Luigi Casella

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6066587/publications.pdf
Version: 2024-02-01

$\begin{gathered} 138 \\ \text { papers } \end{gathered}$	$\begin{gathered} 6,367 \\ \text { citations } \end{gathered}$	$\begin{gathered} 42 \\ \text { h-index } \end{gathered}$	73 g-index
$\begin{gathered} 141 \\ \text { all docs } \end{gathered}$	141 docs citations	141 times ranked	6142 citing authors

2

Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease.
Progress in Neurobiology, 2017, 155, 96-119.
5.7

490

Tyrosinase Models. Synthesis, Structure, Catechol Oxidase Activity, and Phenol Monooxygenase
2 Activity of a Dinuclear Copper Complex Derived from a Triamino Pentabenzimidazole Ligand. Inorganic
Chemistry, 1998, 37, 553-562.
New melanic pigments in the human brain that accumulate in aging and block environmental toxic
3 metals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105,
7.1

17567-17572.

4 Neuromelanin of the Human Substantia Nigra: An Update. Neurotoxicity Research, 2014, 25, 13-23.
2.7

191

5 Neuromelanin can protect against ironâ€mediated oxidative damage in system modeling iron overload of
brain aging and Parkinsonâ $€^{\text {TM }}$ s disease. Journal of Neurochemistry, 2008, 106, 1866-1875.
3.9

174

6 Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for
Parkinsonâ $€^{\text {TM }}$ s disease. Npj Parkinson's Disease, 2018, 4, 11.
5.3

169

7 Chloroperoxidase and hydrogen peroxide: An efficient system for enzymatic enantioselective
7 sulfoxidations.. Tetrahedron: Asymmetry, 1992, 3, 95-106.
1.8

165
$8 \quad \begin{aligned} & \text { Dopamine, Oxidative Stress and Proteinấ" } Q u \text { inone Modifications in Parkinson's and Other } \\ & \text { Neurodegenerative Diseases. Angewandte Chemie - International Edition, 2019, 58, 6512-6527. }\end{aligned}$
$9 \quad \begin{aligned} & \text { Mechanistic, Structural, and Spectroscopic Studies on the Catecholase Activity of a Dinuclear Copper } \\ & \text { Complex by Dioxygen. Inorganic Chemistry, 1999, 38, 5359-5369. }\end{aligned}$
$10 \quad \begin{aligned} & \text { Reversible Dioxygen Binding and Phenol Oxygenation in a Tyrosinase Model System. Chemistry - A } \\ & \text { European Journal, 2000, 6, 519-522. }\end{aligned}$

11	Hydroxylation of Phenolic Compounds by a Peroxodicopper(II) Complex:â€\% Further Insight into the Mechanism of Tyrosinase. Journal of the American Chemical Society, 2005, 127, 18031-18036.	13.7	113
12	Coordination modes of histidine. 2. Stereochemistry of the reaction between histidine derivatives and pyridoxal analogs conformational properties of zinc(II) complexes of histidine Schiff bases. Journal of the American Chemical Society, 1981, 103, 6338-6347.	13.7	112
13	$\mathrm{O}<$ sub $>2<\mid$ sub $>$ â \ldots...Activation and Selective Phenolate <i> ortho</i>â \ldots..Hydroxylation by an Unsymmetric Edition, 2010, 49, 2406-2409.	13.8	104

Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and
lipids in aging human brain and are likely involved in Parkinsonấ ${ }^{T M}$ s disease. Npj Parkinson's Disease, 2018,
4, 17.

15 Functional Modeling of Tyrosinase. Mechanism of Phenolortho-Hydroxylation by Dinuclear Copper
$4.0 \quad 98$
Complexes. Inorganic Chemistry, 1996, 35, 7516-7525.

Synthesis, Structure, and Reactivity of Model Complexes of Copper Nitrite Reductase. Inorganic
Hemocyanin and tyrosinase models. Synthesis, azide binding, and electrochemistry of dinuclear
copper(II) complexes with poly(benzimidazole) ligands modeling the met forms of the proteins.
Inorganic Chemistry, 1993, 32, 2056-2067.

Reactivity and endogenous modification by nitrite and hydrogen peroxide: does human neuroglobin
Characterization and Peroxidase Activity of a Myoglobin Mutant Containing a Distal Arginine.
41 ChemBioChem, 2002,3, 226-233.

Models for biological trinuclear copper clusters. Characterization and enantioselective catalytic
42 oxidation of catechols by the copper(ii) complexes of a chiral ligand derived from

Electron Transfer Complex between Nitrous Oxide Reductase and Cytochrome <i>c</i>₅₅₂

$45 \quad$| Synthesis, Structure Characterization, and Evaluation in Microglia Cultures of Neuromelanin |
| :--- |
| Analogues Suitable for Modeling Parkinsonâ€ $T^{T M}$ S Disease. ACS Chemical Neuroscience, 2017, 8, 501-512. | | Covalently modified microperoxidases as heme-peptide models for peroxidases. Journal of Inorganic |
| :--- |
| 46 |
| Biochemistry, 2000, 79, 31-40. |

47 Peroxidase catalyzed nitration of tryptophan derivatives. FEBS Journal, 2004, 271, 2841-2852.

0.2
Reactivity of copperâ $€^{\prime \prime} \mathrm{I} \pm$-synuclein peptide complexes relevant to Parkinsonâ $€^{T M}$ s disease. Metallomics, 2015, 7, 2.4 2.4
1091-1102.39
$4.0 \quad 38$
$49 \quad$ SpectrosEngineering peroxidase activity in myoglobin: the haem cavity structure and peroxide activation in the$50 \mathrm{~T} 67 \mathrm{R} / \mathrm{S} 92 \mathrm{D}$ mutant and its derivative reconstituted with protohaemin-l-histidine. Biochemical Journal,
51 Copper(I/II), $\mathfrak{I} \pm \hat{\mid}^{2} \hat{a} € S y n u c l e i n ~ a n d ~ A m y l o i d a ̂ € \hat{t^{2}}$: Menage \tilde{A} Trois?. ChemBioChem, 2015, 16, 2319-2328.

1.2

Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of $\hat{I}_{ \pm}-$Synuclein. Inorganic Chemistry, 2015, 54, 4744-4751.

Synthesis, characterization, and reactivity of copper(I) and copper(II) complexes of
$57 \quad \mathrm{~N}, \mathrm{~N}^{\prime}$-bis(3-(2-thenylideneimino)propyl) piperazine (tipp) and $\mathrm{N}, \mathrm{N}^{\prime}$-bis(3-(2-thenylamino)propyl) piperazine
$4.0 \quad 33$
(tapp). Crystal structure of [Cu(tapp)][ClO4]2. Inorganic Chemistry, 1981, 20, 2438-2448.
Binding and Reactivity of Copper to $R<$ sub $>1</$ sub> and $R<$ sub >3 </sub> Fragments of tau Protein.
Inorganic Chemistry, 2020, 59, 274-286.
4.0

33
59 Differences in the Binding of $\operatorname{Copper}(\mathrm{I})$ to $\hat{\mathrm{I}} \pm$ - and $\hat{\imath}$-Synuclein. Inorganic Chemistry, 2015, 54, $265-2 \mathrm{l}$. $\begin{aligned} & \text { Enantio-differentiating catalytic oxidation by a biomimetic trinuclear copper complex containing } \\ & 60 \text { I-histidine residues. Chemical Communications, 2003, , 2186. }\end{aligned}$
4.1

31

> Mechanistic Insight into the Activity of Tyrosinase from Variable-Temperature Studies in an
> 61 Aqueous/Organic Solvent. Chemistry - A European Journal, 2006, 12, 2504-2514.

Metmyoglobin-Catalyzed Exogenous and Endogenous Tyrosine Nitration by Nitrite and Hydrogen
Peroxide. Chemistry - A European Journal, 2004, 10, 2281-2290.

Tyrosinase-catecholic substrates in Vitro model: kinetic studies on the o-quinone/o-semiquinone
radical formation. Journal of Inorganic Biochemistry, 1997, 68, 61-69.

Formation of reactive nitrogen species at biologic heme centers: a potential mechanism of nitric oxide-dependent toxicity.. Environmental Health Perspectives, 2002, 110, 709-711.

Reactive nitrogen species generated by heme proteins: Mechanism of formation and targets.
Coordination Chemistry Reviews, 2006, 250, 1286-1293.

Modular syntheses of multidentate ligands with variable N-donors: applications to tri- and tetracopper(i) complexes. Dalton Transactions, 2007, , 3035.
3.3

28

Catalytic Sulfoxidation by Dinuclear Copper Complexes. Chemistry - A European Journal, 2009, 15,
3.3

28
12932-12936.

Catalytic peroxidation of nitrogen monoxide and peroxynitrite by globins. IUBMB Life, 2009, 61, 62-73.
3.4

28

Functional mimics of copper enzymes. Synthesis and stereochemical properties of the copper(II)
complexes of a trinucleating ligand derived from l-histidine. Tetrahedron: Asymmetry, 1999, 10, 281-295.
1.8

Redox reactivity of the heme $\mathrm{Fe} 3+/ \mathrm{Fe} 2+$ couple in native myoglobins and mutants with peroxidase-like
activity. Journal of Biological Inorganic Chemistry, 2007, 12, 951-958.
2.6

27
71 Myoglobin Modification by Enzymeâ€Generated Dopamine Reactive Species. Chemistry - A European
Journal, 2008, 14, 8661-8673.
3.3 27

Biomimetic Modelling of Copper Enzymes: Synthesis, Characterization, EPR Analysis and

Neuromelanins in brain aging and Parkinson's disease: synthesis, structure, neuroinflammatory, and

Synthesis and characterization of new chiral octadentate nitrogen ligands and related copper(II)
76 complexes as catalysts for stereoselective oxidation of catechols. Journal of Molecular Catalysis A,
2005, 235, 271-284.

77 Trapping tyrosinase key active intermediate under turnover. Dalton Transactions, 2009, , 6468.
$3.3 \quad 24$

A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(ii) complexes: synthesis,
78 theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations. Dalton
$3.3 \quad 24$ Transactions, $2011,40,5436$.
Coordination modes of histidine. 5. Copper(II) complexes of L-N.tau.-methylhistidine and
L-N.alpha.,N.alpha.-dimethylhistidine in aqueous solution. Inorganic Chemistry, 1983, 22, 242-249.
$80 \quad$ Neuroglobin Modification by Reactive Quinone Species. Chemical Research in Toxicology, 2013, 26,

1821-1831.
3.3

23
Copper(I) Forms a Redox-Stable 1:2 Complex with $\hat{I}_{ \pm}$-Synuclein N-Terminal Peptide in a Membrane-Like
Environment. Inorganic Chemistry, 2016, 55, 6100-6106.

Copper monooxygenase models. Aromatic hydroxylation by a dinuclear copper(I) complex containing methionine sulfur ligands. Journal of the Chemical Society Dalton Transactions, 1997, , 4789-4794.
1.1

22
83 Inhibition of Ascorbate Oxidase by Phenolic Compounds. Enzymatic and Spectroscopic Studiesâ€. Biochemistry, 1997, 36, 4852-4859. 22Probing the location of the substrate binding site of ascorbate oxidase near type 1 copper: an84 investigation through spectroscopic, inhibition and docking studies. International Journal of2.821Biochemistry and Cell Biology, 2004, 36, 881-892.
85 Cross-talk between endogenous H 2 S and NO accounts for vascular protective activity of the metal-nonoate Zn(PipNONO)Cl. Biochemical Pharmacology, 2018, 152, 143-152.Catalytic activity, stability, unfolding, and degradation pathways of engineered and reconstitutedmyoglobins. Journal of Biological Inorganic Chemistry, 2005, 10, 11-24.

91 Tyrosinase Catalyzes Asymmetric Sulfoxidation. Biochemistry, 2008, 47, 3493-3498.		
92	Engineering and Prostheticâ€Group Modification of Myoglobin: Peroxidase Activity, Chemical Stability and Unfolding Properties. European Journal of Inorganic Chemistry, 2004, 2004, 2203-2213.	2.5
93	18	
Modified Microperoxidases Exhibit Different Reactivity Towards Phenolic Substrates. ChemBioChem, $2004,5,1692-1699$.		

94 Heme-peptide complexes as peroxidase models. Comptes Rendus Chimie, 2007, 10, 380-391.

95	Copperâ€A $\hat{2}^{2}$ Peptides and Oxidation of Catecholic Substrates: Reactivity and Endogenous Peptide Damage. Chemistry - A European Journal, 2016, 22, 16964-16973.	3.3	18
96	Anti-hypertensive property of a nickel-piperazine/NO donor in spontaneously hypertensive rats. Pharmacological Research, 2016, 107, 352-359.	7.1	17
97	Metallotexaphyrins as MRI-Active Catalytic Antioxidants for Neurodegenerative Disease: A Study on Alzheimerâ $€^{\top M}$ s Disease. CheM, 2020, 6, 703-724.	11.7	17

98 The metal-nonoate $\mathrm{Ni}($ SalPipNONO) inhibits <i> in vitro</i> tumor growth, invasiveness and angiogenesis. Oncotarget, 2018, 9, 13353-13365.
1.8

```
99 A new dinuclear heme-copper complex derived from functionalized protoporphyrin IX. Dalton
99 Transactions, 2007, , 2197.
```

100 Nitric Oxide Releasing Metalâ€"Diazeniumdiolate Complexes Strongly Induce Vasorelaxation and Endothelial Cell Proliferation. ChemMedChem, 2008, 3, 1039-1047.
3.2

15

101 Prion Peptides Are Extremely Sensitive to Copper Induced Oxidative Stress. Inorganic Chemistry, 2017,
56, 11317-11325.

102 Copperâ $\in^{\prime \prime} \hat{2}$-amyloid peptides exhibit neither monooxygenase nor superoxide dismutase activities.
Chemical Communications, 2013, 49, 4027.
4.1

14

103	Membrane Binding Strongly Affecting the Dopamine Reactivity Induced by Copper Prion and Copper/Amyloid-1̂2 (Â̂2) Peptides. A Ternary Copper/Â̂2/Prion Peptide Complex Stabilized and Solubilized in Sodium Dodecyl Sulfate Micelles. Inorganic Chemistry, 2020, 59, 900-912.	4.0	14

Ligand Binding, Conformational and Spectroscopic Properties, and Biomimetic Monooxygenase
104 Activity by the Trinuclear Copperâ€"PHI Complex Derived from <scp>L</scp>â€Histidine. European Journal
2.0

13 of Inorganic Chemistry, 2008, 2008, 2081-2089.
Supramolecular Helical Architectures Dictated by Folded and Extended Conformations of the Amino
105 Acid in Ternary Cull/Diamine/Racemic Amino Acid Complexes. European Journal of Inorganic Chemistry, $\quad 2.0 \quad 12$ 2007, 2007, 1654-1660.

106 Building biomimetic model compounds of dinuclear and trinuclear copper clusters for stereoselective oxidations. Inorganica Chimica Acta, 2018, 481, 47-55.

109	Synthesis, Characterization, and Stereoselective Oxidations of the Dinuclear Copper(II) Complex Derived from a Chiral Diamino-m-xylenetetra(benzimidazole) Ligand. European Journal of Inorganic Chemistry, 2015, 2015, 3493-3500.	2.0	11			
110	A dinuclear biomimetic Cu complex derived from <scp>\|<	scp>-histidine: synthesis and stereoselective oxidations. Dalton Transactions, 2017, 46, 4018-4029.	3.3	11		
111	Synthesis and Conformational Studies of a Chiral Octadentate Ligand Derived from (R)-1,1â $€^{2}$-Binaphthyl-2,2ấ2-diamine and its Dinuclear Zinc(II) and Nickel(II) Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 3934-3944.	2.0	10			
112	Enzymatic and spectroscopic studies on the activation or inhibition effects by substituted phenolic compounds in the oxidation of aryldiamines and catechols catalyzed by Rhus vernicifera laccase. Journal of Inorganic Biochemistry, 2006, 100, 2127-2139.	3.5	10			
113	A Stereoselective Tyrosinase Model Compound Derived from an <i>m<\|i>-Xy	y	-<scp>\|<	scp>-histidine Ligand. Inorganic Chemistry, 2019, 58, 7335-7344.	4.0	10
114	Spectroscopic and binding studies of azide to type-2-copper-depleted ascorbate oxidase from zucchini. Biology of Metals, 1991, 4, 81-89.	1.1	9			
115	The Oxidation of Hemocyanin. Kinetics, Reaction Mechanism and Characterization of Met-Hemocyanin Product. FEBS Journal, 1995, 232, 98-105.	0.2	9			
116	Selectivity in the peroxidase catalyzed oxidation of phenolic sulfides. Journal of Molecular Catalysis A, 2003, 204-205, 391-400.	4.8	9			
117	Protein selfâ€modification by hemeâ€generated reactive species. IUBMB Life, 2008, 60, 41-56.	3.4	9			
118	Selective Copper-Mediated Halogenation of Aromatic Rings Under Mild Conditions. European Journal of Inorganic Chemistry, 2011, 2011, 4360-4368.	2.0	9			
119	Spectral study of ascorbate oxidase. Inorganica Chimica Acta, 1984, 91, 189-194.	2.4	8			
120	Nitrite increases the enantioselectivity of sulfoxidation catalyzed by myoglobin derivatives in the presence of hydrogen peroxide. Tetrahedron, 2004, 60, 8153-8160.	1.9	8			
121	Neuronal Proteins as Targets of 3-Hydroxykynurenine: Implications in Neurodegenerative Diseases. ACS Chemical Neuroscience, 2019, 10, 3731-3739.	3.5	8			

Synthesis, characterization and stereochemistry of condensation products between
125 (1R)-3-hydroxymethylenebornane-2-thione and diamines and their metal complexes. Journal of the
1.1

Chemical Society Dalton Transactions, 1991, , 2527.

METALLOENZYMES AND CHEMICAL BIOMIMETICS. European Journal of Inorganic Chemistry, 2006, 2006, 3545-3546.
127

A Cu-bis(imidazole) Substrate Intermediate Is the Catalytically Competent Center for Catechol Oxidase
Activity of Copper Amyloid-1̂2. Inorganic Chemistry, 2021, 60, 606-613.

Neuronal effects of a nickel-piperazine/NO donor complex in rodents. Pharmacological Research, 2015, 99, 162-173.
Aminomethylene-Phosphonate Analogue as a $\mathrm{Cu}(I I)$ Chelator: Characterization and Application as an
135 Inhibitor of Oxidation Induced by the Cu(II)â€"Prion Peptide Complex. Inorganic Chemistry, 2019, 58,Neuromelanin of Human Brain <i>Locus Coeruleus. Angewandte Chemie, 0, , .

