Nathan B Meezan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066705/publications.pdf

Version: 2024-02-01

69 papers

4,153 citations

76326 40 h-index 64 g-index

72 all docs

72 docs citations

times ranked

72

1557 citing authors

#	Article	IF	CITATIONS
1	Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies. Science, 2010, 327, 1228-1231.	12.6	321
2	Burning plasma achieved in inertial fusion. Nature, 2022, 601, 542-548.	27.8	233
3	Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions. Physical Review Letters, 2013, 111, 085004.	7.8	215
4	Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. Physical Review Letters, 2018, 120, 245003.	7.8	205
5	Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility. Physics of Plasmas, 2010, 17, .	1.9	171
6	Capsule implosion optimization during the indirect-drive National Ignition Campaign. Physics of Plasmas, $2011,18,.$	1.9	131
7	First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum. Physical Review Letters, 2015, 114, 175001.	7.8	117
8	High-density carbon ablator experiments on the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	116
9	A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments. Physics of Plasmas, 2012, 19, .	1.9	108
10	Insulator-metal transition in dense fluid deuterium. Science, 2018, 361, 677-682.	12.6	108
11	Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity. Physics of Plasmas, 2017, 24, .	1.9	106
12	Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nature Physics, 2012, 8, 344-349.	16.7	104
13	Symmetry tuning for ignition capsules via the symcap technique. Physics of Plasmas, $2011,18,.$	1.9	101
14	Energy transfer between laser beams crossing in ignition hohlraums. Physics of Plasmas, 2009, 16, .	1.9	92
15	Novel Characterization of Capsule X-Ray Drive at the National Ignition Facility. Physical Review Letters, 2014, 112, 105003.	7.8	87
16	Design of inertial fusion implosions reaching the burning plasma regime. Nature Physics, 2022, 18, 251-258.	16.7	87
17	Backscatter measurements for NIF ignition targets (invited). Review of Scientific Instruments, 2010, 81, 10D921.	1.3	82
18	of Plasmas, 2015, 22, 056315.	1.9	82

#	Article	IF	CITATIONS
19	of Plasmas, 2015, 22, 056318.	1.9	80
20	Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser. Physics of Plasmas, 2018, 25, .	1.9	79
21	The first measurements of soft x-ray flux from ignition scale <i>Hohlraums</i> at the National Ignition Facility using DANTE (invited). Review of Scientific Instruments, 2010, 81, 10E321.	1.3	66
22	Progress in hohlraum physics for the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	62
23	Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums. Physics of Plasmas, 2015, 22, 062703.	1.9	62
24	Hohlraum energetics scaling to 520 TW on the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	59
25	Integrated modeling of cryogenic layered highfoot experiments at the NIF. Physics of Plasmas, 2016, 23,	1.9	59
26	Hot electron measurements in ignition relevant <i>Hohlraums</i> on the National Ignition Facility. Review of Scientific Instruments, 2010, 81, 10D938.	1.3	58
27	The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility. Physics of Plasmas, 2017, 24, .	1.9	55
28	X-ray driven implosions at ignition relevant velocities on the National Ignition Facility. Physics of Plasmas, $2013, 20, .$	1.9	54
29	Thomson-scattering measurements of high electron temperature hohlraum plasmas for laser-plasma interaction studies. Physics of Plasmas, 2006, 13, 052704.	1.9	53
30	Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Physics and Controlled Fusion, 2019, 61, 014023.	2.1	53
31	Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled <i>Hohlraums</i> . Physics of Plasmas, 2010, 17, .	1.9	51
32	The near vacuum hohlraum campaign at the NIF: A new approach. Physics of Plasmas, 2016, 23, .	1.9	51
33	Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	50
34	Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility. Physics of Plasmas, 2010, 17, .	1.9	49
35	X-ray conversion efficiency in vacuum hohlraum experiments at the National Ignition Facility. Physics of Plasmas, 2012, 19, 053301.	1.9	48
36	Suppression of Stimulated Brillouin Scattering by Increased Landau Damping in Multiple-Ion-Species Hohlraum Plasmas. Physical Review Letters, 2008, 100, 105001.	7.8	43

#	Article	IF	Citations
37	The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility. Physics of Plasmas, 2018, 25, .	1.9	43
38	Images of the laser entrance hole from the static x-ray imager at NIF. Review of Scientific Instruments, 2010, 81, 10E538.	1.3	42
39	Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant. Physics of Plasmas, 2018, 25, .	1.9	42
40	Symmetry control in subscale near-vacuum hohlraums. Physics of Plasmas, 2016, 23, .	1.9	34
41	Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF. Physics of Plasmas, 2014, 21, 122712.	1.9	33
42	Implosion configurations for robust ignition using high-density carbon (diamond) ablator for indirect-drive ICF at the National Ignition Facility. Journal of Physics: Conference Series, 2016, 717, 012023.	0.4	30
43	Developing an Experimental Basis for Understanding Transport in NIF Hohlraum Plasmas. Physical Review Letters, 2018, 121, 095002.	7.8	28
44	Ultra-high (>30%) coupling efficiency designs for demonstrating central hot-spot ignition on the National Ignition Facility using a Frustraum. Physics of Plasmas, 2019, 26, .	1.9	25
45	Role of hydrodynamics simulations in laser-plasma interaction predictive capability. Physics of Plasmas, 2007, 14, 056304.	1.9	24
46	Hydrodynamics simulations of 2ω laser propagation in underdense gasbag plasmas. Physics of Plasmas, 2004, 11, 5573-5579.	1.9	23
47	Soft x-ray images of the laser entrance hole of ignition hohlraums. Review of Scientific Instruments, 2012, 83, 10E525.	1.3	22
48	Towards a more universal understanding of radiation drive in gas-filled hohlraums. Journal of Physics: Conference Series, 2016, 717, 012026.	0.4	20
49	Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experiments. Physics of Plasmas, 2008, 15, 056313.	1.9	19
50	First demonstration of improved capsule implosions by reducing radiation preheat in uranium vs gold hohlraums. Physics of Plasmas, 2018, 25, .	1.9	17
51	Update 2015 on Target Fabrication Requirements for NIF Layered Implosions, with Emphasis on Capsule Support and Oxygen Modulations in GDP. Fusion Science and Technology, 2016, 70, 121-126.	1.1	16
52	Simultaneous visualization of wall motion, beam propagation, and implosion symmetry on the National Ignition Facility (invited). Review of Scientific Instruments, 2018, 89, 10K111.	1.3	15
53	Development of new platforms for hydrodynamic instability and asymmetry measurements in deceleration phase of indirectly driven implosions on NIF. Physics of Plasmas, 2018, 25, 082705.	1.9	15
54	Evidence of restricted heat transport in National Ignition Facility Hohlraums. Physics of Plasmas, 2020, 27, 102704.	1.9	15

#	Article	IF	CITATIONS
55	Low mode implosion symmetry sensitivity in low gas-fill NIF cylindrical hohlraums. Physics of Plasmas, 2021, 28, .	1.9	15
56	Understanding ICF hohlraums using NIF gated laser-entrance-hole images. Physics of Plasmas, 2020, 27, 022702.	1.9	13
57	Images of the gold bubble feature in NIF Gas-Filled Ignition Hohlraums. Journal of Physics: Conference Series, 2016, 717, 012049.	0.4	12
58	Experimental demonstration of the reduced expansion of a laser-heated surface using a low density foam layer, pertaining to advanced hohlraum designs with less wall-motion. Physics of Plasmas, 2020, 27, .	1.9	12
59	Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility. Review of Scientific Instruments, 2016, 87, 11E321.	1.3	11
60	Hybrid particle-in-cell simulations of laser-driven plasma interpenetration, heating, and entrainment. Physics of Plasmas, 2019, 26, 112107.	1.9	11
61	Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators. Physics of Plasmas, 2020, 27, .	1.9	11
62	Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments. Physics of Plasmas, 2015, 22, 122701.	1.9	9
63	View factor estimation of hot spot velocities in inertial confinement fusion implosions at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	9
64	The effects of multispecies <i>Hohlraum</i> walls on stimulated Brillouin scattering, <i>Hohlraum</i> dynamics, and beam propagation. Physics of Plasmas, 2021, 28, .	1.9	6
65	Response to Comment on "Insulator-metal transition in dense fluid deuterium― Science, 2019, 363, .	12.6	5
66	Developing "inverted-corona―fusion targets as high-fluence neutron sources. Review of Scientific Instruments, 2021, 92, 033544.	1.3	4
67	Interpenetration and kinetic effects in converging, high-energy plasma jets. High Energy Density Physics, 2020, 37, 100861.	1.5	4
68	Foam-lined hohlraum, inertial confinement fusion experiments on the National Ignition Facility. Physical Review E, 2020, 102, 051201.	2.1	2
69	Kinetic mix at gas-shell interface in inverted corona fusion targets. Physics of Plasmas, 2021, 28, 122702.	1.9	1