Morten Christensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solid—liquid separation of animal slurry in theory and practice. A review. Agronomy for Sustainable Development, 2010, 30, 153-180.	5.3	303
2	Dewatering in biological wastewater treatment: A review. Water Research, 2015, 82, 14-24.	11.3	231
3	Characterization of pig slurry with reference to flocculation and separation. Water Research, 2009, 43, 773-783.	11.3	82
4	One-step deposition of ultrafiltration SiC membranes on macroporous SiC supports. Journal of Membrane Science, 2014, 472, 232-240.	8.2	55
5	Acidification and recovery of phosphorus from digested and non-digested sludge. Water Research, 2018, 146, 307-317.	11.3	54
6	Flocculation, coagulation, and precipitation of manure affecting three separation techniques. Bioresource Technology, 2008, 99, 8598-8604.	9.6	53
7	Modeling cake buildup under TMP-step filtration in a membrane bioreactor: Cake compressibility is significant. Water Research, 2012, 46, 4330-4338.	11.3	53
8	Layered double hydroxides for phosphorus recovery from acidified and non-acidified dewatered sludge. Water Research, 2019, 153, 208-216.	11.3	53
9	Unified understanding of physico-chemical properties of activated sludge and fouling propensity. Water Research, 2017, 120, 117-132.	11.3	48
10	Membrane crystallization for phosphorus recovery and ammonia stripping from reject water from sludge dewatering process. Desalination, 2018, 440, 156-160.	8.2	48
11	Impact of iron and hydrogen peroxide on membrane degradation for polymer electrolyte membrane water electrolysis: Computational and experimental investigation on fluoride emission. Journal of Power Sources, 2019, 420, 54-62.	7.8	48
12	Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes. Ceramics International, 2014, 40, 3277-3285.	4.8	45
13	A review of membrane crystallization, forward osmosis and membrane capacitive deionization for liquid mining. Resources, Conservation and Recycling, 2021, 168, 105273.	10.8	41
14	Comparison of ceramic and polymeric ultrafiltration membranes for treating wastewater from metalworking industry. Chemical Engineering Journal, 2014, 255, 403-410.	12.7	40
15	Design and fabrication of silica-based nanofiltration membranes for water desalination and detoxification. Microporous and Mesoporous Materials, 2017, 237, 117-126.	4.4	34
16	Gravity drainage of activated sludge: New experimental method and considerations of settling velocity, specific cake resistance and cake compressibility. Water Research, 2011, 45, 1941-1950.	11.3	30
17	Sludge fractionation as a method to study and predict fouling in MBR systems. Separation and Purification Technology, 2018, 194, 329-337.	7.9	30
18	Modeling approach to determine cake buildup and compression in a high-shear membrane bioreactor. Journal of Membrane Science, 2012, 409-410, 335-345.	8.2	29

#	Article	IF	CITATIONS
19	New Training to Meet the Global Phosphorus Challenge. Environmental Science & Technology, 2019, 53, 8479-8481.	10.0	29
20	Effects of relaxation time on fouling propensity in membrane bioreactors. Journal of Membrane Science, 2016, 504, 176-184.	8.2	28
21	Enhancing the health potential of processed meat: the effect of chitosan or carboxymethyl cellulose enrichment on inherent microstructure, water mobility and oxidation in a meat-based food matrix. Food and Function, 2018, 9, 4017-4027.	4.6	27
22	Selective electrodialysis for simultaneous but separate phosphate and ammonium recovery. Environmental Technology (United Kingdom), 2021, 42, 2177-2186.	2.2	27
23	Compressibility of fouling layers in membrane bioreactors. Journal of Membrane Science, 2015, 475, 65-70.	8.2	26
24	Study of the compositional heterogeneity in poly(N-isopropylacrylamide–acrylic acid) microgels by potentiometric titration experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 252, 61-69.	4.7	25
25	Filtration properties of activated sludge in municipal MBR wastewater treatment plants are related to microbial community structure. Water Research, 2013, 47, 6719-6730.	11.3	25
26	On the reversibility of cake buildup and compression in a membrane bioreactor. Journal of Membrane Science, 2014, 455, 152-161.	8.2	24
27	Direct observation of fouling phenomena during cross-flow filtration: Influence of particle surface charge. Journal of Membrane Science, 2016, 510, 546-558.	8.2	24
28	Compression and swelling of activated sludge cakes during dewatering. Water Research, 2012, 46, 4999-5008.	11.3	23
29	A comparison of vacuum and direct contact membrane distillation for phosphorus and ammonia recovery from wastewater. Journal of Water Process Engineering, 2021, 44, 102350.	5.6	23
30	Growth and proton exchange in recombinant Escherichia coli BL21. Enzyme and Microbial Technology, 2002, 31, 566-574.	3.2	22
31	Forward osmosis with high-performing TFC membranes for concentration of digester centrate prior to phosphorus recovery. Separation and Purification Technology, 2018, 197, 449-456.	7.9	22
32	Solid–Liquid Separation of Animal Slurry in Theory and Practice. , 2011, , 953-986.		22
33	Surface modification of reverse osmosis membranes with zwitterionic polymer to reduce biofouling. Water Science and Technology: Water Supply, 2015, 15, 999-1010.	2.1	21
34	Precipitation and recovery of phosphorus from the wastewater hydrolysis tank. Science of the Total Environment, 2022, 813, 151875.	8.0	21
35	New approach to determining consolidation coefficients using cake-filtration experiments. Powder Technology, 2004, 142, 98-102.	4.2	18
36	The quest for umami: Can sous vide contribute?. International Journal of Gastronomy and Food Science, 2018, 13, 129-133.	3.0	18

MORTEN CHRISTENSEN

#	Article	IF	CITATIONS
37	Creep effects in activated sludge filter cakes. Powder Technology, 2007, 177, 23-33.	4.2	17
38	Sludge quality aspects of full-scale reed bed drainage. Water Research, 2011, 45, 6453-6460.	11.3	17
39	Inhibition of cholesterol transport in an intestine cell model by pine-derived phytosterols. Chemistry and Physics of Lipids, 2016, 200, 62-73.	3.2	17
40	Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes. LWT - Food Science and Technology, 2015, 63, 423-429.	5.2	16
41	Ammonia Recovery from Pig Slurry Using a Membrane Contactor—Influence of Slurry Pretreatment. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	16
42	Gravitational drainage of compressible organic materials. AICHE Journal, 2010, 56, 3099-3108.	3.6	14
43	Fouling of enhanced biological phosphorus removal–membrane bioreactors by humic-like substances. Chemosphere, 2014, 117, 144-150.	8.2	14
44	Dependence of shear and concentration on fouling in a membrane bioreactor with rotating membrane discs. AICHE Journal, 2014, 60, 706-715.	3.6	14
45	Modeling water flux and salt rejection of mesoporous Î ³ -alumina and microporous organosilica membranes. Journal of Membrane Science, 2014, 470, 307-315.	8.2	14
46	Inorganic Membranes for the Recovery of Effluent from Municipal Wastewater Treatment Plants. Industrial & Engineering Chemistry Research, 2015, 54, 3462-3472.	3.7	14
47	Treated Seawater as a Magnesium Source for Phosphorous Recovery from Wastewater—A Feasibility and Cost Analysis. Membranes, 2016, 6, 54.	3.0	14
48	Pressure and concentration profiles in filter cake consisting of core/shell latex particle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 295-303.	4.7	13
49	Filtration model for suspensions that form filter cakes with creep behavior. AICHE Journal, 2007, 53, 598-609.	3.6	13
50	Evaluation of Methods to Determine Flocculation Procedure for Manure Separation. Transactions of the ASABE, 2008, 51, 2093-2103.	1.1	13
51	Roughness analysis of single nanoparticles applied to atomic force microscopy images of hydrated casein micelles. Food Hydrocolloids, 2015, 45, 168-174.	10.7	13
52	Test of precoat filtration technology for treatment of swimming pool water. Water Science and Technology, 2018, 77, 748-758.	2.5	13
53	Treatment of Wastewater Solutions from Anodizing Industry by Membrane Distillation and Membrane Crystallization. Applied Sciences (Switzerland), 2019, 9, 287.	2.5	13
54	The effect of particle surface charge density on filter cake properties during dead-end filtration. Chemical Engineering Science, 2017, 163, 155-166.	3.8	12

MORTEN CHRISTENSEN

#	Article	IF	CITATIONS
55	Effect of reverse sodium flux and pH on ammoniacal nitrogen transport through biomimetic membranes. Separation and Purification Technology, 2019, 217, 40-47.	7.9	11
56	Industrial Wastewater Treatment by Nanofiltration—A Case Study on the Anodizing Industry. Membranes, 2020, 10, 85.	3.0	11
57	Effect of water-swollen organic materials on crossflow filtration performance. Journal of Membrane Science, 2009, 333, 94-99.	8.2	10
58	Numerical model of gravity drainage of compressible organic slurries. Powder Technology, 2012, 217, 189-198.	4.2	10
59	Fouling of membranes in membrane bioreactors for wastewater treatment: Planktonic bacteria can have a significant contribution. Water Environment Research, 2021, 93, 207-216.	2.7	10
60	Filtration of core–shell colloids in studying the dewatering properties of water-swollen materials. Chemical Engineering Science, 2014, 116, 558-566.	3.8	9
61	Wastewater treatment and concentration of phosphorus with the hybrid osmotic microfiltration bioreactor. Journal of Membrane Science, 2018, 559, 107-116.	8.2	9
62	Mechanisms behind <scp>pH</scp> changes during electrocoagulation. AICHE Journal, 2021, 67, e17384.	3.6	9
63	Nonlinear filtration behavior of soft particles: Effect of dynamic cake compression. Powder Technology, 2011, 207, 428-436.	4.2	8
64	Pilot-scale study for phosphorus recovery by sludge acidification and dewatering. Environmental Technology (United Kingdom), 2020, 41, 2928-2934.	2.2	8
65	Hydraulic resistance and osmotic pressure effects in fouling layers during MBR operations. Journal of Membrane Science, 2021, 627, 119213.	8.2	8
66	Electroviscous Effects in Ceramic Nanofiltration Membranes. ChemPhysChem, 2015, 16, 3397-3407.	2.1	7
67	Critical moisture point of sludge and its link to vapour sorption and dewatering. Chemosphere, 2019, 236, 124299.	8.2	6
68	Membrane filtration device for studying compression of fouling layers in membrane bioreactors. PLoS ONE, 2017, 12, e0181652.	2.5	6
69	The influence of creep on cake solid volume fraction during filtration of core–shell particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320, 227-232.	4.7	5
70	Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel layer. Water Science and Technology, 2014, 69, 1641-1647.	2.5	5
71	Particle Track and Trace during Membrane Filtration by Direct Observation with a High Speed Camera. Membranes, 2020, 10, 68.	3.0	5
72	Oleic acid-coated magnetic particles for removal of oil from produced water. Journal of Petroleum Science and Engineering, 2022, 211, 110088.	4.2	5

5

#	Article	IF	CITATIONS
73	Fouling of a microfiltration membrane by humic-like substances: a mathematical approach to modelling permeate flux and membrane retention. Water Science and Technology, 2016, 73, 3033-3040.	2.5	4
74	Simulation of sludge dewatering on belt filters. Water Science and Technology, 2010, 61, 3162-3168.	2.5	3
75	Data for the size of cholesterol-fat micelles as a function of bile salt concentration and the physico-chemical properties of six liquid experimental pine-derived phytosterol formulations in a cholesterol-containing artificial intestine fluid. Data in Brief, 2017, 10, 478-481.	1.0	3
76	Nonâ€ionic soft materials influence on filtration resistance and cake dry matter content. AICHE Journal, 2017, 63, 2241-2247.	3.6	3
77	Teaching science to chefs: The benefits, challenges and opportunities. International Journal of Gastronomy and Food Science, 2019, 16, 100133.	3.0	3
78	Modeling approach to describe fouling removal during relaxation. Journal of the Taiwan Institute of Chemical Engineers, 2019, 94, 119-123.	5.3	2
79	Nutrients Enrichment and Process Repercussions in Hybrid Microfiltration Osmotic Membrane Bioreactor: A Guideline for Forward Osmosis Development Based on Lab-Scale Experience. Water (Switzerland), 2020, 12, 1098.	2.7	2
80	Phosphorus Removal from Manure by Mechanical Separation using Salt and Polymers: Theoretical Simulations and Experimental Data. Applied Engineering in Agriculture, 2020, 36, 175-185.	0.7	2
81	The use of dielectric spectroscopy for the characterisation of polymer-induced flocculation of core–shell particles. Journal of Colloid and Interface Science, 2011, 356, 681-689.	9.4	1
82	Comparison of the Characteristics and Separation Efficiency of Different Mink and Pig Manures. Transactions of the ASABE, 2014, , 1109-1119.	1.1	0