Cynthia J Guidos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6068144/publications.pdf

Version: 2024-02-01

136950 123424 3,961 62 32 61 citations h-index g-index papers 62 62 62 6309 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nature Immunology, 2013, 14, 937-948.	14.5	368
2	Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+CDS+thymocytes. Nature, 1995, 374, 474-476.	27.8	299
3	Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nature Genetics, 1996, 12, 448-451.	21.4	241
4	Fyn Can Partially Substitute for Lck in T Lymphocyte Development. Immunity, 1996, 5, 417-428.	14.3	205
5	Subversion of the T/B Lineage Decision in the Thymus by Lunatic Fringe-Mediated Inhibition of Notch-1. Immunity, 2001, 15, 225-236.	14.3	189
6	Requirement for Notch1 signals at sequential early stages of intrathymic T cell development. Nature Immunology, 2005, 6, 671-679.	14.5	175
7	Functions of Notch Signaling in the Immune System: Consensus and Controversies. Annual Review of Immunology, 2010, 28, 343-365.	21.8	160
8	Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood, 2012, 119, 5621-5631.	1.4	138
9	Notch signal strength controls cell fate in the haemogenic endothelium. Nature Communications, 2015, 6, 8510.	12.8	135
10	Lunatic and Manic Fringe Cooperatively Enhance Marginal Zone B Cell Precursor Competition for Delta-like 1 in Splenic Endothelial Niches. Immunity, 2009, 30, 254-263.	14.3	118
11	Validation of CyTOF Against Flow Cytometry for Immunological Studies and Monitoring of Human Cancer Clinical Trials. Frontiers in Oncology, 2019, 9, 415.	2.8	114
12	Lunatic Fringe Deficiency Cooperates with the Met/Caveolin Gene Amplicon to Induce Basal-like Breast Cancer. Cancer Cell, 2012, 21, 626-641.	16.8	113
13	CD8+ T Cell Priming in Established Chronic Viral Infection Preferentially Directs Differentiation of Memory-like Cells for Sustained Immunity. Immunity, 2018, 49, 678-694.e5.	14.3	100
14	Regulation of T lymphopoiesis by Notch1 and Lunatic fringe–mediated competition for intrathymic niches. Nature Immunology, 2006, 7, 634-643.	14.5	96
15	IL-7 coordinates proliferation, differentiation and Tcra recombination during thymocyte \hat{l}^2 -selection. Nature Immunology, 2015, 16, 397-405.	14.5	93
16	Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood, 2011, 117, 4449-4459.	1.4	89
17	Proteomic Analyses Reveal High Expression of Decorin and Endoplasmin (HSP90B1) Are Associated with Breast Cancer Metastasis and Decreased Survival. PLoS ONE, 2012, 7, e30992.	2.5	80
18	Regulatory T Cells in Ovarian Cancer Are Characterized by a Highly Activated Phenotype Distinct from that in Melanoma. Clinical Cancer Research, 2018, 24, 5685-5696.	7.0	76

#	Article	IF	CITATIONS
19	The RAG-1/2 endonuclease causes genomic instability and controls CNS complications of lymphoblastic leukemia in p53/Prkdc-deficient mice. Cancer Cell, 2003, 3, 37-50.	16.8	73
20	Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs. Cancer Discovery, 2020, 10, 568-587.	9.4	72
21	Chemo-genomic interrogation of CEBPA mutated AML reveals recurrent CSF3R mutations and subgroup sensitivity to JAK inhibitors. Blood, 2016, 127, 3054-3061.	1.4	70
22	Regulation of Notch signaling during T―and Bâ€cell development by <i>O</i> ucose glycans. Immunological Reviews, 2009, 230, 201-215.	6.0	69
23	Cell Surface Profiling Using High-Throughput Flow Cytometry: A Platform for Biomarker Discovery and Analysis of Cellular Heterogeneity. PLoS ONE, 2014, 9, e105602.	2.5	65
24	ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunological Reviews, 2006, 209, 142-158.	6.0	64
25	Regulation of intrathymic Tâ€eell development by Lunatic Fringe– Notch1 interactions. Immunological Reviews, 2006, 209, 76-94.	6.0	57
26	Positive selection of CD4+ and CD8+ T cells. Current Opinion in Immunology, 1996, 8, 225-232.	5.5	53
27	Transgenic Expression of Numb Inhibits Notch Signaling in Immature Thymocytes But Does Not Alter T Cell Fate Specification. Journal of Immunology, 2002, 168, 3173-3180.	0.8	47
28	Cdh1 and Pik3ca Mutations Cooperate to Induce Immune-Related Invasive Lobular Carcinoma of the Breast. Cell Reports, 2018, 25, 702-714.e6.	6.4	47
29	ATM deficiency disrupts Tcra locus integrity and the maturation of CD4+CD8+ thymocytes. Blood, 2007, 109, 1887-1896.	1.4	46
30	In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency. PLoS Genetics, 2015, 11, e1005288.	3.5	37
31	Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. Oncogene, 2018, 37, 2630-2644.	5.9	37
32	Chromosomal reinsertion of broken RSS ends during T cell development. Journal of Experimental Medicine, 2007, 204, 2293-2303.	8.5	34
33	Therapeutic Potential of Spleen Tyrosine Kinase Inhibition for Treating High-Risk Precursor B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014, 6, 236ra62.	12.4	30
34	Biological and therapeutic implications of a unique subtype of NPM1 mutated AML. Nature Communications, 2021, 12, 1054.	12.8	29
35	Essential and perilous: V(D)J recombination and DNA damage checkpoints in lymphocyte precursors. Seminars in Immunology, 1997, 9, 199-206.	5.6	27
36	Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection. Immunity, 2021, 54, 526-541.e7.	14.3	25

#	Article	IF	CITATIONS
37	Lunatic Fringe prolongs Delta/Notch-induced self-renewal of committed $\hat{l}\pm\hat{l}^2$ T-cell progenitors. Blood, 2011, 117, 1184-1195.	1.4	24
38	Notch signaling in lymphocyte development. Seminars in Immunology, 2002, 14, 395-404.	5.6	23
39	STAT5-Induced Lunatic Fringe during Th2 Development Alters Delta-like 4–Mediated Th2 Cytokine Production in Respiratory Syncytial Virus–Exacerbated Airway Allergic Disease. Journal of Immunology, 2014, 192, 996-1003.	0.8	23
40	Fine-tuning Notch1 activation by endocytosis and glycosylation. Seminars in Immunology, 2003, 15, 99-106.	5.6	21
41	Irradiation Promotes V(D)J Joining and RAG-Dependent Neoplastic Transformation in SCID T-Cell Precursors. Molecular and Cellular Biology, 2001, 21, 400-413.	2.3	20
42	Lunatic Fringe Enhances Competition for Delta-Like Notch Ligands but Does Not Overcome Defective Pre-TCR Signaling during Thymocyte \hat{l}^2 -Selection In Vivo. Journal of Immunology, 2010, 185, 4609-4617.	0.8	18
43	Notch3 Is Dispensable for Thymocyte β-Selection and Notch1-Induced T Cell Leukemogenesis. PLoS ONE, 2011, 6, e24937.	2.5	17
44	B cell acute lymphoblastic leukemia cells mediate RANK-RANKL–dependent bone destruction. Science Translational Medicine, 2020, 12, .	12.4	17
45	Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy. Nature Immunology, 2022, 23, 1273-1283.	14.5	17
46	p53-Independent Apoptosis Disrupts Early Organogenesis in Embryos Lacking Both Ataxia-Telangiectasia Mutated and Prkdc. Molecular Cancer Research, 2006, 4, 311-318.	3.4	16
47	An Integrated Analysis of Heterogeneous Drug Responses in Acute Myeloid Leukemia That Enables the Discovery of Predictive Biomarkers. Cancer Research, 2016, 76, 1214-1224.	0.9	16
48	Synergy between the preâ \in "T cell receptor and Notch: cementing the $\hat{l}\pm\hat{l}^2$ lineage choice. Journal of Experimental Medicine, 2006, 203, 2233-2237.	8.5	15
49	Cancers from Novel <i>Pole</i> -Mutant Mouse Models Provide Insights into Polymerase-Mediated Hypermutagenesis and Immune Checkpoint Blockade. Cancer Research, 2020, 80, 5606-5618.	0.9	14
50	Thymus and T-lymphocyte development: what is new in the 21st century?. Immunological Reviews, 2006, 209, 5-9.	6.0	13
51	A network of immune and microbial modifications underlies viral persistence in the gastrointestinal tract. Journal of Experimental Medicine, 2020, 217, .	8.5	6
52	Heterogeneity of Macrophages and Dendritic Cells as Accessory Cells. Immunobiology, 1984, 168, 172-181.	1.9	4
53	A key role for ILâ€7R in the generation of microenvironments required for thymic dendritic cells. Immunology and Cell Biology, 2017, 95, 933-942.	2.3	4
54	Multiomic Profiling of Central Nervous System Leukemia Identifies mRNA Translation as a Therapeutic Target. Blood Cancer Discovery, 2022, 3, 16-31.	5.0	4

#	Article	IF	CITATIONS
55	"Cryptic―Notch1 messages induce T-ALL. Blood, 2010, 116, 5436-5438.	1.4	3
56	MuLV-related endogenous retroviral elements and <i>Flt3</i> participate in aberrant end-joining events that promote B-cell leukemogenesis. Genes and Development, 2014, 28, 1179-1190.	5 . 9	3
57	Defining Functional Heterogeneity In Acute Lymphoblastic Leukemia. Blood, 2013, 122, 1365-1365.	1.4	3
58	RANK-RANKL Mediated Bone Destruction in B-Cell Acute Lymphoblastic Leukemia. Blood, 2016, 128, 908-908.	1.4	3
59	Targeted blockade of immune mechanisms inhibit B precursor acute lymphoblastic leukemia cell invasion of the central nervous system. Cell Reports Medicine, 2021, 2, 100470.	6.5	3
60	Method for Tagging Antibodies with Metals for Mass Cytometry Experiments. Methods in Molecular Biology, 2019, 1989, 47-54.	0.9	2
61	Genetic Analysis of B-Cell Acute Lymphoblastic Leukemia Dissemination to the Central Nervous System Identifies Clonal Selection and Therapeutic Vulnerability. Blood, 2018, 132, 1542-1542.	1.4	1
62	TMOD-10. REPLICATION REPAIR DEFICIENT MOUSE MODELS PROVIDE INSIGHT ON HYPERMUTANT BRAIN TUMOURS AND COMBINATIONAL IMMUNOTHERAPY. Neuro-Oncology, 2019, 21, ii123-ii123.	1.2	0