines. Urologia Internationalis, 2012, 88, 343-349.	1.3	10
115	Cooperation of <scp>T</scp> h1 and <scp>T</scp> h17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. European Journal of Immunology, 2012, 42, 2311-2321.	2.9	96
116	A novel bacterial artificial chromosome-transgenic Podoplanin–Cre mouse targets lymphoid organ stromal cells in vivo. Frontiers in Immunology, 2011, 2, 50.	4.8	35
117	Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium. Immunology, 2011, 133, 469-481.	4.4	12
118	Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunology, 2011, 12, 137-143.	14.5	640
119	Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell–lymphotoxin-dependent pathway. Blood, 2010, 115, 4725-4733.	1.4	136
120	Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-I-dependent manner in mice. Hepatology, 2010, 52, 25-32.	7.3	78
121	IFNâ€Î³â€receptor signaling ameliorates transplant vasculopathy through attenuation of CD8 ⁺ Tâ€cellâ€mediated injury of vascular endothelial cells. European Journal of Immunology, 2010, 40, 733-743.	2.9	18
122	Dendritic Cell-Specific Antigen Delivery by Coronavirus Vaccine Vectors Induces Long-Lasting Protective Antiviral and Antitumor Immunity. MBio, 2010, 1, .	4.1	40
123	A Systems Immunology Approach to Plasmacytoid Dendritic Cell Function in Cytopathic Virus Infections. PLoS Pathogens, 2010, 6, e1001017.	4.7	25
124	Type I IFN-Mediated Protection of Macrophages and Dendritic Cells Secures Control of Murine Coronavirus Infection. Journal of Immunology, 2009, 182, 1099-1106.	0.8	113
125	Immunopathological Basis of Lymphocytic Choriomeningitis Virus-Induced Chorioretinitis and Keratitis. Journal of Virology, 2009, 83, 159-166.	3.4	14
126	TLR2 and TLR4 signaling shapes specific antibody responses to <i>Salmonella typhi</i> antigens. European Journal of Immunology, 2009, 39, 126-135.	2.9	50

#	Article	IF	Citations
127	Hematopoietic cell–derived interferon controls viral replication and virus-induced disease. Blood, 2009, 113, 1045-1052.	1.4	48
128	Lack of Conventional Dendritic Cells Is Compatible with Normal Development and T Cell Homeostasis, but Causes Myeloid Proliferative Syndrome. Immunity, 2008, 29, 986-997.	14.3	198
129	Restoration of lymphoid organ integrity through the interaction of lymphoid tissue–inducer cells with stroma of the T cell zone. Nature Immunology, 2008, 9, 667-675.	14.5	331
130	Aggravation of viral hepatitis by platelet-derived serotonin. Nature Medicine, 2008, 14, 756-761.	30.7	222
131	Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nature Reviews Immunology, 2008, 8, 764-775.	22.7	228
132	Mutation of a Self-Processing Site in Caspase-8 Compromises Its Apoptotic but Not Its Nonapoptotic Functions in Bacterial Artificial Chromosome-Transgenic Mice. Journal of Immunology, 2008, 181, 2522-2532.	0.8	113
133	Mouse Hepatitis Virus Liver Pathology Is Dependent on ADP-Ribose-1″-Phosphatase, a Viral Function Conserved in the Alpha-Like Supergroup. Journal of Virology, 2008, 82, 12325-12334.	3.4	139
134	Immunologic ignorance of vascular endothelial cells expressing minor histocompatibility antigen. Blood, 2008, 111, 4588-4595.	1.4	13
135	Dendritic Cell-Independent B Cell Activation During Acute Virus Infection: A Role for Early CCR7-Driven B-T Helper Cell Collaboration. Journal of Immunology, 2007, 178, 1468-1476.	0.8	40
136	Coronavirus Non-Structural Protein 1 Is a Major Pathogenicity Factor: Implications for the Rational Design of Coronavirus Vaccines. PLoS Pathogens, 2007, 3, e109.	4.7	205
137	Chronic Immune Reactivity Against Persisting Microbial Antigen in the Vasculature Exacerbates Atherosclerotic Lesion Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2206-2213.	2.4	17
138	Control of coronavirus infection through plasmacytoid dendritic-cell–derived type I interferon. Blood, 2007, 109, 1131-1137.	1.4	356
139	Molecular mapping of autoimmune B cell responses in experimental myocarditis. Journal of Autoimmunity, 2007, 28, 224-233.	6.5	25
140	Identification and characterization of a novel antigen from the nematodeNippostrongylus brasiliensis recognized by specific IgE. European Journal of Immunology, 2007, 37, 1275-1284.	2.9	26
141	The Immune System in the Pathogenesis of Vascular Proliferative Disease. , 2007, , 85-130.		0
142	Virus scores a perfect 10. Nature Medicine, 2006, 12, 1246-1248.	30.7	6
143	Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunology, Immunotherapy, 2006, 55, 1524-1533.	4.2	104
144	Rapid molecular dissection of viral and bacterial immunomes. European Journal of Immunology, 2006, 36, 1049-1057.	2.9	11

#	Article	IF	CITATIONS
145	Expression of lymphotoxin beta governs immunity at two distinct levels. European Journal of Immunology, 2006, 36, 2061-2075.	2.9	39
146	Towards a Coronavirus-Based HIV Multigene Vaccine. Clinical and Developmental Immunology, 2006, 13, 353-360.	3.3	12
147	A Mathematical Approach for Optimizing Dendritic Cell-Based Immunotherapy. , 2005, 109, 019-034.		5
148	Quantification and characterization of myosin peptide-specific CD4+ T cells in autoimmune myocarditis. Journal of Immunological Methods, 2005, 304, 117-125.	1.4	10
149	Dendritic cells generated from patients with androgen-independent prostate cancer are not impaired in migration and T-cell stimulation. Prostate, 2005, 64, 323-331.	2.3	9
150	Dendritic Cells and Autoimmunity. Transfusion Medicine and Hemotherapy, 2005, 32, 363-368.	1.6	4
151	Selective Replication of Coronavirus Genomes That Express Nucleocapsid Protein. Journal of Virology, 2005, 79, 6620-6630.	3.4	126
152	CXCR5-Dependent Seeding of Follicular Niches by B and Th Cells Augments Antiviral B Cell Responses. Journal of Immunology, 2005, 175, 7109-7116.	0.8	68
153	Cinanserin Is an Inhibitor of the 3C-Like Proteinase of Severe Acute Respiratory Syndrome Coronavirus and Strongly Reduces Virus Replication In Vitro. Journal of Virology, 2005, 79, 7095-7103.	3.4	185
154	Rapid Functional Exhaustion and Deletion of CTL following Immunization with Recombinant Adenovirus. Journal of Immunology, 2005, 174, 4559-4566.	0.8	55
155	Microchimerism maintains deletion of the donor cell-specific CD8+ T cell repertoire. Journal of Clinical Investigation, 2005, 116 , 156 - 162 .	8.2	66
156	Underwhelming the Immune Response: Effect of Slow Virus Growth on CD8 + -T-Lymphocyte Responses. Journal of Virology, 2004, 78, 2247-2254.	3.4	99
157	The in and out of monocytes in atherosclerotic plaques: Balancing inflammation through migration. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11529-11530.	7.1	39
158	Molecular Characterization of Virus-induced Autoantibody Responses. Journal of Experimental Medicine, 2004, 200, 637-646.	8.5	40
159	Impact of CCR7 on Priming and Distribution of Antiviral Effector and Memory CTL. Journal of Immunology, 2004, 173, 6684-6693.	0.8	87
160	Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA. Journal of General Virology, 2004, 85, 1717-1725.	2.9	76
161	Immunopathological Basis of Virus-induced Myocarditis. Clinical and Developmental Immunology, 2004, 11, 1-5.	3.3	26
162	Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly(lactide-co-glycolide) microspheres for immunotherapy. Journal of Immunological Methods, 2004, 287, 109-124.	1.4	74

#	Article	IF	Citations
163	Determining control parameters for dendritic cell-cytotoxic T lymphocyte interaction. European Journal of Immunology, 2004, 34, 2407-2418.	2.9	51
164	Immunopathogenesis of atherosclerosis. Journal of Leukocyte Biology, 2004, 76, 300-306.	3.3	26
165	CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood, 2004, 103, 1595-1601.	1.4	219
166	Autoimmunity seen through the SEREX-scope. Autoimmunity Reviews, 2003, 2, 339-345.	5.8	16
167	Dendritic Cell Homeostasis in the Regulation of Self-Reactivity. Current Pharmaceutical Design, 2003, 9, 221-231.	1.9	17
168	Antiviral Immune Responses in the Absence of Organized Lymphoid T Cell Zones in <i>plt/plt</i> Mice. Journal of Immunology, 2002, 168, 6032-6040.	0.8	61
169	Smooth Muscle Cells in Transplant Atherosclerotic Lesions Are Originated From Recipients, but Not Bone Marrow Progenitor Cells. Circulation, 2002, 106, 1834-1839.	1.6	188
170	Arterial Inflammation and Atherosclerosis. Trends in Cardiovascular Medicine, 2002, 12, 154-159.	4.9	48
171	Tracking Arterial Smooth Muscle-Specific T Cells in the Inflamed Vasculature. Advances in Experimental Medicine and Biology, 2002, 512, 183-189.	1.6	0
172	Dendritic cells in autoimmune diseases. Current Opinion in Immunology, 2001, 13, 657-662.	5 . 5	107
173	Perforin-independent regulation of dendritic cell homeostasis by CD8+ T cellsin vivo: implications for adaptive immunotherapy. European Journal of Immunology, 2001, 31, 1772-1779.	2.9	70
174	Hypercholesterolemia Exacerbates Virus-Induced Immunopathologic Liver Disease Via Suppression of Antiviral Cytotoxic T Cell Responses. Journal of Immunology, 2001, 166, 3369-3376.	0.8	62
175	Rapid Peptide Turnover and Inefficient Presentation of Exogenous Antigen Critically Limit the Activation of Self-Reactive CTL by Dendritic Cells. Journal of Immunology, 2001, 166, 3678-3687.	0.8	82
176	Induction of optimal anti-viral neutralizing B cell responses by dendritic cells requires transport and release of virus particles in secondary lymphoid organs. European Journal of Immunology, 2000, 30, 185-196.	2.9	47
177	Dendritic cells and differential usage of the MHC class II transactivator promoters in the central nervous system in experimental autoimmune encephalitis. European Journal of Immunology, 2000, 30, 794-802.	2.9	7 3
178	Induction, binding specificity and function of human ICOS. European Journal of Immunology, 2000, 30, 3707-3717.	2.9	166
179	Immunotherapy with Dendritic Cells Directed against Tumor Antigens Shared with Normal Host Cells Results in Severe Autoimmune Disease. Journal of Experimental Medicine, 2000, 191, 795-804.	8.5	251
180	Dendritic cells and differential usage of the MHC class II transactivator promoters in the central nervous system in experimental autoimmune encephalitis. European Journal of Immunology, 2000, 30, 794-802.	2.9	1

#	Article	IF	CITATIONS
181	Role of dendritic cells in the induction and maintenance of autoimmune diseases. Immunological Reviews, 1999, 169, 45-54.	6.0	85
182	Dendritic Cells Induce Autoimmune Diabetes and Maintain Disease via De Novo Formation of Local Lymphoid Tissue. Journal of Experimental Medicine, 1998, 188, 1493-1501.	8.5	285
183	Dendritic Cells Efficiently Induce Protective Antiviral Immunity. Journal of Virology, 1998, 72, 3812-3818.	3.4	175
184	Monocyte-derived dendritic cells represent a transient stage of differentiation in the myeloid lineage. Immunobiology, 1997, 197, 534-542.	1.9	44
185	Induction, regulation, and function of soluble TRAP (CD40 ligand) during interaction of primary CD4+ CD45RA+ T cells with dendritic cells. European Journal of Immunology, 1996, 26, 3137-3143.	2.9	85
186	Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-α, but strongly enhanced by interleukin-10. European Journal of Immunology, 1995, 25, 1943-1950.	2.9	194
187	Origin and Differentiation Trajectories of Fibroblastic Reticular Cells in the Splenic White Pulp. SSRN Electronic Journal, 0, , .	0.4	1