List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6071390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation points classifier ensemble for highâ€dimensional imbalanced classification. CAAI Transactions on Intelligence Technology, 2023, 8, 500-517.	3.4	0
2	Wireless Network Slice Assignment With Incremental Random Vector Functional Link Network. IEEE Transactions on Network Science and Engineering, 2023, 10, 1283-1296.	4.1	1
3	TSPIN: mining top-k stable periodic patterns. Applied Intelligence, 2022, 52, 6917-6938.	3.3	22
4	Parallel grid-based density peak clustering of big trajectory data. Applied Intelligence, 2022, 52, 17042-17057.	3.3	3
5	Mining interesting sequences with low average cost and high average utility. Applied Intelligence, 2022, 52, 7136-7157.	3.3	2
6	Frequent high minimum average utility sequence mining with constraints in dynamic databases using efficient pruning strategies. Applied Intelligence, 2022, 52, 6106-6128.	3.3	6
7	Self-adaptive nonoverlapping sequential pattern mining. Applied Intelligence, 2022, 52, 6646-6661.	3.3	10
8	An efficient parallel algorithm for mining weighted clickstream patterns. Information Sciences, 2022, 582, 349-368.	4.0	14
9	NTP-Miner: Nonoverlapping Three-Way Sequential Pattern Mining. ACM Transactions on Knowledge Discovery From Data, 2022, 16, 1-21.	2.5	16
10	Mining High Utility Itemsets with Hill Climbing and Simulated Annealing. ACM Transactions on Management Information Systems, 2022, 13, 1-22.	2.1	16
11	NWP-Miner: Nonoverlapping weak-gap sequential pattern mining. Information Sciences, 2022, 588, 124-141.	4.0	12
12	AM-ConvGRU: a spatio-temporal model for typhoon path prediction. Neural Computing and Applications, 2022, 34, 5905-5921.	3.2	8
13	Mining sequential patterns with flexible constraints from MOOC data. Applied Intelligence, 2022, 52, 16458-16474.	3.3	7
14	A novel dependency-oriented mixed-attribute data classification method. Expert Systems With Applications, 2022, 199, 116782.	4.4	8
15	MalSPM: Metamorphic malware behavior analysis and classification using sequential pattern mining. Computers and Security, 2022, 118, 102741.	4.0	14
16	Mining high occupancy patterns to analyze incremental data in intelligent systems. ISA Transactions, 2022, 131, 460-475.	3.1	6
17	UBP-Miner: An efficient bit based high utility itemset mining algorithm. Knowledge-Based Systems, 2022, 248, 108865.	4.0	12
18	Pattern Mining: Current Challenges andÂOpportunities. Lecture Notes in Computer Science, 2022, , 34-49.	1.0	20

#	Article	IF	CITATIONS
19	H-FHAUI: Hiding Frequent High Average Utility Itemsets. Information Sciences, 2022, , .	4.0	2
20	Fast Utility Mining on Sequence Data. IEEE Transactions on Cybernetics, 2021, 51, 487-500.	6.2	66
21	Analysis of public reactions to the novel Coronavirus (COVID-19) outbreak on Twitter. Kybernetes, 2021, 50, 1633-1653.	1.2	23
22	Proof searching and prediction in HOL4 with evolutionary/heuristic and deep learning techniques. Applied Intelligence, 2021, 51, 1580-1601.	3.3	3
23	Damped sliding based utility oriented pattern mining over stream data. Knowledge-Based Systems, 2021, 213, 106653.	4.0	20
24	Hiding sensitive information in eHealth datasets. Future Generation Computer Systems, 2021, 117, 169-180.	4.9	24
25	Mining local periodic patterns in a discrete sequence. Information Sciences, 2021, 544, 519-548.	4.0	28
26	A guided FP-Growth algorithm for mining multitude-targeted item-sets and class association rules in imbalanced data. Information Sciences, 2021, 553, 353-375.	4.0	29
27	Fast Top-K association rule mining using rule generation property pruning. Applied Intelligence, 2021, 51, 2077-2093.	3.3	15
28	A Survey of Utility-Oriented Pattern Mining. IEEE Transactions on Knowledge and Data Engineering, 2021, 33, 1306-1327.	4.0	185
29	A Survey of Machine Learning forÂNetwork Fault Management. , 2021, , 1-27.		1
30	Proof Searching in PVS Theorem Prover Using Simulated Annealing. Lecture Notes in Computer Science, 2021, , 253-262.	1.0	1
31	Discovering Alarm Correlation Rules for Network Fault Management. Lecture Notes in Computer Science, 2021, , 228-239.	1.0	3
32	IEEE Access Special Section Editorial: Utility-Pattern Mining: Theoretical Analytics and Applications. IEEE Access, 2021, 9, 16604-16607.	2.6	5
33	Using artificial intelligence techniques for COVID-19 genome analysis. Applied Intelligence, 2021, 51, 3086-3103.	3.3	61
34	Beyond Frequency. ACM Transactions on Internet Technology, 2021, 21, 1-32.	3.0	7
35	FHUQI-Miner: Fast high utility quantitative itemset mining. Applied Intelligence, 2021, 51, 6785-6809.	3.3	19
36	A new perceptual evaluation method of video quality based on neural network. Intelligent Data Analysis, 2021, 25, 571-587.	0.4	2

PHILIPPE FOURNIER-VIGER

#	Article	IF	CITATIONS
37	Average utility driven data analytics on damped windows for intelligent systems with data streams. International Journal of Intelligent Systems, 2021, 36, 5741-5769.	3.3	10
38	An evolutionary/heuristic-based proof searching framework for interactive theorem prover. Applied Soft Computing Journal, 2021, 104, 107200.	4.1	6
39	Utility Mining Across Multi-Dimensional Sequences. ACM Transactions on Knowledge Discovery From Data, 2021, 15, 1-24.	2.5	15
40	Enhancing link prediction in dynamic networks using content aggregation. Cluster Computing, 2021, 24, 3055-3063.	3.5	0
41	Efficient algorithms for mining frequent high utility sequences with constraints. Information Sciences, 2021, 568, 239-264.	4.0	20
42	A predictive GA-based model for closed high-utility itemset mining. Applied Soft Computing Journal, 2021, 108, 107422.	4.1	52
43	Mining Profitable and Concise Patterns in Large-Scale Internet of Things Environments. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	0.8	1
44	HANP-Miner: High average utility nonoverlapping sequential pattern mining. Knowledge-Based Systems, 2021, 229, 107361.	4.0	22
45	Mining Partially-Ordered Episode Rules in an Event Sequence. Lecture Notes in Computer Science, 2021, , 3-15.	1.0	9
46	Mining Partially-Ordered Episode Rules with the Head Support. Lecture Notes in Computer Science, 2021, , 266-271.	1.0	4
47	Investigating Crossover Operators in Genetic Algorithms for High-Utility Itemset Mining. Lecture Notes in Computer Science, 2021, , 16-28.	1.0	4
48	Analytics of Multiple-Threshold Model for High Average-Utilization Patterns in Smart City Environments. Advanced Sciences and Technologies for Security Applications, 2021, , 1-22.	0.4	0
49	A Transaction Classification Model of Federated Learning. Lecture Notes in Computer Science, 2021, , 509-518.	1.0	2
50	Mining Skyline Frequent-Utility Itemsets with Utility Filtering. Lecture Notes in Computer Science, 2021, , 411-424.	1.0	8
51	Privacy Preservation of Periodic Frequent Patterns Using Sensitive Inverse Frequency. , 2021, , 215-227.		1
52	Discovering Periodic High Utility Itemsets in a Discrete Sequence. , 2021, , 133-151.		2
53	Finding Periodic Patterns in Multiple Sequences. , 2021, , 81-103.		1
54	NetHAPP: High Average Utility Periodic Gapped Sequential Pattern Mining. , 2021, , 191-214.		0

#	Article	IF	CITATIONS
55	Towards Revenue Maximization with Popular and Profitable Products. ACM/IMS Transactions on Data Science, 2021, 2, 1-21.	2.1	0
56	Stable High Utility Itemset Mining. , 2021, , .		1
57	Privacy-Preserving Periodic Frequent Pattern Model in AloT Applications. , 2021, , .		1
58	HSNP-Miner: High Utility Self-Adaptive Nonoverlapping Pattern Mining. , 2021, , .		1
59	CHUQI-Miner: Mining Correlated Quantitative High Utility Itemsets. , 2021, , .		1
60	Discovering Relative High Utility Itemsets in Very Large Transactional Databases Using Null-Invariant Measure. , 2021, , .		1
61	HUOPM: High-Utility Occupancy Pattern Mining. IEEE Transactions on Cybernetics, 2020, 50, 1195-1208.	6.2	115
62	NextRoute: a lossless model for accurate mobility prediction. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 2661-2681.	3.3	5
63	Discovering rare correlated periodic patterns in multiple sequences. Data and Knowledge Engineering, 2020, 126, 101733.	2.1	16
64	High average-utility sequential pattern mining based on uncertain databases. Knowledge and Information Systems, 2020, 62, 1199-1228.	2.1	24
65	EHAUSM: An efficient algorithm for high average utility sequence mining. Information Sciences, 2020, 515, 302-323.	4.0	19
66	Mining cost-effective patterns in event logs. Knowledge-Based Systems, 2020, 191, 105241.	4.0	34
67	Uncertainty-Based Pattern Mining for Maximizing Profit of Manufacturing Plants With List Structure. IEEE Transactions on Industrial Electronics, 2020, 67, 9914-9926.	5.2	6
68	Mining high utility itemsets using extended chain structure and utility machine. Knowledge-Based Systems, 2020, 208, 106457.	4.0	18
69	Proof Learning in PVS With Utility Pattern Mining. IEEE Access, 2020, 8, 119806-119818.	2.6	4
70	Mining Productive Itemsets in Dynamic Databases. IEEE Access, 2020, 8, 140122-140144.	2.6	2
71	Extracting User-Centric Knowledge on Two Different Spaces: Concepts and Records. IEEE Access, 2020, 8, 134782-134799.	2.6	5
72	A Multi-Core Approach to Efficiently Mining High-Utility Itemsets in Dynamic Profit Databases. IEEE Access, 2020, 8, 85890-85899.	2.6	26

#	Article	IF	CITATIONS
73	Efficient Chain Structure for High-Utility Sequential Pattern Mining. IEEE Access, 2020, 8, 40714-40722.	2.6	24
74	Mining correlated high-utility itemsets using various measures. Logic Journal of the IGPL, 2020, 28, 19-32.	1.3	26
75	One scan based high average-utility pattern mining in static and dynamic databases. Future Generation Computer Systems, 2020, 111, 143-158.	4.9	26
76	A survey of pattern mining in dynamic graphs. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10, e1372.	4.6	18
77	TKE: Mining Top-K Frequent Episodes. Lecture Notes in Computer Science, 2020, , 832-845.	1.0	22
78	Mining Cross-Level High Utility Itemsets. Lecture Notes in Computer Science, 2020, , 858-871.	1.0	12
79	Maintenance of Prelarge High Average-Utility Patterns in Incremental Databases. Lecture Notes in Computer Science, 2020, , 884-895.	1.0	1
80	Mining Attribute Evolution Rules in Dynamic Attributed Graphs. Lecture Notes in Computer Science, 2020, , 167-182.	1.0	6
81	TKC: Mining Top-K Cross-Level High Utility Itemsets. , 2020, , .		12
82	Proof searching in HOL4 with genetic algorithm. , 2020, , .		4
83	Utility-Driven Mining of Trend Information for Intelligent System. ACM Transactions on Management Information Systems, 2020, 11, 1-28.	2.1	11
84	Mining Locally Trending High Utility Itemsets. Lecture Notes in Computer Science, 2020, , 99-111.	1.0	2
85	A Decision Support System to Provide Criminal Pattern Based Suggestions to Travelers. Lecture Notes in Computer Science, 2020, , 582-587.	1.0	0
86	Discovering Frequent Spatial Patterns in Very Large Spatiotemporal Databases. , 2020, , .		7
87	GBSO-RSS: GPU-Based BSO for Rules Space Summarization. Advances in Intelligent Systems and Computing, 2019, , 123-129.	0.5	5
88	Efficient Vertical Mining of High Average-Utility Itemsets Based on Novel Upper-Bounds. IEEE Transactions on Knowledge and Data Engineering, 2019, 31, 301-314.	4.0	54
89	Exploiting GPU parallelism in improving bees swarm optimization for mining big transactional databases. Information Sciences, 2019, 496, 326-342.	4.0	34
90	CLS-Miner: efficient and effective closed high-utility itemset mining. Frontiers of Computer Science, 2019, 13, 357-381.	1.6	43

#	Article	IF	CITATIONS
91	Frequent itemset mining: A 25 years review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9, e1329.	4.6	138
92	Efficient high average-utility itemset mining using novel vertical weak upper-bounds. Knowledge-Based Systems, 2019, 183, 104847.	4.0	40
93	Discovering Stable Periodic-Frequent Patterns in Transactional Data. Lecture Notes in Computer Science, 2019, , 230-244.	1.0	26
94	A Parallel Crime Activity Clustering Algorithm Based on Apache Spark Cloud Computing Platform. , 2019, , .		2
95	A Novel Parallel Framework for Metaheuristic-based Frequent Itemset Mining. , 2019, , .		1
96	A Swarm-based Data Sanitization Algorithm in Privacy-Preserving Data Mining. , 2019, , .		1
97	Discovering Spatial High Utility Itemsets in Spatiotemporal Databases. , 2019, , .		12
98	A Survey of High Utility Sequential Pattern Mining. Studies in Big Data, 2019, , 97-129.	0.8	37
99	Efficient Algorithms for High Utility Itemset Mining Without Candidate Generation. Studies in Big Data, 2019, , 131-160.	0.8	17
100	A Survey of Privacy Preserving Utility Mining. Studies in Big Data, 2019, , 207-232.	0.8	6
101	A Survey of High Utility Itemset Mining. Studies in Big Data, 2019, , 1-45.	0.8	55
102	Metaheuristics for Frequent and High-Utility Itemset Mining. Studies in Big Data, 2019, , 261-278.	0.8	4
103	PCPD: A Parallel Crime Pattern Discovery System for Large-Scale Spatiotemporal Data Based on Fuzzy Clustering. International Journal of Fuzzy Systems, 2019, 21, 1961-1974.	2.3	16
104	FMaxCloHUSM: An efficient algorithm for mining frequent closed and maximal high utility sequences. Engineering Applications of Artificial Intelligence, 2019, 85, 1-20.	4.3	26
105	A Survey of Parallel Sequential Pattern Mining. ACM Transactions on Knowledge Discovery From Data, 2019, 13, 1-34.	2.5	176
106	Mining significant trend sequences in dynamic attributed graphs. Knowledge-Based Systems, 2019, 182, 104797.	4.0	18
107	Efficient algorithms to identify periodic patterns in multiple sequences. Information Sciences, 2019, 489, 205-226.	4.0	45
108	Football Pass Prediction Using Player Locations. Lecture Notes in Computer Science, 2019, , 152-158.	1.0	2

#	Article	IF	CITATIONS
109	BILU-NEMH: A BILU neural-encoded mention hypergraph for mention extraction. Information Sciences, 2019, 496, 53-64.	4.0	12
110	Mining high-utility itemsets in dynamic profit databases. Knowledge-Based Systems, 2019, 175, 130-144.	4.0	69
111	Efficiently Finding High Utility-Frequent Itemsets Using Cutoff and Suffix Utility. Lecture Notes in Computer Science, 2019, , 191-203.	1.0	11
112	Mining Compact High Utility Itemsets Without Candidate Generation. Studies in Big Data, 2019, , 279-302.	0.8	14
113	Hiding sensitive itemsets with multiple objective optimization. Soft Computing, 2019, 23, 12779-12797.	2.1	45
114	GPU-based swarm intelligence for Association Rule Mining in big databases. Intelligent Data Analysis, 2019, 23, 57-76.	0.4	8
115	A Sanitization Approach to Secure Shared Data in an IoT Environment. IEEE Access, 2019, 7, 25359-25368.	2.6	40
116	A GA-based Framework for Mining High Fuzzy Utility Itemsets. , 2019, , .		5
117	Discovering Periodic Patterns in Irregular Time Series. , 2019, , .		1
118	An Efficient Chain Structure to Mine High-Utility Sequential Patterns. , 2019, , .		5
119	A Project-based PMiner Algorithm in Uncertain Databases. , 2019, , .		0
120	Mining High-Utility Sequential Patterns from Big Datasets. , 2019, , .		6
121	Efficient Mining of High Average-Utility Sequential Patterns from Uncertain Databases. , 2019, , .		4
122	SPPC: a new tree structure for mining erasable patterns in data streams. Applied Intelligence, 2019, 49, 478-495.	3.3	17
123	Mining High Utility Itemsets from Multiple Databases. Smart Innovation, Systems and Technologies, 2019, , 139-146.	0.5	0
124	Mining local and peak high utility itemsets. Information Sciences, 2019, 481, 344-367.	4.0	60
125	Mining of skyline patterns by considering both frequent and utility constraints. Engineering Applications of Artificial Intelligence, 2019, 77, 229-238.	4.3	83
126	Bee swarm optimization for solving the MAXSAT problem using prior knowledge. Soft Computing, 2019, 23, 3095-3112.	2.1	9

#	Article	IF	CITATIONS
127	Proof Guidance in PVS with Sequential Pattern Mining. Lecture Notes in Computer Science, 2019, , 45-60.	1.0	9
128	HUE-Span: Fast High Utility Episode Mining. Lecture Notes in Computer Science, 2019, , 169-184.	1.0	23
129	TKG: Efficient Mining of Top-K Frequent Subgraphs. Lecture Notes in Computer Science, 2019, , 209-226.	1.0	20
130	An Explicit Relationship Between Sequential Patterns and Their Concise Representations. Lecture Notes in Computer Science, 2019, , 341-361.	1.0	1
131	Discovering Periodic Itemsets Using Novel Periodicity Measures. Advances in Electrical and Electronic Engineering, 2019, 17, .	0.2	4
132	The density-based clustering method for privacy-preserving data mining. Mathematical Biosciences and Engineering, 2019, 16, 1718-1728.	1.0	18
133	Adaptive Self-Sufficient Itemset Miner for Transactional Data Streams. Lecture Notes in Computer Science, 2019, , 419-430.	1.0	0
134	Succinct BWT-Based Sequence Prediction. Lecture Notes in Computer Science, 2019, , 91-101.	1.0	4
135	Network of Experts: Learning from Evolving Data Streams Through Network-Based Ensembles. Lecture Notes in Computer Science, 2019, , 704-716.	1.0	0
136	Using Diagnostic Analysis to Discover Offensive Patterns in a Football Game. Springer Proceedings in Business and Economics, 2018, , 381-386.	0.3	6
137	Efficiently updating the discovered high average-utility itemsets with transaction insertion. Engineering Applications of Artificial Intelligence, 2018, 72, 136-149.	4.3	14
138	Fast and effective cluster-based information retrieval using frequent closed itemsets. Information Sciences, 2018, 453, 154-167.	4.0	67
139	TUB-HAUPM: Tighter Upper Bound for Mining High Average-Utility Patterns. IEEE Access, 2018, 6, 18655-18669.	2.6	34
140	An efficient algorithm for Hiding High Utility Sequential Patterns. International Journal of Approximate Reasoning, 2018, 95, 77-92.	1.9	23
141	A survey of incremental highâ€utility itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8, e1242.	4.6	110
142	MEMU: More Efficient Algorithm to Mine High Average-Utility Patterns With Multiple Minimum Average-Utility Thresholds. IEEE Access, 2018, 6, 7593-7609.	2.6	33
143	Extracting useful knowledge from event logs: A frequent itemset mining approach. Knowledge-Based Systems, 2018, 139, 132-148.	4.0	45
144	Exploiting highly qualified pattern with frequency and weight occupancy. Knowledge and Information Systems, 2018, 56, 165-196.	2.1	15

#	Article	IF	CITATIONS
145	Efficient high utility itemset mining using buffered utility-lists. Applied Intelligence, 2018, 48, 1859-1877.	3.3	73
146	Extracting non-redundant correlated purchase behaviors by utility measure. Knowledge-Based Systems, 2018, 143, 30-41.	4.0	52
147	Efficiently mining frequent itemsets applied for textual aggregation. Applied Intelligence, 2018, 48, 1013-1019.	3.3	11
148	PPSF: An Open-Source Privacy-Preserving and Security Mining Framework. , 2018, , .		34
149	Concept Drift Detector Selection for Hoeffding Adaptive Trees. Lecture Notes in Computer Science, 2018, , 730-736.	1.0	0
150	A Metaheuristic Algorithm for Hiding Sensitive Itemsets. Lecture Notes in Computer Science, 2018, , 492-498.	1.0	7
151	Anonymization of Multiple and Personalized Sensitive Attributes. Lecture Notes in Computer Science, 2018, , 204-215.	1.0	4
152	Radio Data Transmission Reduction in Power-Constrained WSN. , 2018, , .		1
153	Mining diversified association rules in big datasets: A cluster/CPU/genetic approach. Information Sciences, 2018, 459, 117-134.	4.0	42
154	Energy-Efficient Partitioning Clustering Algorithm for Wireless Sensor Network. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 14-23.	0.2	3
155	An efficient algorithm for mining periodic high-utility sequential patterns. Applied Intelligence, 2018, 48, 4694-4714.	3.3	40
156	Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowledge-Based Systems, 2018, 161, 185-204.	4.0	318
157	A new framework for metaheuristic-based frequent itemset mining. Applied Intelligence, 2018, 48, 4775-4791.	3.3	19
158	Efficiently Updating the Discovered Multiple Fuzzy Frequent Itemsets with Transaction Insertion. International Journal of Fuzzy Systems, 2018, 20, 2440-2457.	2.3	13
159	Maintenance algorithm for high average-utility itemsets with transaction deletion. Applied Intelligence, 2018, 48, 3691-3706.	3.3	19
160	Maintenance of Discovered High Average-Utility Itemsets in Dynamic Databases. Applied Sciences (Switzerland), 2018, 8, 769.	1.3	18
161	Mining Local High Utility Itemsets. Lecture Notes in Computer Science, 2018, , 450-460.	1.0	4

LocRec: Rule-Based Successive Location Recommendation in LBSN. , 2018, , .

1

#	Article	IF	CITATIONS
163	New Tighter Upper Bounds for Mining High Average-Utility Itemsets. , 2018, , .		2
164	High utility drift detection in quantitative data streams. Knowledge-Based Systems, 2018, 157, 34-51.	4.0	9
165	Updating the Discovered High Average-Utility Patterns with Transaction Insertion. Advances in Intelligent Systems and Computing, 2018, , 66-73.	0.5	3
166	Interactive Discovery of Statistically Significant Itemsets. Lecture Notes in Computer Science, 2018, , 101-113.	1.0	2
167	Discovering Strong Meta Association Rules Using Bees Swarm Optimization. Lecture Notes in Computer Science, 2018, , 195-206.	1.0	1
168	Discovering High Utility Change Points in Customer Transaction Data. Lecture Notes in Computer Science, 2018, , 392-402.	1.0	0
169	A binary PSO approach to mine high-utility itemsets. Soft Computing, 2017, 21, 5103-5121.	2.1	95
170	Efficiently mining uncertain high-utility itemsets. Soft Computing, 2017, 21, 2801-2820.	2.1	43
171	Chemical reaction optimization with unified tabu search for the vehicle routing problem. Soft Computing, 2017, 21, 6421-6433.	2.1	9
172	An efficient algorithm for mining top-k on-shelf high utility itemsets. Knowledge and Information Systems, 2017, 52, 621-655.	2.1	29
173	FCloSM, FGenSM: two efficient algorithms for mining frequent closed and generator sequences using the local pruning strategy. Knowledge and Information Systems, 2017, 53, 71-107.	2.1	30
174	Mining of frequent patterns with multiple minimum supports. Engineering Applications of Artificial Intelligence, 2017, 60, 83-96.	4.3	54
175	A survey of itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2017, 7, e1207.	4.6	163
176	Efficiently mining frequent itemsets with weight and recency constraints. Applied Intelligence, 2017, 47, 769-792.	3.3	13
177	Discovering Periodic Patterns in Non-uniform Temporal Databases. Lecture Notes in Computer Science, 2017, , 604-617.	1.0	18
178	Mining High-Utility Itemsets with Both Positive and Negative Unit Profits from Uncertain Databases. Lecture Notes in Computer Science, 2017, , 434-446.	1.0	12
179	A two-phase approach to mine short-period high-utility itemsets in transactional databases. Advanced Engineering Informatics, 2017, 33, 29-43.	4.0	32
180	Efficient hiding of confidential high-utility itemsets with minimal side effects. Journal of Experimental and Theoretical Artificial Intelligence, 2017, 29, 1225-1245.	1.8	22

#	Article	IF	CITATIONS
181	EHAUPM: Efficient High Average-Utility Pattern Mining With Tighter Upper Bounds. IEEE Access, 2017, 5, 12927-12940.	2.6	61
182	Extracting recent weighted-based patterns from uncertain temporal databases. Engineering Applications of Artificial Intelligence, 2017, 61, 161-172.	4.3	22
183	A fast algorithm for mining high average-utility itemsets. Applied Intelligence, 2017, 47, 331-346.	3.3	36
184	Mining Weighted Frequent Itemsets without Candidate Generation in Uncertain Databases. International Journal of Information Technology and Decision Making, 2017, 16, 1549-1579.	2.3	13
185	High-Utility Sequential Pattern Mining with Multiple Minimum Utility Thresholds. Lecture Notes in Computer Science, 2017, , 215-229.	1.0	14
186	ETARM: an efficient top-k association rule mining algorithm. Applied Intelligence, 2017, 48, 1148.	3.3	9
187	Mining of High Average-Utility Itemsets with a Tighter Upper-Bound Model. , 2017, , .		1
188	Exploiting High Utility Occupancy Patterns. Lecture Notes in Computer Science, 2017, , 239-247.	1.0	2
189	TWINCLE : A Constrained Sequential Rule Mining Algorithm for Event Logs. Procedia Computer Science, 2017, 112, 205-214.	1.2	17
190	Analyzing students' attention in class using wearable devices. , 2017, , .		20
191	A More Efficient Algorithm to Mine Skyline Frequent-Utility Patterns. Advances in Intelligent Systems and Computing, 2017, , 127-135.	0.5	3
192	EFIM: a fast and memory efficient algorithm for high-utility itemset mining. Knowledge and Information Systems, 2017, 51, 595-625.	2.1	179
193	Efficient Mining of Multiple Fuzzy Frequent Itemsets. International Journal of Fuzzy Systems, 2017, 19, 1032-1040.	2.3	13
194	FDHUP: Fast algorithm for mining discriminative high utility patterns. Knowledge and Information Systems, 2017, 51, 873-909.	2.1	59
195	More Efficient Algorithm to Mine High Average-Utility Patterns. Smart Innovation, Systems and Technologies, 2017, , 101-110.	0.5	1
196	Efficiently mining of skyline frequent-utility patterns. Intelligent Data Analysis, 2017, 21, 1407-1423.	0.4	19
197	FRIOD: A Deeply Integrated Feature-Rich Interactive System for Effective and Efficient Outlier Detection. IEEE Access, 2017, 5, 25682-25695.	2.6	11
198	Mining of high utility-probability sequential patterns from uncertain databases. PLoS ONE, 2017, 12, e0180931.	1.1	28

#	Article	IF	CITATIONS
199	How to Apply Gamification Techniques to Design a Gaming Environment for Algebra Concepts. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 62-70.	0.2	3
200	Extracting Non-redundant Correlated Purchase Behaviors by Utility Measure. Lecture Notes in Computer Science, 2017, , 433-446.	1.0	1
201	MyRoute: A Graph-Dependency Based Model for Real-Time Route Prediction. Journal of Communications, 2017, , 668-676.	1.3	6
202	More Efficient Algorithm for Mining Frequent Patterns with Multiple Minimum Supports. Lecture Notes in Computer Science, 2016, , 3-16.	1.0	1
203	EFIM-Closed: Fast and Memory Efficient Discovery of Closed High-Utility Itemsets. Lecture Notes in Computer Science, 2016, , 199-213.	1.0	37
204	Efficient closed high-utility itemset mining. , 2016, , .		4
205	Efficient mining of short periodic high-utility itemsets. , 2016, , .		2
206	Fast algorithms for mining multiple fuzzy frequent itemsets. , 2016, , .		5
207	Inferring social network user profiles using a partial social graph. Journal of Intelligent Information Systems, 2016, 47, 313-344.	2.8	20
208	A sanitization approach for hiding sensitive itemsets based on particle swarm optimization. Engineering Applications of Artificial Intelligence, 2016, 53, 1-18.	4.3	87
209	An efficient algorithm for mining the top- k high utility itemsets, using novel threshold raising and pruning strategies. Knowledge-Based Systems, 2016, 104, 106-122.	4.0	77
210	An efficient algorithm to mine high average-utility itemsets. Advanced Engineering Informatics, 2016, 30, 233-243.	4.0	85
211	The SPMF Open-Source Data Mining Library Version 2. Lecture Notes in Computer Science, 2016, , 36-40.	1.0	324
212	PTA: An Efficient System for Transaction Database Anonymization. IEEE Access, 2016, 4, 6467-6479.	2.6	12
213	Efficient mining of high-utility itemsets using multiple minimum utility thresholds. Knowledge-Based Systems, 2016, 113, 100-115.	4.0	48
214	An Efficient Anonymous System for Transaction Data. , 2016, , .		0
215	Fast algorithms for hiding sensitive high-utility itemsets in privacy-preserving utility mining. Engineering Applications of Artificial Intelligence, 2016, 55, 269-284.	4.3	58
216	FHN: An efficient algorithm for mining high-utility itemsets with negative unit profits. Knowledge-Based Systems, 2016, 111, 283-298.	4.0	73

#	Article	IF	CITATIONS
217	Mining Recent High-Utility Patterns from Temporal Databases with Time-Sensitive Constraint. Lecture Notes in Computer Science, 2016, , 3-18.	1.0	9
218	More Efficient Algorithms for Mining High-Utility Itemsets with Multiple Minimum Utility Thresholds. Lecture Notes in Computer Science, 2016, , 71-87.	1.0	15
219	Mining Minimal High-Utility Itemsets. Lecture Notes in Computer Science, 2016, , 88-101.	1.0	17
220	Mining high-utility itemsets based on particle swarm optimization. Engineering Applications of Artificial Intelligence, 2016, 55, 320-330.	4.3	93
221	Efficiently Updating the Discovered Sequential Patterns for Sequence Modification. International Journal of Software Engineering and Knowledge Engineering, 2016, 26, 1285-1313.	0.6	2
222	Employing the neural networks to parametrically assess the quality of a voice call. , 2016, , .		3
223	Efficient algorithms for mining recent weighted frequent itemsets in temporal transactional databases. , 2016, , .		2
224	An efficient algorithm for mining top-rank-k frequent patterns. Applied Intelligence, 2016, 45, 96-111.	3.3	27
225	Efficient algorithms for mining high-utility itemsets in uncertain databases. Knowledge-Based Systems, 2016, 96, 171-187.	4.0	103
226	Fast algorithms for mining high-utility itemsets with various discount strategies. Advanced Engineering Informatics, 2016, 30, 109-126.	4.0	43
227	High utility-itemset mining and privacy-preserving utility mining. Perspectives in Science, 2016, 7, 74-80.	0.6	17
228	Efficient Algorithms for Mining Top-K High Utility Itemsets. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 54-67.	4.0	200
229	A Sanitization Approach of Privacy Preserving Utility Mining. Advances in Intelligent Systems and Computing, 2016, , 47-57.	0.5	3
230	Weighted frequent itemset mining over uncertain databases. Applied Intelligence, 2016, 44, 232-250.	3.3	50
231	Mining Correlated High-Utility Itemsets Using the Bond Measure. Lecture Notes in Computer Science, 2016, , 53-65.	1.0	26
232	Efficient Mining of High Average-Utility Itemsets with Multiple Minimum Thresholds. Lecture Notes in Computer Science, 2016, , 14-28.	1.0	13
233	PHM: Mining Periodic High-Utility Itemsets. Lecture Notes in Computer Science, 2016, , 64-79.	1.0	43
234	FHM \$\$+\$\$: Faster High-Utility Itemset Mining Using Length Upper-Bound Reduction. Lecture Notes in Computer Science, 2016, , 115-127.	1.0	24

#	Article	IF	CITATIONS
235	Mining Recent High Expected Weighted Itemsets from Uncertain Databases. Lecture Notes in Computer Science, 2016, , 581-593.	1.0	1
236	Efficient Mining of Fuzzy Frequent Itemsets with Type-2 Membership Functions. Lecture Notes in Computer Science, 2016, , 191-200.	1.0	4
237	Mining Discriminative High Utility Patterns. Lecture Notes in Computer Science, 2016, , 219-229.	1.0	6
238	Authorship Attribution using Variable Length Part-of-Speech Patterns. , 2016, , .		18
239	Efficient Mining of Uncertain Data for High-Utility Itemsets. Lecture Notes in Computer Science, 2016, , 17-30.	1.0	1
240	Using Frequent Fixed or Variable-Length POS Ngrams or Skip-Grams for Blog Authorship Attribution. IFIP Advances in Information and Communication Technology, 2016, , 63-74.	0.5	0
241	EFIM: A Highly Efficient Algorithm for High-Utility Itemset Mining. Lecture Notes in Computer Science, 2015, , 530-546.	1.0	101
242	UP-Miner: A Utility Pattern Mining Toolbox. , 2015, , .		5
243	Mining closed+ high utility itemsets without candidate generation. , 2015, , .		36
244	A fast Algorithm for mining fuzzy frequent itemsets. Journal of Intelligent and Fuzzy Systems, 2015, 29, 2373-2379.	0.8	38
245	A Swarm-Based Sanitization Approach for Hiding Confidential Itemsets. , 2015, , .		1
246	Mining high-utility itemsets with various discount strategies. , 2015, , .		6
247	Mining Partially-Ordered Sequential Rules Common to Multiple Sequences. IEEE Transactions on Knowledge and Data Engineering, 2015, 27, 2203-2216.	4.0	60
248	RWFIM: Recent weighted-frequent itemsets mining. Engineering Applications of Artificial Intelligence, 2015, 45, 18-32.	4.3	39
249	Inferring User Profiles in Online Social Networks Using a Partial Social Graph. Lecture Notes in Computer Science, 2015, , 84-99.	1.0	17
250	FOSHU., 2015,,.		45
251	A Swarm-Based Approach to Mine High-Utility Itemsets. Communications in Computer and Information Science, 2015, , 572-581.	0.4	11
252	Mining Weighted Frequent Itemsets with the Recency Constraint. Lecture Notes in Computer Science, 2015, , 635-646.	1.0	3

#	Article	IF	CITATIONS
253	Efficient Algorithms for Mining the Concise and Lossless Representation of High Utility Itemsets. IEEE Transactions on Knowledge and Data Engineering, 2015, 27, 726-739.	4.0	95
254	CPT+: Decreasing the Time/Space Complexity of the Compact Prediction Tree. Lecture Notes in Computer Science, 2015, , 625-636.	1.0	46
255	Efficient Mining of High-Utility Sequential Rules. Lecture Notes in Computer Science, 2015, , 157-171.	1.0	38
256	An Evolutionary Algorithm to Mine High-Utility Itemsets. Advances in Electrical and Electronic Engineering, 2015, 13, .	0.2	5
257	More Accurate Inference of User Profiles in Online Social Networks. Lecture Notes in Computer Science, 2015, , 533-546.	1.0	1
258	Efficient Incremental High Utility Itemset Mining. , 2015, , .		15
259	VMSP: Efficient Vertical Mining of Maximal Sequential Patterns. Lecture Notes in Computer Science, 2014, , 83-94.	1.0	46
260	VGEN: Fast Vertical Mining of Sequential Generator Patterns. Lecture Notes in Computer Science, 2014, , 476-488.	1.0	28
261	Fast Vertical Mining of Sequential Patterns Using Co-occurrence Information. Lecture Notes in Computer Science, 2014, , 40-52.	1.0	149
262	An Adaptive Questionnaire for Automatic Identification of Learning Styles. Lecture Notes in Computer Science, 2014, , 399-409.	1.0	7
263	FHM: Faster High-Utility Itemset Mining Using Estimated Utility Co-occurrence Pruning. Lecture Notes in Computer Science, 2014, , 83-92.	1.0	263
264	ERMiner: Sequential Rule Mining Using Equivalence Classes. Lecture Notes in Computer Science, 2014, , 108-119.	1.0	45
265	FHN: Efficient Mining of High-Utility Itemsets with Negative Unit Profits. Lecture Notes in Computer Science, 2014, , 16-29.	1.0	25
266	Novel Concise Representations of High Utility Itemsets Using Generator Patterns. Lecture Notes in Computer Science, 2014, , 30-43.	1.0	38
267	A multiparadigm intelligent tutoring system for robotic arm training. IEEE Transactions on Learning Technologies, 2013, 6, 364-377.	2.2	17
268	Assessing Procedural Knowledge in Free-Text Answers through a Hybrid Semantic Web Approach. , 2013, , .		1
269	TNS., 2013, , .		17
270	CELTS: A Cognitive Tutoring Agent with Human-Like Learning Capabilities and Emotions. Smart Innovation, Systems and Technologies, 2013, , 339-365.	0.5	7

#	Article	IF	CITATIONS
271	TKS: Efficient Mining of Top-K Sequential Patterns. Lecture Notes in Computer Science, 2013, , 109-120.	1.0	47
272	Mining Maximal Sequential Patterns without Candidate Maintenance. Lecture Notes in Computer Science, 2013, , 169-180.	1.0	28
273	Compact Prediction Tree: A Lossless Model for Accurate Sequence Prediction. Lecture Notes in Computer Science, 2013, , 177-188.	1.0	51
274	MEIT: Memory Efficient Itemset Tree for Targeted Association Rule Mining. Lecture Notes in Computer Science, 2013, , 95-106.	1.0	21
275	CMRules: Mining sequential rules common to several sequences. Knowledge-Based Systems, 2012, 25, 63-76.	4.0	102
276	A computational model for causal learning in cognitive agents. Knowledge-Based Systems, 2012, 30, 48-56.	4.0	10
277	Mining Sequential Rules Common to Several Sequences with the Window Size Constraint. Lecture Notes in Computer Science, 2012, , 299-304.	1.0	21
278	Mining Top-K Association Rules. Lecture Notes in Computer Science, 2012, , 61-73.	1.0	49
279	Mining Top-K Non-redundant Association Rules. Lecture Notes in Computer Science, 2012, , 31-40.	1.0	25
280	Using Partially-Ordered Sequential Rules to Generate More Accurate Sequence Prediction. Lecture Notes in Computer Science, 2012, , 431-442.	1.0	32
281	Multi-paradigm Generation of Tutoring Feedback in Robotic Arm Manipulation Training. Lecture Notes in Computer Science, 2012, , 233-242.	1.0	0
282	Efficient Mining of a Concise and Lossless Representation of High Utility Itemsets. , 2011, , .		29
283	Human-like learning in a conscious agent. Journal of Experimental and Theoretical Artificial Intelligence, 2011, 23, 497-528.	1.8	8
284	Learning task models in ill-defined domain using an hybrid knowledge discovery framework. Knowledge-Based Systems, 2011, 24, 176-185.	4.0	17
285	RuleGrowth. , 2011, , .		67
286	Mining Top-K Sequential Rules. Lecture Notes in Computer Science, 2011, , 180-194.	1.0	27
287	An Hybrid Expert Model to Support Tutoring Services in Robotic Arm Manipulations. Lecture Notes in Computer Science, 2011, , 478-489.	1.0	2
288	Implementing an Efficient Causal Learning Mechanism in a Cognitive Tutoring Agent. Lecture Notes in Computer Science, 2011, , 27-36.	1.0	0

#	Article	IF	CITATIONS
289	A Cognitive Tutoring Agent with Episodic and Causal Learning Capabilities. Lecture Notes in Computer Science, 2011, , 72-80.	1.0	1
290	Building Intelligent Tutoring Systems for Ill-Defined Domains. Studies in Computational Intelligence, 2010, , 81-101.	0.7	31
291	ITS in Ill-Defined Domains: Toward Hybrid Approaches. Lecture Notes in Computer Science, 2010, , 318-320.	1.0	4
292	How emotional mechanism helps episodic learning in a cognitive agent. , 2009, , .		8
293	Improving the Behavior of Intelligent Tutoring Agents with Data Mining. IEEE Intelligent Systems, 2009, 24, 46-53.	4.0	5
294	A Generic Episodic Learning Model Implemented in a Cognitive Agent by Means of Temporal Pattern Mining. Lecture Notes in Computer Science, 2009, , 545-555.	1.0	6
295	Building Agents That Learn by Observing Other Agents Performing a Task: A Sequential Pattern Mining Approach. Studies in Computational Intelligence, 2009, , 279-284.	0.7	0
296	Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies. , 2009, , 77-92.		0
297	Evaluating Spatial Representations and Skills in a Simulator-Based Tutoring System. IEEE Transactions on Learning Technologies, 2008, 1, 63-74.	2.2	17
298	Mining High-Utility Itemsets with Multiple Minimum Utility Thresholds. , 2008, , .		6
299	A Knowledge Discovery Framework for Learning Task Models from User Interactions in Intelligent Tutoring Systems. Lecture Notes in Computer Science, 2008, , 765-778.	1.0	31
300	Automatic Evaluation of Spatial Representations for Complex Robotic Arms Manipulations. , 2007, , .		1
301	Problem-Solving Knowledge Mining from Users' Actions in an Intelligent Tutoring System. Lecture Notes in Computer Science, 2007, , 393-404.	1.0	4
302	Recalling Recollections according to Temporal Contexts Applying a Novel Cognitive Knowledge Representation Approach. , 2006, , .		2
303	From Black-Box Learning Objects to Glass-Box Learning Objects. Lecture Notes in Computer Science, 2006, , 258-267.	1.0	1
304	DOKGETT - an authoring tool for cognitive model-based generation of the knowledge. , 2005, , .		3
305	Combining the Learning Objects Paradigm with Cognitive Modelling Theories - A Novel Approach for Knowledge Engineering. , 0, , .		1
306	PFPM: Discovering Periodic Frequent Patterns with Novel Periodicity Measures. , O, , .		20