
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6068346/publications.pdf Version: 2024-02-01

DETED C RIIII

#	Article	IF	CITATIONS
1	The Wilson disease gene is a putative copper transporting P–type ATPase similar to the Menkes gene. Nature Genetics, 1993, 5, 327-337.	21.4	1,855
2	Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nature Medicine, 1998, 4, 358-360.	30.7	578
3	Breadth and Magnitude of Antibody Responses to Multiple <i>Plasmodium falciparum</i> Merozoite Antigens Are Associated with Protection from Clinical Malaria. Infection and Immunity, 2008, 76, 2240-2248.	2.2	342
4	Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends in Genetics, 1994, 10, 246-252.	6.7	322
5	Targets of antibodies against Plasmodium falciparum–infected erythrocytes in malaria immunity. Journal of Clinical Investigation, 2012, 122, 3227-3238.	8.2	187
6	A subset of group A-like <i>var</i> genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1772-81.	7.1	183
7	Antibody Recognition of <i>Plasmodium falciparum</i> Erythrocyte Surface Antigens in Kenya: Evidence for Rare and Prevalent Variants. Infection and Immunity, 1999, 67, 733-739.	2.2	165
8	Plasmodium falciparum Variant Surface Antigen Expression Patterns during Malaria. PLoS Pathogens, 2005, 1, e26.	4.7	158
9	A restricted subset of <i>var</i> genes mediates adherence of <i>Plasmodium falciparum</i> -infected erythrocytes to brain endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1782-90.	7.1	156
10	Plasmodium falciparum–Infected Erythrocytes: Agglutination by Diverse Kenyan Plasma Is Associated with Severe Disease and Young Host Age. Journal of Infectious Diseases, 2000, 182, 252-259.	4.0	152
11	Transient cross-reactive immune responses can orchestrate antigenic variation in malaria. Nature, 2004, 429, 555-558.	27.8	150
12	In Vitro Activities of Piperaquine, Lumefantrine, and Dihydroartemisinin in Kenyan <i>Plasmodium falciparum</i> Isolates and Polymorphisms in <i>p fcrt</i> and <i>p fmdr1</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 5069-5073.	3.2	140
13	A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature, 2016, 529, 105-109.	27.8	140
14	<i>Plasmodium falciparum var</i> gene expression is modified by host immunity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21801-21806.	7.1	130
15	The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria. Trends in Microbiology, 2002, 10, 55-58.	7.7	129
16	Long read assemblies of geographically dispersed Plasmodium falciparum isolates reveal highly structured subtelomeres. Wellcome Open Research, 2018, 3, 52.	1.8	114
17	Specific Receptor Usage in Plasmodium falciparum Cytoadherence Is Associated with Disease Outcome. PLoS ONE, 2011, 6, e14741.	2.5	106
18	Analysis of Immunity to Febrile Malaria in Children That Distinguishes Immunity from Lack of Exposure. Infection and Immunity, 2009, 77, 1917-1923.	2.2	98

#	Article	IF	CITATIONS
19	Kinetics of Antibody Responses toPlasmodium falciparum–Infected Erythrocyte Variant Surface Antigens. Journal of Infectious Diseases, 2003, 187, 667-674.	4.0	96
20	Evaluating controlled human malaria infection in Kenyan adults with varying degrees of prior exposure to Plasmodium falciparum using sporozoites administered by intramuscular injection. Frontiers in Microbiology, 2014, 5, 686.	3.5	95
21	<i>Plasmodium falciparum</i> antigenic variation. Mapping mosaic <i>var</i> gene sequences onto a network of shared, highly polymorphic sequence blocks. Molecular Microbiology, 2008, 68, 1519-1534.	2.5	91
22	Public antibodies to malaria antigens generated by two LAIR1 insertion modalities. Nature, 2017, 548, 597-601.	27.8	91
23	Naturally acquired immunoglobulin (Ig)G subclass antibodies to crude asexual Plasmodium falciparum lysates: evidence for association with protection for IgG1 and disease for IgG2. Parasite Immunology, 2002, 24, 77-82.	1.5	78
24	Prognostic Indicators of Life-Threatening Malaria Are Associated with Distinct Parasite Variant Antigen Profiles. Science Translational Medicine, 2012, 4, 129ra45.	12.4	74
25	Plasmodium falciparumInfections Are Associated with Agglutinating Antibodies to Parasiteâ€Infected Erythrocyte Surface Antigens among Healthy Kenyan Children. Journal of Infectious Diseases, 2002, 185, 1688-1691.	4.0	71
26	Induction of Strain-Transcending Antibodies Against Group A PfEMP1 Surface Antigens from Virulent Malaria Parasites. PLoS Pathogens, 2012, 8, e1002665.	4.7	68
27	Haemoglobin C and S Role in Acquired Immunity against Plasmodium falciparum Malaria. PLoS ONE, 2007, 2, e978.	2.5	66
28	The Frequency of BDCA3-Positive Dendritic Cells Is Increased in the Peripheral Circulation of Kenyan Children with Severe Malaria. Infection and Immunity, 2006, 74, 6700-6706.	2.2	65
29	Protection against Clinical Malaria by Heterologous Immunoglobulin G Antibodies against Malariaâ€Infected Erythrocyte Variant Surface Antigens Requires Interaction with Asymptomatic Infections. Journal of Infectious Diseases, 2004, 190, 1527-1533.	4.0	58
30	An approach to classifying sequence tags sampled from Plasmodium falciparum var genes. Molecular and Biochemical Parasitology, 2007, 154, 98-102.	1.1	55
31	The role of PfEMP1 as targets of naturally acquired immunity to childhood malaria: prospects for a vaccine. Parasitology, 2016, 143, 171-186.	1.5	52
32	What you see is not what you get: implications of the brevity of antibody responses to malaria antigens and transmission heterogeneity in longitudinal studies of malaria immunity. Malaria Journal, 2009, 8, 242.	2.3	49
33	Plasmodium falciparumAntigenic Variation: Relationships between In Vivo Selection, Acquired Antibody Response, and Disease Severity. Journal of Infectious Diseases, 2005, 192, 1119-1126.	4.0	37
34	In Vitro Inhibition of Plasmodium falciparum Rosette Formation by Curdlan Sulfate. Antimicrobial Agents and Chemotherapy, 2007, 51, 1321-1326.	3.2	36
35	Serological Evidence of Discrete Spatial Clusters of Plasmodium falciparum Parasites. PLoS ONE, 2011, 6, e21711.	2.5	34
36	Plasmodium falciparum var Gene Expression Homogeneity as a Marker of the Host-Parasite Relationship under Different Levels of Naturally Acquired Immunity to Malaria. PLoS ONE, 2013, 8, e70467.	2.5	32

#	Article	IF	CITATIONS
37	Global selection of Plasmodium falciparum virulence antigen expression by host antibodies. Scientific Reports, 2016, 6, 19882.	3.3	31
38	Plasmodium falciparum malaria parasite var gene expression is modified by host antibodies: longitudinal evidence from controlled infections of Kenyan adults with varying natural exposure. BMC Infectious Diseases, 2017, 17, 585.	2.9	29
39	The use of cryopreserved mature trophozoites in assessing antibody recognition of variant surface antigens of Plasmodium falciparum-infected erythrocytes. Journal of Immunological Methods, 2004, 288, 9-18.	1.4	27
40	Inferring malaria parasite population structure from serological networks. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 477-485.	2.6	25
41	Plasmodium falciparumantigenic variation: relationships between widespread endothelial activation, parasite PfEMP1 expression and severe malaria. BMC Infectious Diseases, 2014, 14, 170.	2.9	20
42	A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cellular and Molecular Life Sciences, 2016, 73, 4141-4158.	5.4	20
43	Mapping of the Mouse Homologue of the Wilson Disease Gene to Mouse Chromosome 8. Genomics, 1995, 28, 573-575.	2.9	19
44	Differential Plasmodium falciparum surface antigen expression among children with Malarial Retinopathy. Scientific Reports, 2015, 5, 18034.	3.3	19
45	Long Range Restriction Mapping of 13q14.3 Focused on the Wilson Disease Region. Genomics, 1993, 16, 593-598.	2.9	18
46	Recent advances in the molecular epidemiology of clinical malaria. F1000Research, 2018, 7, 1159.	1.6	16
47	CD4+T Cell Responses to thePlasmodium falciparumErythrocyte Membrane Protein 1 in Children with Mild Malaria. Journal of Immunology, 2014, 192, 1753-1761.	0.8	15
48	Phagocytosis of Plasmodium falciparum ring-stage parasites predicts protection against malaria. Nature Communications, 2022, 13, .	12.8	12
49	T-Cell Responses to the DBLα-Tag, a Short Semi-Conserved Region of the Plasmodium falciparum Membrane Erythrocyte Protein 1. PLoS ONE, 2012, 7, e30095.	2.5	11
50	A re-assessment of gene-tag classification approaches for describing var gene expression patterns during human Plasmodium falciparum malaria parasite infections. Wellcome Open Research, 2017, 2, 86.	1.8	9
51	Controlled human malaria infection (CHMI) outcomes in Kenyan adults is associated with prior history of malaria exposure and anti-schizont antibody response. BMC Infectious Diseases, 2022, 22, 86.	2.9	9
52	Serological Conservation of Parasite-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria. Infection and Immunity, 2016, 84, 1331-1335.	2.2	7
53	Antigenic cartography of immune responses to Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PLoS Pathogens, 2019, 15, e1007870.	4.7	6
54	Measuring Soluble ICAM-1 in African Populations. PLoS ONE, 2014, 9, e108956.	2.5	4

#	Article	IF	CITATIONS
55	Exploring Plasmodium falciparum Var Gene Expression to Assess Host Selection Pressure on Parasites During Infancy. Frontiers in Immunology, 2019, 10, 2328.	4.8	4
56	Molecular Aspects of Antigenic Variation in Plasmodium falciparum. , 2014, , 397-415.		1
57	Plasmodium falciparum variant erythrocyte surface antigens: a pilot study of antibody acquisition in recurrent natural infections. Malaria Journal, 2017, 16, 450.	2.3	1
58	Analysis of Immunity to Febrile Malaria in Children That Distinguishes Immunity from Lack of Exposure. Infection and Immunity, 2011, 79, 1804-1804.	2.2	0
59	An assessment of the impact of host polymorphisms on Plasmodium falciparum vargene expression patterns among Kenyan children. BMC Infectious Diseases, 2014, 14, 524.	2.9	Ο
60	Identification of ATP7B. , 2019, , 17-22.		0
61	Agglutination Assays of the Plasmodium falciparum-Infected Erythrocyte. Methods in Molecular Biology, 2015, 1325, 115-129.	0.9	Ο