John S Mattick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6071275/publications.pdf

Version: 2024-02-01

952 632 71,579 302 115 257 citations h-index g-index papers 323 323 323 69948 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The potential of long noncoding RNA therapies. Trends in Pharmacological Sciences, 2022, 43, 269-280.	8.7	28
2	ADRAM is an experience-dependent long noncoding RNA that drives fear extinction through a direct interaction with the chaperone protein 14-3-3. Cell Reports, 2022, 38, 110546.	6.4	19
3	Subcellular relocalization and nuclear redistribution of the RNA methyltransferases TRMT1 and TRMT1L upon neuronal activation. RNA Biology, 2021, 18, 1905-1919.	3.1	9
4	Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nature Biotechnology, 2021, 39, 1278-1291.	17.5	144
5	Widespread formation of double-stranded RNAs in testis. Genome Research, 2021, 31, 1174-1186.	5.5	6
6	High frequency of intron retention and clustered H3K4me3-marked nucleosomes in short first introns of human long non-coding RNAs. Epigenetics and Chromatin, 2021, 14, 45.	3.9	6
7	Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures. Genome Biology, 2020, 21, 97.	8.8	57
8	Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11399-11408.	7.1	59
9	Impacts of genomics on the health and social costs of intellectual disability. Journal of Medical Genetics, 2020, 57, 479-486.	3.2	12
10	Type 4 Fimbriae. , 2020, , 127-146.		20
10		2.0	20
	Type 4 Fimbriae., 2020, , 127-146. Cost effective, experimentally robust differential-expression analysis for human/mammalian, pathogen	2.0	
11	Type 4 Fimbriae., 2020, , 127-146. Cost effective, experimentally robust differential-expression analysis for human/mammalian, pathogen and dual-species transcriptomics. Microbial Genomics, 2020, 6, . CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by		0
11 12	Type 4 Fimbriae., 2020, , 127-146. Cost effective, experimentally robust differential-expression analysis for human/mammalian, pathogen and dual-species transcriptomics. Microbial Genomics, 2020, 6, . CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. Journal of Biological Chemistry, 2019, 294, 14149-14162. Genetic Variations of Ultraconserved Elements in the Human Genome. OMICS A Journal of Integrative	3.4	10
11 12 13	Type 4 Fimbriae., 2020, , 127-146. Cost effective, experimentally robust differential-expression analysis for human/mammalian, pathogen and dual-species transcriptomics. Microbial Genomics, 2020, 6, . CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. Journal of Biological Chemistry, 2019, 294, 14149-14162. Genetic Variations of Ultraconserved Elements in the Human Genome. OMICS A Journal of Integrative Biology, 2019, 23, 549-559. Accurate detection of m6A RNA modifications in native RNA sequences. Nature Communications, 2019,	2.0	0 10 13
11 12 13	Type 4 Fimbriae., 2020, , 127-146. Cost effective, experimentally robust differential-expression analysis for human/mammalian, pathogen and dual-species transcriptomics. Microbial Genomics, 2020, 6, . CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. Journal of Biological Chemistry, 2019, 294, 14149-14162. Genetic Variations of Ultraconserved Elements in the Human Genome. OMICS A Journal of Integrative Biology, 2019, 23, 549-559. Accurate detection of m6A RNA modifications in native RNA sequences. Nature Communications, 2019, 10, 4079. Targeted, High-Resolution RNA Sequencing of Non-coding Genomic Regions Associated With	3.4 2.0 12.8	0 10 13 322
11 12 13 14	Type 4 Fimbriae. , 2020, , 127-146. Cost effective, experimentally robust differential-expression analysis for human/mammalian, pathogen and dual-species transcriptomics. Microbial Genomics, 2020, 6, . CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. Journal of Biological Chemistry, 2019, 294, 14149-14162. Genetic Variations of Ultraconserved Elements in the Human Genome. OMICS A Journal of Integrative Biology, 2019, 23, 549-559. Accurate detection of m6A RNA modifications in native RNA sequences. Nature Communications, 2019, 10, 4079. Targeted, High-Resolution RNA Sequencing of Non-coding Genomic Regions Associated With Neuropsychiatric Functions. Frontiers in Genetics, 2019, 10, 309.	2.0 12.8 2.3	0 10 13 322 28

#	Article	IF	CITATIONS
19	Adar3 Is Involved in Learning and Memory in Mice. Frontiers in Neuroscience, 2018, 12, 243.	2.8	54
20	The State of Long Non-Coding RNA Biology. Non-coding RNA, 2018, 4, 17.	2.6	67
21	Abstract 2453: Eradication of neuroblastoma by suppressing the expression of a single noncoding RNA. , 2018, , .		0
22	The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Scientific Reports, 2017, 7, 40127.	3.3	92
23	Charting the unknown epitranscriptome. Nature Reviews Molecular Cell Biology, 2017, 18, 339-340.	37.0	49
24	Structural and Functional Annotation of Long Noncoding RNAs. Methods in Molecular Biology, 2017, 1526, 65-85.	0.9	23
25	Differential intron retention in <i>Jumonji</i> chromatin modifier genes is implicated in reptile temperature-dependent sex determination. Science Advances, 2017, 3, e1700731.	10.3	111
26	The Dimensions, Dynamics, and Relevance of the Mammalian Noncoding Transcriptome. Trends in Genetics, 2017, 33, 464-478.	6.7	181
27	The RNA modification landscape in human disease. Rna, 2017, 23, 1754-1769.	3.5	427
28	Improved Diagnosis and Care for Rare Diseases through Implementation of Precision Public Health Framework. Advances in Experimental Medicine and Biology, 2017, 1031, 55-94.	1.6	20
29	Prioritising the application of genomic medicine. Npj Genomic Medicine, 2017, 2, 35.	3.8	22
30	Initiating an undiagnosed diseases program in the Western Australian public health system. Orphanet Journal of Rare Diseases, 2017, 12, 83.	2.7	24
31	Intergenic disease-associated regions are abundant in novel transcripts. Genome Biology, 2017, 18, 241.	8.8	45
32	DotAligner: identification and clustering of RNA structure motifs. Genome Biology, 2017, 18, 244.	8.8	13
33	The Evx1/Evx1as gene locus regulates anterior-posterior patterning during gastrulation. Scientific Reports, 2016, 6, 26657.	3.3	24
34	The Long Noncoding RNA SPRIGHTLY Regulates Cell Proliferation in Primary Human Melanocytes. Journal of Investigative Dermatology, 2016, 136, 819-828.	0.7	34
35	Improved definition of the mouse transcriptome via targeted RNA sequencing. Genome Research, 2016, 26, 705-716.	5.5	33
36	RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure. Cell, 2016, 165, 1267-1279.	28.9	520

#	Article	IF	CITATIONS
37	Representing genetic variation with synthetic DNA standards. Nature Methods, 2016, 13, 784-791.	19.0	37
38	Spliced synthetic genes as internal controls in RNA sequencing experiments. Nature Methods, 2016, 13, 792-798.	19.0	123
39	The promise of personalised medicine. Lancet, The, 2016, 387, 433-434.	13.7	13
40	Seq and You Will Find. Current Gene Therapy, 2016, 16, 220-229.	2.0	6
41	The Future of Molecular Pathology. , 2016, , 349-357.		0
42	Abstract A09: The long noncoding RNA SPRIGHTLY regulates cell proliferation in primary human melanocytes. , $2016, , .$		0
43	Abstract 1598: LncRNA AK001796 as a therapeutic target in aggressive breast cancers. Cancer Research, 2016, 76, 1598-1598.	0.9	2
44	The Non-Coding RNA Journal Club: Highlights on Recent Papers. Non-coding RNA, 2015, 1, 87-93.	2.6	3
45	Discovery and annotation of long noncoding RNAs. Nature Structural and Molecular Biology, 2015, 22, 5-7.	8.2	581
46	Genome-wide discovery of human splicing branchpoints. Genome Research, 2015, 25, 290-303.	5.5	222
47	Long Noncoding RNA-Directed Epigenetic Regulation of Gene Expression Is Associated With Anxiety-like Behavior in Mice. Biological Psychiatry, 2015, 78, 848-859.	1.3	114
48	Integrative analysis of 111 reference human epigenomes. Nature, 2015, 518, 317-330.	27.8	5,653
49	Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing. Nature Methods, 2015, 12, 339-342.	19.0	155
50	Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1106-15.	7.1	376
51	Transpositional shuffling and quality control in male germ cells to enhance evolution of complex organisms. Annals of the New York Academy of Sciences, 2015, 1341, 156-163.	3.8	12
52	Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution. Neuron, 2015, 88, 861-877.	8.1	366
53	The impact of genomics on the future of medicine and health. Medical Journal of Australia, 2014, 201, 17-20.	1.7	30
54	The Functional Characterization of Long Noncoding RNA <i>SPRY4-IT1</i> in Human Melanoma Cells. Oncotarget, 2014, 5, 8959-8969.	1.8	142

#	Article	IF	CITATIONS
55	Extracellular Vesicles from Neural Stem Cells Transfer IFN- \hat{l}^3 via Ifngr1 to Activate Stat1 Signaling in Target Cells. Molecular Cell, 2014, 56, 609.	9.7	3
56	Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nature Protocols, 2014, 9, 989-1009.	12.0	171
57	The rise of regulatory RNA. Nature Reviews Genetics, 2014, 15, 423-437.	16.3	1,120
58	Extracellular vesicles from neural stem cells transfer the IFN- \hat{I}^3 /IFNGR1 complex to activate Stat1-dependent signalling in target cells. Journal of Neuroimmunology, 2014, 275, 190-191.	2.3	1
59	Bioinformatics analysis of transcriptional regulation of circadian genes in rat liver. BMC Bioinformatics, 2014, 15, 83.	2.6	15
60	Effects of a Novel Long Noncoding RNA, IncUSMycN, on N-Myc Expression and Neuroblastoma Progression. Journal of the National Cancer Institute, 2014, 106, .	6.3	98
61	Extracellular Vesicles from Neural Stem Cells Transfer IFN- \hat{l}^3 via Ifngr1 to Activate Stat1 Signaling in Target Cells. Molecular Cell, 2014, 56, 193-204.	9.7	258
62	The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Molecular Psychiatry, 2014, 19, 486-494.	7.9	356
63	Topology and Dynamics of Signaling Networks: In Search of Transcriptional Control of the Inflammatory Response. Annual Review of Biomedical Engineering, 2013, 15, 1-28.	12.3	14
64	Saccharopolyspora erythraea'sgenome is organised in high-order transcriptional regions mediated by targeted degradation at the metabolic switch. BMC Genomics, 2013, 14, 15.	2.8	33
65	Long noncoding RNAs and the genetics of cancer. British Journal of Cancer, 2013, 108, 2419-2425.	6.4	676
66	The extent of functionality in the human genome. The HUGO Journal, 2013, 7, .	4.1	28
67	Understanding the regulatory and transcriptional complexity of the genome through structure. Genome Research, 2013, 23, 1081-1088.	5.5	77
68	Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. Rna, 2013, 19, 257-270.	3.5	62
69	Mapping of Mitochondrial RNA-Protein Interactions by Digital RNase Footprinting. Cell Reports, 2013, 5, 839-848.	6.4	36
70	The dark matter rises: the expanding world of regulatory RNAs. Essays in Biochemistry, 2013, 54, 1-16.	4.7	73
71	DNase l–hypersensitive exons colocalize with promoters and distal regulatory elements. Nature Genetics, 2013, 45, 852-859.	21.4	112
72	Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural and Molecular Biology, 2013, 20, 300-307.	8.2	1,325

#	Article	IF	Citations
73	Triplex-Inspector: an analysis tool for triplex-mediated targeting of genomic loci. Bioinformatics, 2013, 29, 1895-1897.	4.1	29
74	Widespread purifying selection on RNA structure in mammals. Nucleic Acids Research, 2013, 41, 8220-8236.	14.5	144
75	MicroRNAs-140-5p/140-3p Modulate Leydig Cell Numbers in the Developing Mouse Testis. Biology of Reproduction, 2013, 88, 143-143.	2.7	68
76	A meta-analysis of the genomic and transcriptomic composition of complex life. Cell Cycle, 2013, 12, 2061-2072.	2.6	134
77	MicroRNAs Regulate Tumor Angiogenesis Modulated by Endothelial Progenitor Cells. Cancer Research, 2013, 73, 341-352.	0.9	122
78	Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Briefings in Functional Genomics, 2013, 12, 254-278.	2.7	111
79	Genome-wide methylated CpG island profiles of melanoma cells reveal a melanoma coregulation network. Scientific Reports, 2013, 3, 2962.	3.3	22
80	Branched hain amino acid supplementation: impact on signaling and relevance to critical illness. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 449-460.	6.6	46
81	Probing the phenomics of noncoding RNA. ELife, 2013, 2, e01968.	6.0	13
82	Abstract A039: The role of long noncoding RNAs in epithelial to mesenchymal transition and cancer stem cells. , 2013, , .		0
83	Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes. Bioinformatics, 2012, 28, 3042-3050.	4.1	70
84	Long Noncoding RNAs in Cardiac Development and Pathophysiology. Circulation Research, 2012, 111, 1349-1362.	4.5	220
85	In grateful recognition of our Editorial Board. BioEssays, 2012, 34, 1004-1005.	2.5	0
86	Extragenic suppressor mutations that restore twitching motility to <scp><i>fimL</i></scp> mutants of <i><scp>P</scp> seudomonas aeruginosa</i> are associated with elevated intracellular cyclic <scp>AMP</scp> levels. MicrobiologyOpen, 2012, 1, 490-501.	3.0	13
87	Dynamics of Hepatic Gene Expression Profile in a Rat Cecal Ligation and Puncture Model. Journal of Surgical Research, 2012, 176, 583-600.	1.6	13
88	Long-term gene expression profile dynamics following cecal ligation and puncture in the rat. Journal of Surgical Research, 2012, 178, 431-442.	1.6	7
89	Stoichiometry Based Steady-State Hepatic Flux Analysis: Computational and Experimental Aspects. Metabolites, 2012, 2, 268-291.	2.9	8
90	Rocking the foundations of molecular genetics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16400-16401.	7.1	35

#	Article	IF	CITATIONS
91	RNA driving the epigenetic bus. EMBO Journal, 2012, 31, 515-516.	7.8	11
92	The Lethal Toxin from Australian Funnel-Web Spiders Is Encoded by an Intronless Gene. PLoS ONE, 2012, 7, e43699.	2.5	19
93	The role of regulatory RNA in cognitive evolution. Trends in Cognitive Sciences, 2012, 16, 497-503.	7.8	44
94	Genome-wide analysis of long noncoding RNA stability. Genome Research, 2012, 22, 885-898.	5 . 5	471
95	Triplexator: Detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Research, 2012, 22, 1372-1381.	5.5	181
96	Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nature Biotechnology, 2012, 30, 99-104.	17.5	437
97	Expression and Function of the Protein Tyrosine Phosphatase Receptor J (PTPRJ) in Normal Mammary Epithelial Cells and Breast Tumors. PLoS ONE, 2012, 7, e40742.	2.5	22
98	IncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Research, 2011, 39, D146-D151.	14.5	508
99	The Melanoma-Upregulated Long Noncoding RNA <i>SPRY4-IT1 </i> Modulates Apoptosis and Invasion. Cancer Research, 2011, 71, 3852-3862.	0.9	432
100	The Human Mitochondrial Transcriptome. Cell, 2011, 146, 645-658.	28.9	716
101	The evolution of RNAs with multiple functions. Biochimie, 2011, 93, 2013-2018.	2.6	7 5
102	MicroRNA regulation of neural plasticity and memory. Neurobiology of Learning and Memory, 2011, 96, 89-94.	1.9	158
103	Long noncoding RNAs in cell biology. Seminars in Cell and Developmental Biology, 2011, 22, 366-376.	5.0	301
104	Long noncoding RNAs in cell and developmental biology. Seminars in Cell and Developmental Biology, 2011, 22, 327.	5.0	65
105	Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Research, 2011, 39, 2393-2403.	14.5	185
106	The double life of RNA. Biochimie, 2011, 93, viii-ix.	2.6	9
107	Expression of Transposable Elements in Neural Tissues during Xenopus Development. PLoS ONE, 2011, 6, e22569.	2.5	18
108	The central role of RNA in human development and cognition. FEBS Letters, 2011, 585, 1600-1616.	2.8	212

#	Article	IF	CITATIONS
109	MicroRNAs in \hat{I}^2 -Cell Biology, Insulin Resistance, Diabetes and Its Complications. Diabetes, 2011, 60, 1825-1831.	0.6	195
110	SNORD-host RNA <i>Zfas1</i> is a regulator of mammary development and a potential marker for breast cancer. Rna, 2011, 17, 878-891.	3.5	321
111	RNA lights up. Nature Biotechnology, 2011, 29, 883-884.	17.5	2
112	Somatic retrotransposition alters the genetic landscape of the human brain. Nature, 2011, 479, 534-537.	27.8	621
113	The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF) localization. Epigenetics and Chromatin, 2011, 4, 13.	3.9	38
114	Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling. BMC Genomics, 2011, 12, 441.	2.8	27
115	RNA processing in human mitochondria. Cell Cycle, 2011, 10, 2904-2916.	2.6	226
116	Potential in vivo roles of nucleic acid triple-helices. RNA Biology, 2011, 8, 427-439.	3.1	166
117	Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. Rna, 2011, 17, 2085-2093.	3.5	251
118	MicroRNAs in the shoot apical meristem of soybean. Journal of Experimental Botany, 2011, 62, 2495-2506.	4.8	80
119	The Genomic Foundation Is Shifting. Science, 2011, 331, 874-874.	12.6	9
120	Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Research, 2011, 39, 5658-5668.	14.5	76
121	The Reality of Pervasive Transcription. PLoS Biology, 2011, 9, e1000625.	5.6	380
122	Protein-coding and non-coding gene expression analysis in differentiating human keratinocytes using a three-dimensional epidermal equivalent. Molecular Genetics and Genomics, 2010, 284, 1-9.	2.1	28
123	A global view of genomic information – moving beyond the gene and the master regulator. Trends in Genetics, 2010, 26, 21-28.	6.7	208
124	Identification of novel non-coding RNAs using profiles of short sequence reads from next generation sequencing data. BMC Genomics, 2010, 11, 77.	2.8	46
125	Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neuroscience, 2010, 11, 14.	1.9	381
126	Long non-coding RNAs in nervous system function and disease. Brain Research, 2010, 1338, 20-35.	2.2	427

#	Article	IF	Citations
127	RNA as the substrate for epigenomeâ€environment interactions. BioEssays, 2010, 32, 548-552.	2.5	64
128	Nonâ€coding RNAs: regulators of disease. Journal of Pathology, 2010, 220, 126-139.	4.5	906
129	Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nature Structural and Molecular Biology, 2010, 17, 1030-1034.	8.2	146
130	The central role of RNA in the genetic programming of complex organisms. Anais Da Academia Brasileira De Ciencias, 2010, 82, 933-939.	0.8	21
131	A variant of the KLK4 gene is expressed as a cis sense-antisense chimeric transcript in prostate cancer cells. Rna, 2010, 16, 1156-1166.	3.5	36
132	Stringent Programming of DNA Methylation in Humans. Twin Research and Human Genetics, 2010, 13, 405-411.	0.6	5
133	Dynamic isomiR regulation in <i>Drosophila</i> development. Rna, 2010, 16, 1881-1888.	3.5	184
134	Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome. Genome Research, 2010, 20, 1639-1650.	5.5	76
135	Multiple Evolutionary Rate Classes in Animal Genome Evolution. Molecular Biology and Evolution, 2010, 27, 942-953.	8.9	15
136	Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Research, 2010, 20, 257-264.	5.5	126
137	Linc-ing Long Noncoding RNAs and Enhancer Function. Developmental Cell, 2010, 19, 485-486.	7.0	31
138	Identification of conserved Drosophila-specific euchromatin-restricted non-coding sequence motifs. Genomics, 2010, 96, 154-166.	2.9	4
139	<i>MEN $\hat{l}\mu/\hat{l}^2$</i> nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Research, 2009, 19, 347-359.	5.5	570
140	Genome-Wide Identification of Long Noncoding RNAs in CD8+ T Cells. Journal of Immunology, 2009, 182, 7738-7748.	0.8	221
141	NRED: a database of long noncoding RNA expression. Nucleic Acids Research, 2009, 37, D122-D126.	14.5	252
142	Evolution, biogenesis and function of promoter-associated RNAs. Cell Cycle, 2009, 8, 2332-2338.	2.6	89
143	The Genetic Signatures of Noncoding RNAs. PLoS Genetics, 2009, 5, e1000459.	3.5	639
144	Nucleosomes are preferentially positioned at exons in somatic and sperm cells. Cell Cycle, 2009, 8, 3420-3424.	2.6	95

#	Article	IF	Citations
145	Complex architecture and regulated expression of the <i>Sox2ot</i> locus during vertebrate development. Rna, 2009, 15, 2013-2027.	3.5	200
146	A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics, 2009, 10, 163.	2.8	205
147	RNA regulation of epigenetic processes. BioEssays, 2009, 31, 51-59.	2.5	333
148	Has evolution learnt how to learn?. EMBO Reports, 2009, 10, 665-665.	4.5	17
149	Tiny RNAs associated with transcription start sites in animals. Nature Genetics, 2009, 41, 572-578.	21.4	327
150	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
151	Long non-coding RNAs: insights into functions. Nature Reviews Genetics, 2009, 10, 155-159.	16.3	5,105
152	Deconstructing the Dogma. Annals of the New York Academy of Sciences, 2009, 1178, 29-46.	3.8	75
153	Small RNAs derived from snoRNAs. Rna, 2009, 15, 1233-1240.	3.5	384
154	Regulation of Epidermal Growth Factor Receptor Signaling in Human Cancer Cells by MicroRNA-7. Journal of Biological Chemistry, 2009, 284, 5731-5741.	3.4	399
155	Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. Briefings in Functional Genomics & Proteomics, 2009, 8, 407-423.	3.8	140
156	Noncoding RNA in development. Mammalian Genome, 2008, 19, 454-492.	2.2	423
157	Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nature Protocols, 2008, 3, 1452-1456.	12.0	480
158	RNAs as extracellular signaling molecules. Journal of Molecular Endocrinology, 2008, 40, 151-159.	2.5	195
159	Noncoding RNAs in Long-Term Memory Formation. Neuroscientist, 2008, 14, 434-445.	3.5	116
160	Molecular Evolution of the HBII-52 snoRNA Cluster. Journal of Molecular Biology, 2008, 381, 810-815.	4.2	23
161	RNA editing, DNA recoding and the evolution of human cognition. Trends in Neurosciences, 2008, 31, 227-233.	8.6	144
162	The Eukaryotic Genome as an RNA Machine. Science, 2008, 319, 1787-1789.	12.6	579

#	Article	IF	Citations
163	Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 2008, 18, 1433-1445.	5.5	698
164	Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities. PLoS Computational Biology, 2008, 4, e1000176.	3.2	493
165	Large-Scale Appearance of Ultraconserved Elements in Tetrapod Genomes and Slowdown of the Molecular Clock. Molecular Biology and Evolution, 2008, 25, 402-408.	8.9	103
166	Delineating Slowly and Rapidly Evolving Fractions of the Drosophila Genome. Journal of Computational Biology, 2008, 15, 407-430.	1.6	19
167	Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 716-721.	7.1	1,081
168	A NEW UNDERSTANDING OF THE HUMAN GENOME. , 2008, , .		0
169	RNAdb 2.0–an expanded database of mammalian non-coding RNAs. Nucleic Acids Research, 2007, 35, D178-D182.	14.5	149
170	Raising the estimate of functional human sequences: Figure 1 Genome Research, 2007, 17, 1245-1253.	5 . 5	217
171	A new paradigm for developmental biology. Journal of Experimental Biology, 2007, 210, 1526-1547.	1.7	212
172	Splicing bypasses 3′ end formation signals to allow complex gene architectures. Gene, 2007, 403, 188-193.	2.2	7
173	Noncoding RNAs and RNA Editing in Brain Development, Functional Diversification, and Neurological Disease. Physiological Reviews, 2007, 87, 799-823.	28.8	275
174	Orthologous MicroRNA Genes Are Located in Cancer-Associated Genomic Regions in Human and Mouse. PLoS ONE, 2007, 2, e1133.	0.5	34
	Wouse. FLOS ONE, 2007, 2, 61155.	2.5	01
175	The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 2007, 29, 288-299.	2.5	578
175 176	The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 2007, 29,		
	The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 2007, 29, 288-299. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot	2.5	578
176	The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 2007, 29, 288-299. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799-816. Maintenance of transposon-free regions throughout vertebrate evolution. BMC Genomics, 2007, 8,	2.5	578 4,709
176 177	The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 2007, 29, 288-299. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447, 799-816. Maintenance of transposon-free regions throughout vertebrate evolution. BMC Genomics, 2007, 8, 470.	2.5 27.8 2.8	578 4,709 28

#	Article	IF	CITATIONS
181	GONOME: measuring correlations between GO terms and genomic positions. BMC Bioinformatics, 2006, 7, 94.	2.6	14
182	Evidence for Control of Splicing by Alternative RNA Secondary Structures in Dipteran Homothorax Pre-mRNA. RNA Biology, 2006, 3, 36-39.	3.1	13
183	Clusters of Internally Primed Transcripts Reveal Novel Long Noncoding RNAs. PLoS Genetics, 2006, 2, e37.	3.5	148
184	Effect of Site-Specific Mutations in Different Phosphotransfer Domains of the Chemosensory Protein ChpA on Pseudomonas aeruginosa Motility. Journal of Bacteriology, 2006, 188, 8479-8486.	2.2	22
185	Discrimination of Non-Protein-Coding Transcripts from Protein-Coding mRNA. RNA Biology, 2006, 3, 40-48.	3.1	118
186	Inherent size constraints on prokaryote gene networks due to ?accelerating? growth. Theory in Biosciences, 2005, 123, 381-411.	1.4	17
187	Antisense Transcription in the Mammalian Transcriptome. Science, 2005, 309, 1564-1566.	12.6	1,553
188	Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways. Molecular Microbiology, 2005, 55, 1357-1378.	2.5	85
189	Genomics: The amazing complexity of the human transcriptome. European Journal of Human Genetics, 2005, 13, 894-897.	2.8	171
190	There's more to a model than code. , 2005, , .		0
190	There's more to a model than code. , 2005, , . Transposon-free regions in mammalian genomes. Genome Research, 2005, 16, 164-172.	5.5	102
		5.5	
191	Transposon-free regions in mammalian genomes. Genome Research, 2005, 16, 164-172.		102
191	Transposon-free regions in mammalian genomes. Genome Research, 2005, 16, 164-172. MATHEMATICS/COMPUTATION: Accelerating Networks. Science, 2005, 307, 856-858.	12.6	102 79
191 192 193	Transposon-free regions in mammalian genomes. Genome Research, 2005, 16, 164-172. MATHEMATICS/COMPUTATION: Accelerating Networks. Science, 2005, 307, 856-858. Accelerating, hyperaccelerating, and decelerating networks. Physical Review E, 2005, 72, 016123. Ultraconserved elements in insect genomes: A highly conserved intronic sequence implicated in the	12.6 2.1	102 79 36
191 192 193	Transposon-free regions in mammalian genomes. Genome Research, 2005, 16, 164-172. MATHEMATICS/COMPUTATION: Accelerating Networks. Science, 2005, 307, 856-858. Accelerating, hyperaccelerating, and decelerating networks. Physical Review E, 2005, 72, 016123. Ultraconserved elements in insect genomes: A highly conserved intronic sequence implicated in the control of homothorax mRNA splicing. Genome Research, 2005, 15, 800-808. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the	12.6 2.1 5.5	102 79 36 112
191 192 193 194	Transposon-free regions in mammalian genomes. Genome Research, 2005, 16, 164-172. MATHEMATICS/COMPUTATION: Accelerating Networks. Science, 2005, 307, 856-858. Accelerating, hyperaccelerating, and decelerating networks. Physical Review E, 2005, 72, 016123. Ultraconserved elements in insect genomes: A highly conserved intronic sequence implicated in the control of homothorax mRNA splicing. Genome Research, 2005, 15, 800-808. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 2005, 16, 11-19.	12.6 2.1 5.5	102 79 36 112 461

#	Article	IF	Citations
199	RNAdba comprehensive mammalian noncoding RNA database. Nucleic Acids Research, 2004, 33, D125-D130.	14.5	127
200	tonB3 Is Required for Normal Twitching Motility and Extracellular Assembly of Type IV Pili. Journal of Bacteriology, 2004, 186, 4387-4389.	2.2	49
201	Characterization of a complex chemosensory signal transduction system which controls twitching motility in <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2004, 52, 873-893.	2.5	208
202	RNA regulation: a new genetics?. Nature Reviews Genetics, 2004, 5, 316-323.	16.3	647
203	The Hidden Genetic Program of Complex Organisms. Scientific American, 2004, 291, 60-67.	1.0	122
204	Ultraconserved Elements in the Human Genome. Science, 2004, 304, 1321-1325.	12.6	1,496
205	SVMtm: Support vector machines to predict transmembrane segments. Journal of Computational Chemistry, 2004, 25, 632-636.	3.3	87
206	Response to A. M. Poole: Is all that junk really regulatory RNA?. Nature Reviews Genetics, 2004, 5, 324-324.	16.3	0
207	Challenging the dogma: the hidden layer of nonâ€proteinâ€coding RNAs in complex organisms. BioEssays, 2003, 25, 930-939.	2.5	492
208	Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. Microbiology (United Kingdom), 2003, 149, 1311-1322.	1.8	141
209	FimX, a Multidomain Protein Connecting EnvironmentalSignals to Twitching Motility in <i>Pseudomonasaeruginosa</i> Journal of Bacteriology, 2003, 185, 7068-7076.	2.2	168
210	Identification and Analysis of Chromodomain-Containing Proteins Encoded in the Mouse Transcriptome. Genome Research, 2003, 13, 1416-1429.	5.5	50
211	Mechanisms of Thermal Adaptation Revealed From the Genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Research, 2003, 13, 1580-1588.	5.5	246
212	Is prokaryotic complexity limited by accelerated growth inregulatory overhead?. Genome Biology, 2003, 5, P2.	9.6	22
213	Title is missing!. Genome Biology, 2003, 5, P1.	9.6	43
214	The human genome and the future of medicine. Medical Journal of Australia, 2003, 179, 212-216.	1.7	20
215	Quorum Sensing Is Not Required for Twitching Motility in Pseudomonas aeruginosa. Journal of Bacteriology, 2002, 184, 3598-3604.	2.2	121
216	Phosphorylation of the Pseudomonas aeruginosa Response Regulator AlgR Is Essential for Type IV Fimbria-Mediated Twitching Motility. Journal of Bacteriology, 2002, 184, 4544-4554.	2.2	77

#	Article	IF	CITATIONS
217	Differential Regulation of Twitching Motility and Elastase Production by Vfr in Pseudomonas aeruginosa. Journal of Bacteriology, 2002, 184, 3605-3613.	2.2	175
218	Type IV Pili and Twitching Motility. Annual Review of Microbiology, 2002, 56, 289-314.	7.3	1,059
219	Extracellular DNA Required for Bacterial Biofilm Formation. Science, 2002, 295, 1487-1487.	12.6	1,754
220	Characterization of G3BPs: Tissue specific expression, chromosomal localisation andrasGAP120 binding studies. Journal of Cellular Biochemistry, 2002, 84, 173-187.	2.6	70
221	Isolation and characterization of a new nucleolar protein, Nrap, that is conserved from yeast to humans. Genes To Cells, 2002, 7, 115-132.	1.2	24
222	Prediction of protein solvent accessibility using support vector machines. Proteins: Structure, Function and Bioinformatics, 2002, 48, 566-570.	2.6	102
223	Macropodid herpesvirus 1 encodes genes for both thymidylate synthase and ICP34.5. Virus Genes, 2002, 24, 207-213.	1.6	3
224	Nonâ€coding RNAs: the architects of eukaryotic complexity. EMBO Reports, 2001, 2, 986-991.	4.5	728
225	FAM deubiquitylating enzyme is essential for preimplantation mouse embryo development. Mechanisms of Development, 2001, 109, 151-160.	1.7	61
226	Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine, 2001, 19, 4135-4142.	3.8	127
227	The Evolution of Controlled Multitasked Gene Networks: The Role of Introns and Other Noncoding RNAs in the Development of Complex Organisms. Molecular Biology and Evolution, 2001, 18, 1611-1630.	8.9	429
228	ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nature Genetics, 2000, 24, 340-341.	21.4	197
229	UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein11Published on the World Wide Web on 10 August 2000 Brain Research, 2000, 877, 110-123.	2.2	37
230	A Minimal Tiling Path Cosmid Library for Functional Analysis of the <i>Pseudomonas aeruginosa </i> PAO1 Genome. Microbial & Comparative Genomics, 2000, 5, 189-203.	0.4	18
231	An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. Microbiology (United Kingdom), 2000, 146, 2351-2364.	1.8	59
232	Co-localization of FAM and AF-6, the mammalian homologues of Drosophila faf and canoe, in mouse eye development. Mechanisms of Development, 2000, 91, 383-386.	1.7	27
233	Identification of a novel gene, fimV, involved in twitching motility in Pseudomonas aeruginosa The GenBank accession number for the sequence determined in this work is U93274 Microbiology (United) Tj ETQq1	1.0. 7843	1 41 rgBT /0\
234	A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology (United Kingdom), 1999, 145, 2863-2873.	1.8	231

#	Article	IF	CITATIONS
235	Reactivation of a macropodid herpesvirus from the eastern grey kangaroo (Macropus giganteus) following corticosteroid treatment. Veterinary Microbiology, 1999, 68, 59-69.	1.9	16
236	Molecular characterisation of Australian bovine enteroviruses. Veterinary Microbiology, 1999, 68, 71-81.	1.9	22
237	Retinoic acid-dependent upregulation of mouse folate receptor-α expression in embryonic stem cells, and conservation of alternative splicing patterns. Gene, 1999, 230, 215-224.	2.2	19
238	<i>Pseudomonas aeruginosa</i> Gene Products PilT and PilU Are Required for Cytotoxicity In Vitro and Virulence in a Mouse Model of Acute Pneumonia. Infection and Immunity, 1999, 67, 3625-3630.	2.2	219
239	The Ras Target AF-6 is a Substrate of the Fam Deubiquitinating Enzyme. Journal of Cell Biology, 1998, 142, 1053-1062.	5.2	109
240	Cloning and expression analysis of a novel mouse gene with sequence similarity to the Drosophila fat facets gene. Mechanisms of Development, 1997, 63, 29-38.	1.7	90
241	Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene, 1997, 192, 89-98.	2.2	159
242	Construction of improved vectors for protein production in Pseudomonas aeruginosa. Gene, 1996, 172, 163-164.	2.2	72
243	Functional expression of heterologous type 4 fimbriae in Pseudomonas aeruginosa. Gene, 1996, 175, 143-150.	2.2	56
244	Identification of a gene, pilF, required for type 4 fimbrial biogenesis and twitching motility in Pseudomonas aeruginosa. Gene, 1996, 180, 49-56.	2.2	39
245	The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa - a review. Gene, 1996, 179, 147-155.	2.2	152
246	Identification of two genes with prepilin-like leader sequences involved in type 4 fimbrial biogenesis in Pseudomonas aeruginosa. Journal of Bacteriology, 1996, 178, 3809-3817.	2.2	88
247	Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. Journal of Bacteriology, 1996, 178, 46-53.	2.2	131
248	The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9839-9843.	7.1	145
249	Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Molecular Microbiology, 1996, 22, 161-173.	2.5	136
250	An RNA recognition motif in Wilms' tumour protein (WT1) revealed by structural modelling. Nature Genetics, 1996, 12, 329-332.	21.4	106
251	Identification of a gene, pilV, required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa, whose product possesses a pre-pilin-like leader sequence. Molecular Microbiology, 1995, 16, 485-496.	2.5	152
252	Characterization of a fiveâ€cluster required for the biogenesis of type 4 fimbriae in ⟨i⟩Pseudomonas aeruginosa⟨/i⟩. Molecular Microbiology, 1995, 16, 497-508.	2.5	108

#	Article	IF	Citations
253	Response from Mattick and Alm: common architecture of type 4 fimbriae and complexes involved in macromolecular traffic. Trends in Microbiology, 1995, 3, 411-413.	7.7	38
254	Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Molecular Microbiology, 1994, 13, 1079-1091.	2.5	149
255	Development and trial of a bovine herpesvirus 1 - thymidine kinase deletion virus as a vaccine. Australian Veterinary Journal, 1994, 71, 65-70.	1.1	13
256	Introns: evolution and function. Current Opinion in Genetics and Development, 1994, 4, 823-831.	3.3	278
257	Escherichia coli contains a set of genes homologous to those involved in protein secretion, DNA uptake and the assembly of type-4 fimbriae in other bacteria. Gene, 1994, 150, 9-15.	2.2	36
258	Sequencing and expression of the aroA gene from Dichelobacter nodosus. Gene, 1994, 145, 97-101.	2.2	2
259	Q pili enhance the attachment of <i>Moraxella bovis</i> to bovine corneas <i>in vitro</i> . Molecular Microbiology, 1993, 7, 285-288.	2.5	50
260	PilS and PilR, a twoâ€component transcriptional regulatory system controlling expression of type 4 fimbriae in <i>Pseudomonas aeruginosa</i>). Molecular Microbiology, 1993, 7, 669-682.	2.5	196
261	Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Molecular Microbiology, 1993, 9, 857-868.	2.5	135
262	Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and proteinâ€secretion apparatus: a general system for the formation of surfaceâ€associated protein complexes. Molecular Microbiology, 1993, 10, 233-243.	2.5	369
263	A â€~one tube reaction' for synthesis and amplification of total cDNA from small numbers of cells. Nucleic Acids Research, 1993, 21, 783-783.	14.5	16
264	Bovine herpesvirus 1.1â€"an exotic disease agent?. Australian Veterinary Journal, 1993, 70, 272-273.	1.1	5
265	Molecular Biology of the Fimbriae of Dichelobacter (Previously Bacteroides) nodosus. Brock/Springer Series in Contemporary Bioscience, 1993, , 517-545.	0.3	6
266	Chromosomal location of the human transketolase gene. Cytogenetic and Genome Research, 1992, 61, 274-275.	1.1	9
267	The first disulphide loop of the rabbit growth hormone receptor is required for binding to the hormone. Journal of Molecular Endocrinology, 1992, 9, 213-220.	2.5	24
268	Nucleotide and predicted amino acid sequence of a cDNA clone encoding part of human transketolase. Biochemical and Biophysical Research Communications, 1992, 183, 1159-1166.	2.1	22
269	Effects of substitution of aspartate-440 and tryptophan-487 in the thiamin diphosphate binding region of pyruvate decarboxylase fromZymomonas mobilis. FEBS Letters, 1992, 296, 95-98.	2.8	39
270	Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene, 1991, 101, 33-44.	2.2	286

#	Article	IF	CITATIONS
271	â€Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research, 1991, 19, 4008-4008.	14.5	2,342
272	The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics, 1991, 10, 654-660.	2.9	393
273	Organization of the fimbrial gene region of Bacteroides nodosus: class I and class II strains. Molecular Microbiology, 1991, 5, 543-560.	2.5	61
274	Gene sequences and comparison of the fimbrial subunits representative of Bacteroides nodosus serotypes A to I: class I and class II strains. Molecular Microbiology, 1991, 5, 561-573.	2.5	57
275	Nucleotide and amino acid sequence analysis of the thymidine kinase gene of a bovine encephalitis herpesvirus. Archives of Virology, 1991, 119, 199-210.	2.1	18
276	Expression of active yeast pyruvate decarboxylase in Escherichia coli. Journal of General Microbiology, 1991, 137, 2811-2815.	2.3	11
277	Shared antigenicity and immunogenicity of type 4 pilins expressed by Pseudomonas aeruginosa, Moraxella bovis, Neisseria gonorrhoaea, Dichelobacter nodosus, and Vibrio cholerae. Infection and Immunity, 1991, 59, 4674-4676.	2.2	38
278	Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 3513-3517.	7.1	274
279	Morphogenetic expression of Moraxella bovis fimbriae (pili) in Pseudomonas aeruginosa. Journal of Bacteriology, 1990, 172, 2601-2607.	2.2	65
280	Genome research. Nature, 1990, 346, 604-604.	27.8	0
281	The location and nucleotide sequence of the thymidine kinase gene of bovine herpesvirus type 1.2. Journal of General Virology, 1990, 71, 2417-2424.	2.9	11
282	Fimbriae of Bacteroides nodosus: protein engineering of the structural subunit for the production of an exogenous peptide. Protein Engineering, Design and Selection, 1989, 2, 365-369.	2.1	19
283	Identification of major antigenic proteins of bovine herpesvirus 1 and their correlation with virus neutralizing activity. Veterinary Microbiology, 1988, 16, 109-121.	1.9	9
284	Transcription of the fimbrial subunit gene and an associated transfer RNA gene of Pseudomonas aeruginosa. Gene, 1988, 62, 219-227.	2.2	20
285	Protection of sheep against footrot with a recombinant DNA-based fimbrial vaccine. Veterinary Microbiology, 1987, 14, 393-409.	1.9	47
286	Morphogenetic expression of Bacteroides nodosus fimbriae in Pseudomonas aeruginosa. Journal of Bacteriology, 1987, 169, 33-41.	2.2	117
287	Western blot (immunoblot) analysis of the fimbrial antigens of Bacteroides nodosus. Journal of Bacteriology, 1987, 169, 4018-4023.	2.2	12
288	An analysis of the organization and evolution of type 4 fimbrial (MePhe) subunit proteins. Journal of Molecular Evolution, 1987, 25, 261-269.	1.8	102

#	Article	IF	CITATIONS
289	Variation in the structural subunit and basal protein antigens of Bacteroides nodosus fimbriae. Journal of Bacteriology, 1986, 166, 453-460.	2.2	26
290	Construction of a gentamicin resistance gene probe for epidemiological studies. Antimicrobial Agents and Chemotherapy, 1985, 28, 96-102.	3.2	25
291	Isolation and characterization of Bacteroides nodosus fimbriae: structural subunit and basal protein antigens. Journal of Bacteriology, 1984, 160, 740-747.	2.2	40
292	Cloning and expression in Escherichia coli of the gene encoding the structural subunit of Bacteroides nodosus fimbriae. Journal of Bacteriology, 1984, 160, 748-754.	2.2	67
293	The characterisation of an esterase derived from Babesia bovis and its use as a vaccine. Zeitschrift F $\tilde{A}^{1}/4$ r Parasitenkunde (Berlin, Germany), 1983, 69, 703-714.	0.8	14
294	Serotype-specific glycoprotein of simian 11 rotavirus: coding assignment and gene sequence Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 3091-3095.	7.1	113
295	The Isolation and Characterization of Fatty-Acid-Synthetase mRNA from Rat Mammary Gland. FEBS Journal, 1981, 114, 643-651.	0.2	44
296	Homologous Mammalian Brain Cell Lysate System for the Initiation and Translation of Exogenous mRNAs. Journal of Neurochemistry, 1981, 37, 325-332.	3.9	4
297	Comparative studies of the effects of acridines and other petite inducing drugs on the mitochondrial genome of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1977, 152, 267-276.	2.4	26
298	Mitochondrial DNA replication in petite mutants of yeast: Resistance to inhibition by ethidium bromide, berenil and euflavine. Molecular Genetics and Genomics, 1977, 152, 277-283.	2.4	12
299	The action of structural analogues of ethidium bromide on the mitochondrial genome of yeast. Molecular Biology Reports, 1977, 3, 443-449.	2.3	5
300	Replicative Deoxyribonucleic Acid Synthesis in Isolated Mitochondria from <i>Saccharomyces cerevisiae</i> . Journal of Bacteriology, 1977, 130, 973-982.	2.2	17
301	Biogenesis of mitochondria. Molecular Genetics and Genomics, 1975, 141, 291-304.	2.4	24
302	Evidence for a functional association of DNA synthesis with the membrane in mitochondria of Saccharomyces cerevisiae. Molecular Biology Reports, 1975, 2, 101-106.	2.3	16