Said Sif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/606833/publications.pdf

Version: 2024-02-01

64 papers

6,645

94433 37 h-index 59 g-index

64 all docs

64
docs citations

64 times ranked 6863 citing authors

#	Article	IF	Citations
1	Reconstitution of a Core Chromatin Remodeling Complex from SWI/SNF Subunits. Molecular Cell, 1999, 3, 247-253.	9.7	557
2	Ikaros DNA-Binding Proteins Direct Formation of Chromatin Remodeling Complexes in Lymphocytes. Immunity, 1999, 10, 345-355.	14.3	535
3	Human SWI/SNF-Associated PRMT5 Methylates Histone H3 Arginine 8 and Negatively Regulates Expression of ST7 and NM23 Tumor Suppressor Genes. Molecular and Cellular Biology, 2004, 24, 9630-9645.	2.3	524
4	The p400 Complex Is an Essential E1A Transformation Target. Cell, 2001, 106, 297-307.	28.9	282
5	Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nature Genetics, 2005, 37, 254-264.	21.4	277
6	Human SWI/SNF Interconverts a Nucleosome between Its Base State and a Stable Remodeled State. Cell, 1998, 94, 17-27.	28.9	269
7	Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes and Development, 2001, 15, 603-618.	5.9	251
8	Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO Journal, 2007, 26, 3558-3569.	7.8	246
9	Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes and Development, 1998, 12, 2842-2851.	5.9	239
10	Versatility of PRMT5-induced methylation in growth control and development. Trends in Biochemical Sciences, 2011, 36, 633-641.	7.5	225
11	Protein Arginine Methyltransferase 5 Suppresses the Transcription of the RB Family of Tumor Suppressors in Leukemia and Lymphoma Cells. Molecular and Cellular Biology, 2008, 28, 6262-6277.	2.3	223
12	mSin3A/Histone Deacetylase 2- and PRMT5-Containing Brg1 Complex Is Involved in Transcriptional Repression of the Myc Target Gene cad. Molecular and Cellular Biology, 2003, 23, 7475-7487.	2.3	218
13	BRG-1 Is Recruited to Estrogen-Responsive Promoters and Cooperates with Factors Involved in Histone Acetylation. Molecular and Cellular Biology, 2000, 20, 7541-7549.	2.3	205
14	The Protein Arginine Methyltransferase Prmt5 Is Required for Myogenesis because It Facilitates ATP-Dependent Chromatin Remodeling. Molecular and Cellular Biology, 2007, 27, 384-394.	2.3	163
15	MITF and PU.1 Recruit p38 MAPK and NFATc1 to Target Genes during Osteoclast Differentiation. Journal of Biological Chemistry, 2007, 282, 15921-15929.	3.4	155
16	Mammalian SWI-SNF Complexes Contribute to Activation of the hsp70 Gene. Molecular and Cellular Biology, 2000, 20, 2839-2851.	2.3	149
17	Interplay between chromatin remodelers and protein arginine methyltransferases. Journal of Cellular Physiology, 2007, 213, 306-315.	4.1	139
18	Genetic Validation of the Protein Arginine Methyltransferase PRMT5 as a Candidate Therapeutic Target in Glioblastoma. Cancer Research, 2014, 74, 1752-1765.	0.9	129

#	Article	IF	CITATIONS
19	Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood, 2015, 125, 2530-2543.	1.4	125
20	Protein Arginine Methyltransferase 7 Regulates Cellular Response to DNA Damage by Methylating Promoter Histones H2A and H4 of the Polymerase δ Catalytic Subunit Gene, POLD1. Journal of Biological Chemistry, 2012, 287, 29801-29814.	3.4	112
21	Transcriptional Activation Domains of Human Heat Shock Factor 1 Recruit Human SWI/SNF. Molecular and Cellular Biology, 2001, 21, 5826-5837.	2.3	107
22	Distinct Protein Arginine Methyltransferases Promote ATP-Dependent Chromatin Remodeling Function at Different Stages of Skeletal Muscle Differentiation. Molecular and Cellular Biology, 2009, 29, 1909-1921.	2.3	96
23	PRMT5–PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells. Oncogene, 2017, 36, 263-274.	5.9	94
24	Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget, 2018, 9, 36705-36718.	1.8	94
25	ATP-dependent nucleosome remodeling complexes: Enzymes tailored to deal with chromatin. Journal of Cellular Biochemistry, 2004, 91, 1087-1098.	2.6	86
26	Protein Arginine Methyltransferase 5 (PRMT5) Inhibition Induces Lymphoma Cell Death through Reactivation of the Retinoblastoma Tumor Suppressor Pathway and Polycomb Repressor Complex 2 (PRC2) Silencing. Journal of Biological Chemistry, 2013, 288, 35534-35547.	3.4	80
27	Bromodomain protein 7 interacts with PRMT5 and PRC2, and is involved in transcriptional repression of their target genes. Nucleic Acids Research, 2011, 39, 5424-5438.	14.5	78
28	PRMT5 Is Upregulated in Malignant and Metastatic Melanoma and Regulates Expression of MITF and p27Kip1. PLoS ONE, 2013, 8, e74710.	2.5	71
29	The BRG1- and hBRM-Associated Factor BAF57 Induces Apoptosis by Stimulating Expression of the Cylindromatosis Tumor Suppressor Gene. Molecular and Cellular Biology, 2005, 25, 7953-7965.	2.3	67
30	Protein Arginine Methyltransferase 5 (Prmt5) Promotes Gene Expression of Peroxisome Proliferator-Activated Receptor \hat{I}^3 2 (PPAR \hat{I}^3 2) and Its Target Genes during Adipogenesis. Molecular Endocrinology, 2012, 26, 583-597.	3.7	62
31	Stable Remodeling of Tailless Nucleosomes by the Human SWI-SNF Complex. Molecular and Cellular Biology, 1999, 19, 2088-2097.	2.3	61
32	Methylation of histone H3 and H4 by PRMT5 regulates ribosomal RNA gene transcription. Journal of Cellular Biochemistry, 2010, 109, 553-563.	2.6	56
33	Protein arginine methyltransferase 5 (PRMT5) promotes survival of lymphoma cells via activation of WNT/ \hat{l}^2 -catenin and AKT/GSK3 \hat{l}^2 proliferative signaling. Journal of Biological Chemistry, 2019, 294, 7692-7710.	3.4	56
34	Interaction of the v-Rel oncoprotein with cellular transcription factor Sp1. Journal of Virology, 1994, 68, 7131-7138.	3.4	47
35	Nucleosome Remodeling by the Human SWI/SNF Complex Requires Transient Global Disruption of Histone-DNA Interactions. Molecular and Cellular Biology, 2002, 22, 3653-3662.	2.3	44
36	The mouse C/EBPδgene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression. Journal of Cellular Biochemistry, 2007, 102, 1256-1270.	2.6	43

#	Article	IF	CITATIONS
37	Cellular localization of protein arginine methyltransferase-5 correlates with grade of lung tumors. Diagnostic Pathology, 2013, 8, 201.	2.0	43
38	Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opinion on Therapeutic Targets, 2018, 22, 527-545.	3.4	40
39	Novel Mechanism of Negative Regulation of 1,25-Dihydroxyvitamin D3-induced 25-Hydroxyvitamin D3 24-Hydroxylase (Cyp24a1) Transcription. Journal of Biological Chemistry, 2014, 289, 33958-33970.	3.4	36
40	Opposing calcium-dependent signalling pathways control skeletal muscle differentiation by regulating a chromatin remodelling enzyme. Nature Communications, 2015, 6, 7441.	12.8	36
41	The expression of myogenic microRNAs indirectly requires protein arginine methyltransferase (Prmt)5 but directly requires Prmt4. Nucleic Acids Research, 2011, 39, 1243-1255.	14.5	35
42	NF-kappa B p100 is one of the high-molecular-weight proteins complexed with the v-Rel oncoprotein in transformed chicken spleen cells. Journal of Virology, 1993, 67, 7612-7617.	3.4	34
43	Transcriptional and post-transcriptional control of adipocyte differentiation by Jumonji domain-containing protein 6. Nucleic Acids Research, 2015, 43, 7790-7804.	14.5	33
44	Promoter–enhancer looping at the PPARγ2 locus during adipogenic differentiation requires the Prmt5 methyltransferase. Nucleic Acids Research, 2016, 44, 5133-5147.	14.5	31
45	hSWI/SNF Disrupts Interactions between the H2A N-Terminal Tail and Nucleosomal DNAâ€. Biochemistry, 1999, 38, 8423-8429.	2.5	29
46	The Multifunctional Protein Fused in Sarcoma (FUS) Is a Coactivator of Microphthalmia-associated Transcription Factor (MITF). Journal of Biological Chemistry, 2014, 289, 326-334.	3.4	21
47	Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that down-regulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma. Journal of Biological Chemistry, 2020, 295, 1165-1180.	3.4	21
48	Protein arginine methyltransferase 5 represses tumor suppressor miRNAs that down-regulate CYCLIN D1 and c-MYC expression in aggressive B-cell lymphoma. Journal of Biological Chemistry, 2020, 295, 1165-1180.	3.4	21
49	A Model for Chromatin Remodeling by the SWI/SNF Family. Cold Spring Harbor Symposia on Quantitative Biology, 1998, 63, 535-544.	1.1	20
50	Reply to "Testing for association between MeCP2 and the brahma-associated SWI/SNF chromatin-remodeling complex― Nature Genetics, 2006, 38, 964-967.	21,4	16
51	Protein arginine methyltransferase 5 (PRMT5) activates WNT/βâ€catenin signalling in breast cancer cells via epigenetic silencing of DKK1 and DKK3. Journal of Cellular and Molecular Medicine, 2021, 25, 1583-1600.	3.6	16
52	Characterization of a chicken cDNA encoding the retinoblastoma gene product. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1218, 82-86.	2.4	15
53	Defective coâ€activator recruitment in osteoclasts from <i>microphthalmiaâ€oak ridge</i> mutant mice. Journal of Cellular Physiology, 2009, 220, 230-237.	4.1	9
54	Novel role of BRCA1 interacting Câ€terminal helicase 1 (BRIP1) in breast tumour cell invasion. Journal of Cellular and Molecular Medicine, 2020, 24, 11477-11488.	3.6	8

#	Article	IF	CITATIONS
55	Prmt7 is dispensable in tissue culture models for adipogenic differentiation. F1000Research, 2013, 2, 279.	1.6	7
56	PRMT5 Is a Key Epigenetic Regulator That Promotes Transcriptional Activation in Mantle Cell Lymphoma By Regulating the Lysine Methyltransferase SETD7 and MLL1 Activity. Blood, 2019, 134, 2777-2777.	1.4	3
57	Dietary fat/cholesterol-sensitive PKCβ-RB signaling: Potential role in NASH/HCC axis. Oncotarget, 2017, 8, 73757-73765.	1.8	3
58	Developing a Novel Class of Drug to Inhibit Protein Arginine Methyltransferase 5 (PRMT5) Enzyme Dysregulation in Mantle Cell Lymphoma. Blood, 2011, 118, 595-595.	1.4	2
59	The Chicken RelB Transcription Factor Has Transactivation Sequences and a Tissue-Specific Expression Pattern That Are Distinct from Mammalian RelB. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2001, 4, 266-275.	1.6	1
60	Distinct Protein Arginine Methyltransferases Promote ATP-Dependent Chromatin Remodeling Function at Different Stages of Skeletal Muscle Differentiation. Molecular and Cellular Biology, 2013, 33, 4618-4618.	2.3	0
61	Protein Arginine Methyltransferase 5 (PRMT5) Over-Expression Is Essential for Epstein-Barr Virus-Driven B-Cell Transformation Blood, 2012, 120, 2378-2378.	1.4	O
62	Protein Arginine Methyltransferase 5 Directly Targets and Epigenetically Silences microRNAs miR33b and miR96 to Support Constitutive Cyclin D1 Activity in Non-Hodgkin's Lymphoma. Blood, 2014, 124, 60-60.	1.4	0
63	Protein Arginine Methyltransferase 5 Supports MYC, Survivin and Cyclin D1 Activity in Aggressive Lymphomas By Regulating the WNT/β-Catenin Pathway. Blood, 2014, 124, 58-58.	1.4	O
64	PRMT5 Transgenic Mice Develop Aggressive Lymphoblastic Lymphomas. Blood, 2016, 128, 2936-2936.	1.4	0