Taron Makaryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6067052/publications.pdf

Version: 2024-02-01

623734 610901 4,020 28 14 24 citations g-index h-index papers 30 30 30 5494 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interband, Surface Plasmon and Fano Resonances in Titanium Carbide (MXene) Nanoparticles in the Visible to Infrared Range. Photonics, 2021, 8, 36.	2.0	4
2	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 1864-1868.	2.0	67
3	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithium″on Batteries. Angewandte Chemie - International Edition, 2018, 57, 1846-1850.	13.8	520
4	2D Titanium Carbide/Reduced Graphene Oxide Heterostructures for Supercapacitor Applications. Batteries and Supercaps, 2018, 1, 33-38.	4.7	72
5	Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochimica Acta, 2018, 259, 752-761.	5.2	103
6	Large Area Perovskite Solar Cell via Two-step Ultrasonic Spray Deposition. , 2018, , .		0
7	Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate. Journal of Physical Chemistry C, 2017, 121, 19983-19988.	3.1	281
8	Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Naâ€lon Storage. Advanced Materials, 2017, 29, 1702410.	21.0	757
9	MoS ₂ Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1502161.	19.5	444
10	Porous Twoâ€Dimensional Transition Metal Carbide (MXene) Flakes for Highâ€Performance Liâ€lon Storage. ChemElectroChem, 2016, 3, 689-693.	3.4	452
11	Synthesis of two-dimensional titanium nitride Ti ₄ N ₃ (MXene). Nanoscale, 2016, 8, 11385-11391.	5. 6	878
12	One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS. Scientific Reports, 2016, 6, 32049.	3.3	316
13	Carbon nanotube forests as top electrode in electroacoustic resonators. Applied Physics Letters, 2015, 107, .	3.3	7
14	Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures. Optics Express, 2014, 22, 24516.	3.4	17
15	Preliminary investigation in optical resonators based on carbon nano-tube and coupling for optoelectronics., 2014,,.		0
16	Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness. Carbon, 2014, 73, 13-24.	10.3	14
17	Effect of Oxygen Plasma Alumina Treatment on Growth of Carbon Nanotube Forests. Journal of Physical Chemistry C, 2014, 118, 18683-18692.	3.1	9
18	Growth Kinetics and Growth Mechanism of Ultrahigh Mass Density Carbon Nanotube Forests on Conductive Ti/Cu Supports. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15440-15447.	8.0	20

#	Article	IF	CITATIONS
19	Optical resonators based on carbon nanotube for photonics applications. , 2014, , .		O
20	Hybrids of carbon Nanotube Forests and Gold Nanoparticles for Improved Surface Plasmon Manipulation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5344-5349.	8.0	11
21	Comparison of carbon nanotube forest growth using AlSi, TiSiN, and TiN as conductive catalyst supports. Physica Status Solidi (B): Basic Research, 2014, 251, 2389-2393.	1.5	9
22	Evaluation of bimetallic catalysts for the growth of carbon nanotube forests. Physica Status Solidi (B): Basic Research, 2013, 250, 2605-2610.	1.5	6
23	Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching. Beilstein Journal of Nanotechnology, 2011, 2, 448-458.	2.8	20
24	Numerical simulations on longitudinal surface plasmons of coupled gold nanorods. Journal of Contemporary Physics, 2011, 46, 111-115.	0.6	2
25	Influence of interface on surface plasmon frequencies of metallic nanosphere. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 134-137.	2.7	3
26	Surface plasmons in coupled metallic nanoparticles: numerical verification of new analytical approaches. Proceedings of SPIE, 2010, , .	0.8	0
27	Theoretical study of surface plasmon frequencies in a system of two coupled spheres and comparison with experimental data. , 2010 , , .		0
28	Surface Plasmon Frequency Spectrum in a System of Two Spherical Dielectric Coated Metallic Nanoparticles. Acta Physica Polonica A, 2007, 112, 1025-1029.	0.5	4