Arun K Sharma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6070807/publications.pdf

Version: 2024-02-01

88 papers

3,062 citations

32 h-index 50 g-index

88 all docs 88 docs citations

88 times ranked 3791 citing authors

#	Article	IF	CITATIONS
1	Recent Advances in the Chemistry and Therapeutic Evaluation of Naturally Occurring and Synthetic Withanolides. Molecules, 2022, 27, 886.	3.8	12
2	Novel Seleno-Aspirinyl Compound AS-10 Induces Apoptosis, G1 Arrest of Pancreatic Ductal Adenocarcinoma Cells, Inhibits Their NF-κB Signaling, and Synergizes with Gemcitabine Cytotoxicity. International Journal of Molecular Sciences, 2021, 22, 4966.	4.1	11
3	NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. Journal of Medicinal Chemistry, 2021, 64, 16380-16421.	6.4	25
4	An Efficient Synthesis of Dibenzo[a,l]tetracene and Dibenzo[a,j]tetracene and Their Identification in a Coal Tar Extract. Polycyclic Aromatic Compounds, 2020, 40, 88-98.	2.6	0
5	Development and Therapeutic Potential of Selenazo Compounds. Journal of Medicinal Chemistry, 2020, 63, 1473-1489.	6.4	86
6	Identification of a Novel Quinoxaline-Isoselenourea Targeting the STAT3 Pathway as a Potential Melanoma Therapeutic. International Journal of Molecular Sciences, 2019, 20, 521.	4.1	11
7	Development of Isoselenocyanate Compounds' Syntheses and Biological Applications. Journal of Medicinal Chemistry, 2019, 62, 5261-5275.	6.4	29
8	ASR352, A potent anticancer agent: Synthesis, preliminary SAR, and biological activities against colorectal cancer bulk, 5-fluorouracil/oxaliplatin resistant and stem cells. European Journal of Medicinal Chemistry, 2019, 161, 456-467.	5.5	13
9	Cationic amphiphilic bolaamphiphile-based delivery of antisense oligonucleotides provides a potentially microbiome sparing treatment for C. difficile. Journal of Antibiotics, 2018, 71, 713-721.	2.0	15
10	Phenylbutyl isoselenocyanate induces reactive oxygen species to inhibit androgen receptor and to initiate p53â€mediated apoptosis in LNCaP prostate cancer cells. Molecular Carcinogenesis, 2018, 57, 1055-1066.	2.7	13
11	Design and synthesis of novel thiobarbituric acid derivatives targeting both wild-type and BRAF-mutated melanoma cells. European Journal of Medicinal Chemistry, 2018, 143, 1919-1930.	5.5	21
12	Novel selenadiazole derivatives as selective antitumor and radical scavenging agents. European Journal of Medicinal Chemistry, 2018, 157, 14-27.	5.5	32
13	The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models. Carcinogenesis, 2018, 39, 1537-1547.	2.8	27
14	Design, synthesis, and identification of a novel napthalamide-isoselenocyanate compound NISC-6 as a dual Topoisomerase-II † ± and Akt pathway inhibitor, and evaluation of its anti-melanoma activity. European Journal of Medicinal Chemistry, 2017, 135, 282-295.	5.5	17
15	Methods of selecting combination therapy for colorectal cancer patients: a patent evaluation of US20160025730A1. Expert Opinion on Therapeutic Patents, 2017, 27, 527-538.	5.0	5
16	Molecular insights: Suppression of EGFR and AKT activation by a small molecule in non-small cell lung cancer. Genes and Cancer, 2017, 8, 713-724.	1.9	15
17	NSC30049 inhibits Chk1 pathway in 5-FU-resistant CRC bulk and stem cell populations. Oncotarget, 2017, 8, 57246-57264.	1.8	13
18	Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile . International Journal of Nanomedicine, 2016, Volume 11, 3607-3619.	6.7	42

#	Article	IF	CITATIONS
19	Interaction between APC and Fen1 during breast carcinogenesis. DNA Repair, 2016, 41, 54-62.	2.8	16
20	Chalcogen containing heterocyclic scaffolds: New hybrids with antitumoral activity. European Journal of Medicinal Chemistry, 2016, 123, 407-418.	5.5	40
21	Novel seleno- and thio-urea derivatives with potent inÂvitro activities against several cancer cell lines. European Journal of Medicinal Chemistry, 2016, 113, 134-144.	5.5	41
22	Design, synthesis, and anti-breast cancer evaluation of new triarylethylene analogs bearing short alkyl- and polar amino-/amido-ethyl chains. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1963-1969.	2.2	17
23	Design, Synthesis, and Biological Evaluation of Novel Selenium (Se-NSAID) Molecules as Anticancer Agents. Journal of Medicinal Chemistry, 2016, 59, 1946-1959.	6.4	122
24	Identification and quantification of six-ring C26H16 cata-condensed polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar. Analytical and Bioanalytical Chemistry, 2015, 407, 9165-9176.	3.7	19
25	The Apoptotic Mechanism of Action of the Sphingosine Kinase 1 Selective Inhibitor SKI-178 in Human Acute Myeloid Leukemia Cell Lines. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 494-508.	2.5	40
26	Synthesis and biological evaluation of some 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-arylethanones: Antibacterial, DNA photocleavage, and anticancer activities. European Journal of Medicinal Chemistry, 2014, 81, 267-276.	5.5	49
27	Simultaneous Detection of Deoxyadenosine and Deoxyguanosine Adducts in the Tongue and Other Oral Tissues of Mice Treated with Dibenzo[<i>a</i> , <i> </i>) pyrene. Chemical Research in Toxicology, 2014, 27, 1199-1206.	3.3	18
28	Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways. Experimental Hematology, 2014, 42, 883-896.	0.4	37
29	Design, synthesis and evaluation of Ospemifene analogs as anti-breast cancer agents. European Journal of Medicinal Chemistry, 2014, 86, 211-218.	5.5	20
30	Importance of Sphingosine Kinase (SphK) as a Target in Developing Cancer Therapeutics and Recent Developments in the Synthesis of Novel SphK Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 5509-5524.	6.4	88
31	Post SELECT: selenium on trial. Future Medicinal Chemistry, 2013, 5, 163-174.	2.3	34
32	Adenine-DNA Adduct Derived from the Nitroreduction of 6-Nitrochrysene Is More Resistant to Nucleotide Excision Repair than Guanine-DNA Adducts. Chemical Research in Toxicology, 2013, 26, 1746-1754.	3.3	10
33	Mechanisms of oral carcinogenesis induced by dibenzo $[\langle i \rangle a, \langle i \rangle]$ pyrene: An environmental pollutant and a tobacco smoke constituent. International Journal of Cancer, 2013, 133, 1300-1309.	5.1	36
34	Impact of Pregnancy on the Pharmacokinetics of Dibenzo[def,p]chrysene in Mice. Toxicological Sciences, 2013, 135, 48-62.	3.1	22
35	The Akt Inhibitor ISC-4 Synergizes with Cetuximab in 5-FU-Resistant Colon Cancer. PLoS ONE, 2013, 8, e59380.	2.5	12
36	Proteasomal Degradation of Mcl-1 by Maritoclax Induces Apoptosis and Enhances the Efficacy of ABT-737 in Melanoma Cells. PLoS ONE, 2013, 8, e78570.	2.5	37

#	Article	IF	CITATIONS
37	Selenium Compounds, Apoptosis and Other Types of Cell Death: An Overview for Cancer Therapy. International Journal of Molecular Sciences, 2012, 13, 9649-9672.	4.1	215
38	Phenylalkyl isoselenocyanates vs phenylalkyl isothiocyanates: Thiol reactivity and its implications. Chemico-Biological Interactions, 2012, 200, 28-37.	4.0	27
39	Rational Incorporation of Selenium into Temozolomide Elicits Superior Antitumor Activity Associated with Both Apoptotic and Autophagic Cell Death. PLoS ONE, 2012, 7, e35104.	2.5	27
40	Mutagenesis and carcinogenesis induced by dibenzo $[\langle i\rangle_a, \langle i\rangle]$ pyrene in the mouse oral cavity: a potential new model for oral cancer. International Journal of Cancer, 2012, 130, 2783-2790.	5.1	46
41	In vitro growth inhibition of human cancer cells by novel honokiol analogs. Bioorganic and Medicinal Chemistry, 2012, 20, 3202-3211.	3.0	36
42	Identification and Quantification of DNA Adducts in the Oral Tissues of Mice Treated with the Environmental Carcinogen Dibenzo[<i>a, </i>]pyrene by HPLC-MS/MS. Chemical Research in Toxicology, 2011, 24, 1297-1303.	3.3	34
43			

#	Article	IF	Citations
55	Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7498-7502.	2.2	57
56	Synthesis and biological evaluation of novel spiro 6-methoxytetralin-1,3′-pyrrolidine based organoselenocyanates against cadmium-induced oxidative and hepatic damage in mice. European Journal of Medicinal Chemistry, 2010, 45, 3265-3273.	5.5	31
57	Cellular and Pharmacological Selectivity of the Peroxisome Proliferator-Activated Receptor- \hat{l}^2/\hat{l}^2 Antagonist GSK3787. Molecular Pharmacology, 2010, 78, 419-430.	2.3	51
58	Development of a Selective Modulator of Aryl Hydrocarbon (Ah) Receptor Activity that Exhibits Anti-Inflammatory Properties. Chemical Research in Toxicology, 2010, 23, 955-966.	3.3	66
59	Ligand activation of peroxisome proliferator-activated receptor- $\hat{l}^2\hat{l}$ (PPAR $\hat{l}^2\hat{l}$) inhibits cell growth in a mouse mammary gland cancer cell line. Cancer Letters, 2010, 288, 219-225.	7.2	20
60	Targeting Akt3 Signaling in Malignant Melanoma Using Isoselenocyanates. Clinical Cancer Research, 2009, 15, 1674-1685.	7.0	92
61	Functional Significance of UDP-Glucuronosyltransferase Variants in the Metabolism of Active Tamoxifen Metabolites. Cancer Research, 2009, 69, 1892-1900.	0.9	70
62	Peroxisome proliferator-activated receptor- $\hat{l}^2\hat{l}'$ (PPAR $\hat{l}^2\hat{l}'$) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines. Toxicology, 2008, 243, 236-243.	4.2	63
63	Effect of ligand activation of peroxisome proliferator-activated receptor-l²/l´ (PPARl²/l´) in human lung cancer cell lines. Toxicology, 2008, 254, 112-117.	4.2	28
64	Synthesis and Anticancer Activity Comparison of Phenylalkyl Isoselenocyanates with Corresponding Naturally Occurring and Synthetic Isothiocyanates. Journal of Medicinal Chemistry, 2008, 51, 7820-7826.	6.4	92
65	Synthesis, Microsome-Mediated Metabolism, and Identification of Major Metabolites of Environmental Pollutant Naphtho[8,1,2-ghi]chrysene. Chemical Research in Toxicology, 2008, 21, 1154-1162.	3.3	3
66	Ligand Activation of Peroxisome Proliferator-Activated Receptor-Î2/δ Inhibits Cell Proliferation in Human HaCaT Keratinocytes. Molecular Pharmacology, 2008, 74, 1429-1442.	2.3	55
67	Elimination of Antiestrogenic Effects of Active Tamoxifen Metabolites by Glucuronidation. Drug Metabolism and Disposition, 2007, 35, 1942-1948.	3.3	51
68	Glucuronidation of Active Tamoxifen Metabolites by the Human UDP Glucuronosyltransferases. Drug Metabolism and Disposition, 2007, 35, 2006-2014.	3.3	95
69	Peroxisome proliferator-activated receptor- $\hat{l}^2\hat{l}$ (PPAR $\hat{l}^2\hat{l}$) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis, 2007, 28, 2641-2649.	2.8	65
70	Characterization of naphtho[1,2-a]pyrene and naphtho[1,2-e]pyrene DNA adducts in C3H10T1/2 fibroblasts. Cancer Letters, 2007, 247, 309-317.	7.2	9
71	Microwave-Assisted Suzuki Cross-Coupling Reaction, a Key Step in the Synthesis of Polycyclic Aromatic Hydrocarbons and Their Metabolites. Journal of Organic Chemistry, 2007, 72, 8987-8989.	3.2	31
72	Investigation of the genotoxicity of dibenzo[c,p]chrysene in human carcinoma MCF-7 cells in culture. Chemico-Biological Interactions, 2006, 164, 181-191.	4.0	12

#	Article	IF	CITATIONS
73	Targeting Mitogen-Activated Protein Kinase/Extracellular Signal–Regulated Kinase Kinase in the Mutant (V600E) B-Raf Signaling Cascade Effectively Inhibits Melanoma Lung Metastases. Cancer Research, 2006, 66, 8200-8209.	0.9	108
74	Convenient Syntheses of Dibenzo[c,p]chrysene and Its Possible Proximate and Ultimate Carcinogens:Â In Vitro Metabolism and DNA Adduction Studies. Journal of Organic Chemistry, 2005, 70, 4962-4970.	3.2	12
75	Synthesis and Identification of Major Metabolites of Environmental Pollutant Dibenzo[c,mno]chrysene. Chemical Research in Toxicology, 2005, 18, 1438-1443.	3.3	8
76	Effect of artificial mixtures of environmental polycyclic aromatic hydrocarbons present in coal tar, urban dust, and diesel exhaust particulates on MCF-7 cells in culture. Environmental and Molecular Mutagenesis, 2004, 44, 99-107.	2.2	31
77	Synthesis of Dihydrodiol Metabolites of Naphtho [8,1,2-GHI] Chrysene and Dibenzo [C,MNO] Chrysene. Polycyclic Aromatic Compounds, 2003, 23, 297-305.	2.6	5
78	An Abbreviated Synthesis of 7,12-Dimethylbenz [a] anthracene and Benzo [c] chrysene Metabolites Using the Suzuki Reaction. Polycyclic Aromatic Compounds, 2002, 22, 277-288.	2.6	7
79	Synthesis, in Vitro Metabolism, Mutagenicity, and DNA-Adduction of Naphtho[1,2- e]pyrene. Polycyclic Aromatic Compounds, 2002, 22, 267-276.	2.6	6
80	Synthesis, in Vitro Metabolism, Cell Transformation, Mutagenicity, and DNA Adduction of Dibenzo[c,mno]chrysene. Chemical Research in Toxicology, 2002, 15, 964-971.	3.3	18
81	Comparative Tumorigenicity of the Environmental Pollutant 6-Nitrochrysene and Its Metabolites in the Rat Mammary Gland. Chemical Research in Toxicology, 2002, 15, 972-978.	3.3	20
82	Synthesis of 5-dienyl pyrimidinones and tandem [1,5] shifts in [4+2] cycloadditions of 1,3-diazabuta-1,3-dienes with butadienylketene. Tetrahedron Letters, 1998, 39, 7205-7208.	1.4	17
83	Regioselective [4+2] cycloaddition versus nucleophilic reactions of N-arylamino substituted 1,3-diaza-1,3-butadienes with ketenes: Synthesis of pyrimidinone and fused pyrimidinone derivatives. Part II. Tetrahedron, 1997, 53, 13829-13840.	1.9	23
84	Synthesis and [4+2] cycloaddition reactions of 4-(N-allyl-N-aryl)amino-1,3-diaza-1,3-butadienes with vinyl-, isopropenyl- and chloroketenes: Entry to novel pyrimidinone/fused pyrimidinone derivatives. Tetrahedron, 1997, 53, 13841-13854.	1.9	29
85	A ConvenientTransDiastereoselective Synthesis of 3-Butadienylazetidinones and Their Dielsâ° Alder Cycloaddition Reactions. Journal of Organic Chemistry, 1996, 61, 5506-5509.	3.2	38
86	Synthesis and regioselective [4+2] cycloaddition/nucleophilic reactions of N-arylamino-1:3-diaza-1:3-butadienes with ketenes and accompanying rearrangements. Tetrahedron, 1995, 51, 7459-7468.	1.9	23
87	Reactions of 1,3-diaza-1,3-butadienes with haloketenes - rearrangements accompanying [4+2] cycloaddition reactions Tetrahedron, 1994, 50, 7579-7588.	1.9	31
88	Regioselective and unusual [3+2] cycloadditions of \hat{l} ±-nitrosostyrenes with 1,3-diaza-1,3-butadienes. Tetrahedron Letters, 1993, 34, 7961-7964.	1.4	14