
Pierre Moenne-Loccoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6073208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angewandte Chemie - International Edition, 2022, 61, e202111492.	7.2	5
2	Mechanism of substrate inhibition in cytochrome-c dependent NO reductases from denitrifying bacteria (cNORs). Journal of Inorganic Biochemistry, 2022, 231, 111781.	1.5	1
3	Distinct roles of the Na ⁺ binding sites in the allosteric coupling mechanism of the glutamate transporter homolog, Glt _{Ph} . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121653119.	3.3	2
4	Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins. Chemical Science, 2021, 12, 6569-6579.	3.7	2
5	Artificial Metalloproteins with Dinuclear Iron–Hydroxido Centers. Journal of the American Chemical Society, 2021, 143, 2384-2393.	6.6	10
6	Sulfide Oxidation by 2,6-Bis[hydroxyl(methyl)amino]-4-morpholino-1,3,5-triazinatodioxomolybdenum(VI): Mechanistic Implications with DFT Calculations for a New Class of Molybdenum(VI) Complex. Inorganic Chemistry, 2021, 60, 7762-7772.	1.9	5
7	Axial Heme Coordination by the Tyr-His Motif in the Extracellular Hemophore HasAp Is Critical for the Release of Heme to the HasR Receptor of Pseudomonas aeruginosa. Biochemistry, 2021, 60, 2549-2559.	1.2	5
8	A Nonheme Mononuclear {FeNO} 7 Complex that Produces N 2 O in the Absence of an Exogenous Reductant. Angewandte Chemie, 2021, 133, 21728-21734.	1.6	0
9	A Nonheme Mononuclear {FeNO} 7 Complex that Produces N 2 O in the Absence of an Exogenous Reductant. Angewandte Chemie - International Edition, 2021, 60, 21558-21564.	7.2	10
10	Structures of Gating Intermediates in a K+ channel. Journal of Molecular Biology, 2021, 433, 167296.	2.0	2
11	A Reactive, Photogenerated High-Spin (<i>S</i> = 2) Fe ^{IV} (O) Complex via O ₂ Activation. Journal of the American Chemical Society, 2021, 143, 21637-21647.	6.6	12
12	Stabilization of the Dinitrogen Analogue, Phosphorus Nitride. ACS Central Science, 2020, 6, 1572-1577.	5.3	16
13	Direct Resonance Raman Characterization of a Peroxynitrito Copper Complex Generated from O 2 and NO and Mechanistic Insights into Metalâ€Mediated Peroxynitrite Decomposition. Angewandte Chemie, 2019, 131, 11052-11056.	1.6	1
14	Mononuclear, Nonheme, High-Spin {FeNO}7/8 Complexes Supported by a Sterically Encumbered N4S-Thioether Ligand. Inorganic Chemistry, 2019, 58, 9576-9580.	1.9	10
15	Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates. Journal of the American Chemical Society, 2019, 141, 17533-17547.	6.6	36
16	Direct Resonance Raman Characterization of a Peroxynitrito Copper Complex Generated from O ₂ and NO and Mechanistic Insights into Metalâ€Mediated Peroxynitrite Decomposition. Angewandte Chemie - International Edition, 2019, 58, 10936-10940.	7.2	19
17	Tuning the Geometric and Electronic Structure of Synthetic High-Valent Heme Iron(IV)-Oxo Models in the Presence of a Lewis Acid and Various Axial Ligands. Journal of the American Chemical Society, 2019, 141, 5942-5960.	6.6	54
18	A Nonheme Thiolate-Ligated Cobalt Superoxo Complex: Synthesis and Spectroscopic Characterization, Computational Studies, and Hydrogen Atom Abstraction Reactivity. Journal of the American Chemical Society, 2019, 141, 3641-3653.	6.6	38

#	Article	IF	CITATIONS
19	Structural and Spectroscopic Characterization of a Product Schiff Base Intermediate in the Reaction of the Quinoprotein Glycine Oxidase, GoxA. Biochemistry, 2019, 58, 706-713.	1.2	4
20	Nitric Oxide Reductase Activity in Heme–Nonheme Binuclear Engineered Myoglobins through a One-Electron Reduction Cycle. Journal of the American Chemical Society, 2018, 140, 17389-17393.	6.6	15
21	The Asp99–Arg188 salt bridge of the Pseudomonas aeruginosa HemO is critical in allowing conformational flexibility during catalysis. Journal of Biological Inorganic Chemistry, 2018, 23, 1057-1070.	1.1	6
22	Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6195-6200.	3.3	41
23	A Nonheme Sulfurâ€Ligated {FeNO} 6 Complex and Comparison with Redoxâ€Interconvertible {FeNO} 7 and {FeNO} 8 Analogues. Angewandte Chemie - International Edition, 2018, 57, 13465-13469.	7.2	14
24	A Nonheme Sulfurâ€Ligated {FeNO} 6 Complex and Comparison with Redoxâ€Interconvertible {FeNO} 7 and {FeNO} 8 Analogues. Angewandte Chemie, 2018, 130, 13653-13657.	1.6	5
25	Mechanisms of Nitric Oxide Sensing and Detoxification by Bacterial Hemoproteins. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 351-369.	0.8	0
26	Ligand-induced allostery in the interaction of the <i>Pseudomonas aeruginosa</i> heme binding protein with heme oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3421-3426.	3.3	18
27	A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO _(g)) with a Ferric-Superoxide Species. Journal of the American Chemical Society, 2017, 139, 17421-17430.	6.6	40
28	Distinguishing Nitro vs Nitrito Coordination in Cytochrome <i>c</i> ′ Using Vibrational Spectroscopy and Density Functional Theory. Inorganic Chemistry, 2017, 56, 13205-13213.	1.9	15
29	Direct Observation of Oxygen Rebound with an Iron-Hydroxide Complex. Journal of the American Chemical Society, 2017, 139, 13640-13643.	6.6	82
30	A Nonheme, High-Spin {FeNO}8 Complex that Spontaneously Generates N2O. Journal of the American Chemical Society, 2017, 139, 10621-10624.	6.6	40
31	Manganese and Cobalt in the Nonheme-Metal-Binding Site of a Biosynthetic Model of Heme-Copper Oxidase Superfamily Confer Oxidase Activity through Redox-Inactive Mechanism. Journal of the American Chemical Society, 2017, 139, 12209-12218.	6.6	36
32	Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases. Nature Chemistry, 2017, 9, 257-263.	6.6	126
33	Effect of Outer-Sphere Side Chain Substitutions on the Fate of the <i>trans</i> Iron–Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe _B Mbs): Insights into the Mechanism of Denitrifying NO Reductases. Biochemistry, 2016, 55, 2091-2099.	1.2	16
34	Replacing Arginine 33 for Alanine in the Hemophore HasA from <i>Pseudomonas aeruginosa</i> Causes Closure of the H32 Loop in the Apo-Protein. Biochemistry, 2016, 55, 2622-2631.	1.2	12
35	Distal Hydrogen-bonding Interactions in Ligand Sensing and Signaling by Mycobacterium tuberculosis DosS. Journal of Biological Chemistry, 2016, 291, 16100-16111.	1.6	17
36	Photoinitiated Reactivity of a Thiolate-Ligated, Spin-Crossover Nonheme {FeNO} ⁷ Complex with Dioxygen. Journal of the American Chemical Society, 2016, 138, 3107-3117.	6.6	25

#	Article	IF	CITATIONS
37	Ion-binding properties of a K ⁺ channel selectivity filter in different conformations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15096-15100.	3.3	38
38	Thioether-ligated iron(ii) and iron(iii)-hydroperoxo/alkylperoxo complexes with an H-bond donor in the second coordination sphere. Dalton Transactions, 2014, 43, 7522.	1.6	30
39	Versatile Reactivity of a Solvent-Coordinated Diiron(II) Compound: Synthesis and Dioxygen Reactivity of a Mixed-Valent Fe ^{II} Fe ^{III} Species. Inorganic Chemistry, 2014, 53, 167-181.	1.9	21
40	The Production of Nitrous Oxide by the Heme/Nonheme Diiron Center of Engineered Myoglobins (Fe _B Mbs) Proceeds through a <i>trans</i> -Iron-Nitrosyl Dimer. Journal of the American Chemical Society, 2014, 136, 2420-2431.	6.6	48
41	Light-Induced N ₂ O Production from a Non-heme Iron–Nitrosyl Dimer. Journal of the American Chemical Society, 2014, 136, 12524-12527.	6.6	37
42	Replacing the Axial Ligand Tyrosine 75 or Its Hydrogen Bond Partner Histidine 83 Minimally Affects Hemin Acquisition by the Hemophore HasAp from <i>Pseudomonas aeruginosa</i> . Biochemistry, 2014, 53, 2112-2125.	1.2	25
43	Characterizing Millisecond Intermediates in Hemoproteins Using Rapid-Freeze-Quench Resonance Raman Spectroscopy. Methods in Molecular Biology, 2014, 1122, 107-123.	0.4	8
44	Secondary Coordination Sphere Influence on the Reactivity of Nonheme Iron(II) Complexes: An Experimental and DFT Approach. Journal of the American Chemical Society, 2013, 135, 10590-10593.	6.6	102
45	The Hemophore HasA from <i>Yersinia pestis</i> (HasA _{yp}) Coordinates Hemin with a Single Residue, Tyr75, and with Minimal Conformational Change. Biochemistry, 2013, 52, 2705-2707.	1.2	41
46	Proximal Ligand Electron Donation and Reactivity of the Cytochrome P450 Ferric–Peroxo Anion. Journal of the American Chemical Society, 2012, 134, 6673-6684.	6.6	45
47	Vibrational Analysis of Mononitrosyl Complexes in Hemerythrin and Flavodiiron Proteins: Relevance to Detoxifying NO Reductase. Journal of the American Chemical Society, 2012, 134, 6878-6884.	6.6	51
48	Spectroscopic Characterization of Mononitrosyl Complexes in Heme–Nonheme Diiron Centers within the Myoglobin Scaffold (Fe _B Mbs): Relevance to Denitrifying NO Reductase. Biochemistry, 2011, 50, 5939-5947.	1.2	35
49	Phenol Nitration Induced by an {Fe(NO) ₂ } ¹⁰ Dinitrosyl Iron Complex. Journal of the American Chemical Society, 2011, 133, 1184-1187.	6.6	63
50	Nitric Oxide Dioxygenation Reaction in DevS and the Initial Response to Nitric Oxide in <i>Mycobacterium tuberculosis</i> . Biochemistry, 2011, 50, 1023-1028.	1.2	22
51	Opposite Movement of the External Gate of a Glutamate Transporter Homolog upon Binding Cotransported Sodium Compared with Substrate. Journal of Neuroscience, 2011, 31, 6255-6262.	1.7	37
52	Influence of the Nitrogen Donors on Nonheme Iron Models of Superoxide Reductase: High-Spin Fe ^{III} â^'OOR Complexes. Journal of the American Chemical Society, 2010, 132, 157-167.	6.6	52
53	Nitric oxideâ€sensitive and â€insensitive interaction of <i>Bacillus subtilis</i> NsrR with a ResDEâ€controlled promoter. Molecular Microbiology, 2010, 78, 1280-1293.	1.2	35
54	Kinetic and Spectroscopic Studies of Hemin Acquisition in the Hemophore HasAp from <i>Pseudomonas aeruginosa</i> . Biochemistry, 2010, 49, 6646-6654.	1.2	63

#	Article	IF	CITATIONS
55	Structural, NMR Spectroscopic, and Computational Investigation of Hemin Loading in the Hemophore HasAp from <i>Pseudomonas aeruginosa</i> . Journal of the American Chemical Society, 2010, 132, 9857-9872.	6.6	82
56	Catalyzing NO to N ₂ O in the Nitrogen Cycle. Science, 2010, 330, 1632-1633.	6.0	32
57	Carboxylate as the Protonation Site in (Peroxo)diiron(III) Model Complexes of Soluble Methane Monooxygenase and Related Diiron Proteins. Journal of the American Chemical Society, 2010, 132, 1273-1275.	6.6	48
58	Opposite Movements of the External Gate in Glutamate Transporters upon Binding Different Cotransported Ligands Measured by EPR. Biophysical Journal, 2010, 98, 628a.	0.2	0
59	Insights into the Nitric Oxide Reductase Mechanism of Flavodiiron Proteins from a Flavin-Free Enzyme. Biochemistry, 2010, 49, 7040-7049.	1.2	78
60	Calculated and Experimental Spin State of Seleno Cytochrome P450. Angewandte Chemie - International Edition, 2009, 48, 7193-7195.	7.2	27
61	The Millisecond Intermediate in the Reaction of Nitric Oxide with Oxymyoglobin is an Iron(III)â``Nitrato Complex, Not a Peroxynitrite. Journal of the American Chemical Society, 2009, 131, 7234-7235.	6.6	58
62	Modeling the Syn Disposition of Nitrogen Donors in Non-Heme Diiron Enzymes. Synthesis, Characterization, and Hydrogen Peroxide Reactivity of Diiron(III) Complexes with the Syn <i>N</i> -Donor Ligand H ₂ BPG ₂ DEV. Journal of the American Chemical Society, 2009, 131, 14508-14520.	6.6	20
63	Accommodation of Two Diatomic Molecules in Cytochrome bo3: Insights into NO Reductase Activity in Terminal Oxidases. Biochemistry, 2009, 48, 883-890.	1.2	32
64	Structural Characterization of the Hemophore HasAp from <i>Pseudomonas aeruginosa</i> : NMR Spectroscopy Reveals Proteinâ^'Protein Interactions between Holo-HasAp and Hemoglobin [,] . Biochemistry, 2009, 48, 96-109.	1.2	80
65	Detecting Conformational Changes In The Bacterial Glutamate Transporter Homolog GltPh Using EPR Spectroscopy. Biophysical Journal, 2009, 96, 149a.	0.2	0
66	Rational Tuning of the Thiolate Donor in Model Complexes of Superoxide Reductase: Direct Evidence for a <i>trans</i> Influence in Fe ^{III} â^'OOR Complexes. Journal of the American Chemical Society, 2008, 130, 14189-14200.	6.6	60
67	A Distal Tyrosine Residue Is Required for Ligand Discrimination in DevS from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2008, 47, 12532-12539.	1.2	33
68	Transcription Factor NsrR from <i>Bacillus subtilis</i> Senses Nitric Oxide with a 4Feâ^4S Cluster. Biochemistry, 2008, 47, 13084-13092.	1.2	97
69	Fourier Transform Infrared Characterization of a CuBâ^'Nitrosyl Complex in Cytochrome ba3 from Thermus thermophilus:  Relevance to NO Reductase Activity in Hemeâ^'Copper Terminal Oxidases. Journal of the American Chemical Society, 2007, 129, 14952-14958.	6.6	31
70	Spectroscopic characterization of heme iron–nitrosyl species and their role in NO reductase mechanisms in diiron proteins. Natural Product Reports, 2007, 24, 610-620.	5.2	100
71	Measurement of the Heme Affinity for Yeast Dap1p, and Its Importance in Cellular Function. Biochemistry, 2007, 46, 14629-14637.	1.2	26
72	Interdomain Interactions within the Two-Component Heme-Based Sensor DevS from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2007, 46, 9728-9736.	1.2	35

#	Article	IF	CITATIONS
73	DevS, a Heme-Containing Two-Component Oxygen Sensor of Mycobacterium tuberculosis. Biochemistry, 2007, 46, 4250-4260.	1.2	79
74	Biochemical and Structural Characterization of Pseudomonas aeruginosa Bfd and FPR:  Ferredoxin NADP+ Reductase and Not Ferredoxin Is the Redox Partner of Heme Oxygenase under Iron-Starvation Conditions,. Biochemistry, 2007, 46, 12198-12211.	1.2	38
75	Reactivity Studies on Felllâ^'(O22-)â^'CullCompounds:Â Influence of the Ligand Architecture and Copper Ligand Denticity. Inorganic Chemistry, 2007, 46, 6382-6394.	1.9	38
76	Further Insights into the Spectroscopic Properties, Electronic Structure, and Kinetics of Formation of the Hemeâ ''Peroxoâ ''Copper Complex [(F8TPP)FeIIIâ ''(O22-)â ''Cull(TMPA)]+. Inorganic Chemistry, 2007, 46, 3889-3902.	1.9	27
77	Fungal Heme Oxygenases:Â Functional Expression and Characterization of Hmx1 fromSaccharomyces cerevisiaeand CaHmx1 fromCandida albicansâ€. Biochemistry, 2006, 45, 14772-14780.	1.2	52
78	A Low-Spin Alkylperoxoâ^'Iron(III) Complex with Weak Feâ^'O and Oâ^'O Bonds:Â Implications for the Mechanism of Superoxide Reductase. Journal of the American Chemical Society, 2006, 128, 14222-14223.	6.6	46
79	Resonance Raman characterization of a high-spin six-coordinate iron(III) intermediate in metmyoglobin-azido complex formation trapped by microsecond freeze-hyperquenching (MHQ). Journal of Raman Spectroscopy, 2005, 36, 359-362.	1.2	14
80	Heme-copper/dioxygen adduct formation relevant to cytochrome c oxidase: spectroscopic characterization of [(6L)FeIII-(O22?)-CuII]+. Journal of Biological Inorganic Chemistry, 2005, 10, 63-77.	1.1	25
81	Structure and coordination of CuB in the Acidianus ambivalens aa 3 quinol oxidase heme–copper center. Journal of Biological Inorganic Chemistry, 2005, 10, 625-635.	1.1	6
82	Fourier Transform Infrared Characterization of the Azido Complex of Methane Monooxygenase Hydroxylase fromMethylococcus capsulatus(Bath). Journal of the American Chemical Society, 2005, 127, 4148-4149.	6.6	9
83	Tridentate Copper Ligand Influences on Hemeâ^'Peroxoâ^'Copper Formation and Properties:Â Reduced, Superoxo, and μ-Peroxo Iron/Copper Complexes. Inorganic Chemistry, 2005, 44, 7014-7029.	1.9	38
84	Accessibility of the Distal Heme Face, Rather than Feâ^'His Bond Strength, Determines the Heme-Nitrosyl Coordination Number of Cytochromescâ€~: Evidence from Spectroscopic Studiesâ€. Biochemistry, 2005, 44, 8664-8672.	1.2	37
85	Heme Oxidation in a Chimeric Protein of the α-SelectiveNeisseriae meningitidisHeme Oxygenase with the Distal Helix of the Î′-SelectivePseudomonas aeruginosaâ€. Biochemistry, 2005, 44, 13713-13723.	1.2	19
86	Heme/Non-Heme Diiron(II) Complexes and O2, CO, and NO Adducts as Reduced and Substrate-Bound Models for the Active Site of Bacterial Nitric Oxide Reductase. Journal of the American Chemical Society, 2005, 127, 3310-3320.	6.6	74
87	Dioxygen Reactivity of Copper and Hemeâ `Copper Complexes Possessing an Imidazoleâ `Phenol Cross-Link. Inorganic Chemistry, 2005, 44, 1238-1247.	1.9	47
88	Characterization of NO adducts of the diiron center in protein R2 of Escherichia coli ribonucleotide reductase and site-directed variants; implications for the O2 activation mechanism*. Journal of Biological Inorganic Chemistry, 2004, 9, 818-827.	1.1	31
89	Reduction of the Ferrous α-Verdohemeâ^'Cytochromeb5Complex. Inorganic Chemistry, 2004, 43, 8470-8478.	1.9	8
90	Synthesis and Spectroscopy of μ-Oxo (O2-)-Bridged Heme/Non-heme Diiron Complexes:  Models for the Active Site of Nitric Oxide Reductase. Inorganic Chemistry, 2004, 43, 651-662.	1.9	43

#	Article	IF	CITATIONS
91	Two CO Molecules Can Bind Concomitantly at the Diiron Site of NO Reductase fromBacillusazotoformans. Journal of the American Chemical Society, 2004, 126, 15332-15333.	6.6	33
92	Heme/Cu/O2Reactivity:Â Change in Felllâ^'(O22-)â^'CullUnit Peroxo Binding Geometry Effected by Tridentate Copper Chelation. Journal of the American Chemical Society, 2004, 126, 12716-12717.	6.6	36
93	Coupled Oxidation vs Heme Oxygenation:Â Insights from Axial Ligand Mutants of Mitochondrial Cytochromeb5. Journal of the American Chemical Society, 2003, 125, 4103-4110.	6.6	59
94	Cloning and expression of a heme binding protein from the genome of Saccharomyces cerevisiae. Protein Expression and Purification, 2003, 28, 340-349.	0.6	7
95	Superoxo, Â-peroxo, and Â-oxo complexes from heme/O2 and heme-Cu/O2 reactivity: Copper ligand influences in cytochrome c oxidase models. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3623-3628.	3.3	93
96	Purification and Characterization of the MQH2:NO Oxidoreductase from the Hyperthermophilic Archaeon Pyrobaculum aerophilum. Journal of Biological Chemistry, 2003, 278, 35861-35868.	1.6	46
97	Interaction of Nitric Oxide with Human Heme Oxygenase-1. Journal of Biological Chemistry, 2003, 278, 2341-2347.	1.6	57
98	Biophysical and Structural Analysis of a Novel Heme b Iron Ligation in the Flavocytochrome Cellobiose Dehydrogenase. Journal of Biological Chemistry, 2003, 278, 33224-33231.	1.6	19
99	Oxidation of Heme to β- and δ-Biliverdin byPseudomonas aeruginosaHeme Oxygenase as a Consequence of an Unusual Seating of the Heme. Journal of the American Chemical Society, 2002, 124, 14879-14892.	6.6	97
100	Nitric Oxide in Biological Denitrification:  Fe/Cu Metalloenzyme and Metal Complex NOx Redox Chemistry. Chemical Reviews, 2002, 102, 1201-1234.	23.0	435
101	Dioxygen Reactivity of Mononuclear Heme and Copper Components Yielding A High-Spin Hemeâ^'Peroxoâ^'Cu Complex. Journal of the American Chemical Society, 2001, 123, 6183-6184.	6.6	88
102	Rational Reprogramming of the R2 Subunit ofEscherichia coliRibonucleotide Reductase into a Self-Hydroxylating Monooxygenase. Journal of the American Chemical Society, 2001, 123, 7017-7030.	6.6	73
103	Site-Directed Mutation of the Highly Conserved Region near the Q-Loop of the Cytochrome bd Quinol Oxidase from Escherichia coli Specifically Perturbs Heme b595. Biochemistry, 2001, 40, 8548-8556.	1.2	36
104	Replacement of the Axial Histidine Ligand with Imidazole in CytochromecPeroxidase. 2. Effects on Heme Coordination and Functionâ€. Biochemistry, 2001, 40, 1274-1283.	1.2	56
105	Roles of the Proximal Heme Thiolate Ligand in Cytochrome P450cam. Journal of the American Chemical Society, 2001, 123, 4877-4885.	6.6	129
106	Disruption of an Active Site Hydrogen Bond Converts Human Heme Oxygenase-1 into a Peroxidase. Journal of Biological Chemistry, 2001, 276, 10612-10619.	1.6	90
107	Dioxygen and nitric oxide reactivity of a reduced heme/non-heme diiron(II) complex [(5L)Fellâ< Fellî—,Cl]+. Using a tethered tetraarylporphyrin for the development of an active site reactivity model for bacterial nitric oxide reductase. Inorganica Chimica Acta, 2000, 297, 362-372.	1.2	23
108	The Active Site of the Thermophilic CYP119 from Sulfolobus solfataricus. Journal of Biological Chemistry, 2000, 275, 14112-14123.	1.6	84

#	Article	IF	CITATIONS
109	Replacement of the Distal Glycine 139 Transforms Human Heme Oxygenase-1 into a Peroxidase. Journal of Biological Chemistry, 2000, 275, 34501-34507.	1.6	47
110	Identification of the Proximal Ligand His-20 in Heme Oxygenase (Hmu O) from Corynebacterium diphtheriae. Journal of Biological Chemistry, 2000, 275, 11686-11692.	1.6	37
111	Resonance Raman Studies of the Stoichiometric Catalytic Turnover of a Substrateâ^'Stearoyl-Acyl Carrier Protein Δ9Desaturase Complexâ€. Biochemistry, 2000, 39, 10507-10513.	1.2	14
112	Nitric Oxide Reductase fromParacoccus denitrificansContains an Oxo-Bridged Heme/Non-Heme Diiron Center. Journal of the American Chemical Society, 2000, 122, 9344-9345.	6.6	93
113	Oxygen Activation by Axial Ligand Mutants of Mitochondrial Cytochrome b5:  Oxidation of Heme to Verdoheme and Biliverdin. Journal of the American Chemical Society, 2000, 122, 7618-7619.	6.6	34
114	Formation of a Bis(histidyl) Heme Iron Complex in Manganese Peroxidase at High pH and Restoration of the Native Enzyme Structure by Calcium. Biochemistry, 2000, 39, 9994-10000.	1.2	20
115	Arginine 177 Is Involved in Mn(II) Binding by Manganese Peroxidaseâ€. Biochemistry, 1999, 38, 11482-11489.	1.2	30
116	The Ferroxidase Reaction of Ferritin Reveals a Diferric μ-1,2 Bridging Peroxide Intermediate in Common with Other O2-Activating Non-Heme Diiron Proteinsâ€. Biochemistry, 1999, 38, 5290-5295.	1.2	147
117	Replacement of the Proximal Histidine Iron Ligand by a Cysteine or Tyrosine Converts Heme Oxygenase to an Oxidaseâ€. Biochemistry, 1999, 38, 3733-3743.	1.2	110
118	Formation and Characterization of a High-Spin Heme-Copper Dioxygen (Peroxo) Complex. Journal of the American Chemical Society, 1999, 121, 9885-9886.	6.6	78
119	O2Activation by Non-Heme Diiron Proteins: Identification of a Symmetric μ-1,2-Peroxide in a Mutant of Ribonucleotide Reductaseâ€. Biochemistry, 1998, 37, 14659-14663.	1.2	173
120	Structural Characterization of the Catalytic High-Spin Hemebof Nitric Oxide Reductase:Â A Resonance Raman Studyâ€. Journal of the American Chemical Society, 1998, 120, 5147-5152.	6.6	110
121	2-Chloro-1,4-dimethoxybenzene Cation Radical: Formation and Role in the Lignin Peroxidase Oxidation of Anisyl Alcohol. Archives of Biochemistry and Biophysics, 1998, 360, 233-238.	1.4	19
122	Heme Oxygenase-1, Intermediates in Verdoheme Formation and the Requirement for Reduction Equivalents. Journal of Biological Chemistry, 1997, 272, 6909-6917.	1.6	109
123	Endothelial Nitric Oxide Synthase:  Modulations of the Distal Heme Site Produced by Progressive N-Terminal Deletions. Biochemistry, 1997, 36, 8530-8538.	1.2	56
124	Topaquinone-Dependent Amine Oxidases:Â Identification of Reaction Intermediates by Raman Spectroscopyâ€. Biochemistry, 1997, 36, 11479-11486.	1.2	50
125	Photoaccumulation in Photosystem I Does Produce a Phylloquinone (A1•-) Radicalâ€. Biochemistry, 1996, 35, 6644-6650.	1.2	33
126	Electrostatic Environment of the Tryptophylquinone Cofactor in Methylamine Dehydrogenase:Â Evidence from Resonance Raman Spectroscopy of Model Compoundsâ€. Biochemistry, 1996, 35, 4713-4720.	1.2	24

PIERRE MOENNE-LOCCOZ

#	Article	IF	CITATIONS
127	Characterization of the topa quinone cofactor in amine oxidase from Escherichia coli by resonance Raman spectroscopy. Biochemistry, 1995, 34, 7020-7026.	1.2	53
128	Evidence for a methylammonium-binding site on methylamine dehydrogenase of Thiobacillus versutus. Biochemistry, 1995, 34, 12926-12931.	1.2	18
129	Path of Electron Transfer in Photosystem 1: Direct Evidence of Forward Electron Transfer from A1 to Fe-SX. Biochemistry, 1994, 33, 10037-10042.	1.2	86
130	Comparison of the UV Resonance Raman Spectra of Bacteria, Bacterial Cell Walls, and Ribosomes Excited in the Deep UV. Applied Spectroscopy, 1993, 47, 38-43.	1.2	41
131	Ultraviolet resonance Raman evidence for a change of hydrophobicity of the retinal pocket in the M state of bacteriorhodopsin. Journal of the American Chemical Society, 1992, 114, 5893-5894.	6.6	6
132	Resonance Raman studies of photosynthetic membrane proteins. , 1991, , .		0
133	Structure of the primary electron donor in photosystem I: a resonance Raman study. Biochemistry, 1990, 29, 4740-4746.	1.2	37
134	Is There a Proteic Substructure Common to all Photosynthetic Reaction Centers ?. , 1990, , 65-68.		11
135	Structure of the Primary Reactants in Photosystem II : Resonance Raman Studies of D1D2 Particles. , 1990, , 423-426.		8
136	A resonance Raman characterization of the primary electron acceptor in photosystem II. Biochemistry, 1989, 28, 3641-3645.	1.2	68
137	Structure of the Primary Electron Donor in Photosystem I: Difference Resonance Raman Spectrocopy of CP1 Particles. , 1989, , 263-266.		1
138	An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angewandte Chemie, 0, , .	1.6	3