Khalid Iqbal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066539/publications.pdf

Version: 2024-02-01

186	23,814	80	149
papers	citations	h-index	g-index
192	192	192	19283 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Multi-Targets: An Unconventional Drug Development Strategy for Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 837649.	3.4	26
2	Does proteopathic tau propagate trans-synaptically in the brain?. Molecular Neurodegeneration, 2022, 17, 21.	10.8	1
3	Heightened Tameness and Accelerated Handling-Habituation in 3×Tg-AD Mice on a B6;129 Genetic Background. Journal of Alzheimer's Disease Reports, 2022, 6, 245-255.	2.2	4
4	Seeding-Competent Tau in Gray Matter Versus White Matter of Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2021, 79, 1647-1659.	2.6	4
5	Alzheimer's disease brain contains tau fractions with differential prion-like activities. Acta Neuropathologica Communications, 2021, 9, 28.	5.2	35
6	Thiamme2-G, a Novel O-GlcNAcase Inhibitor, Reduces Tau Hyperphosphorylation and Rescues Cognitive Impairment in Mice. Journal of Alzheimer's Disease, 2021, 81, 273-286.	2.6	5
7	Neurotrophic Treatment Initiated During Early Postnatal Development Prevents the Alzheimer-Like Behavior and Synaptic Dysfunction. Journal of Alzheimer's Disease, 2021, 82, 631-646.	2.6	10
8	Rats Display Sexual Dimorphism in Phosphorylation of Brain Tau with Age. Journal of Alzheimer's Disease, 2021, 82, 855-869.	2.6	1
9	Thinking beyond the Aducanumab Controversy. Annals of Neurology, 2021, 90, 1003-1004.	5. 3	4
10	Elevation of casein kinase 1Îμ associated with TDPâ€43 and tau pathologies in Alzheimer's disease. Brain Pathology, 2020, 30, 283-297.	4.1	9
11	Truncation of Tau selectively facilitates its pathological activities. Journal of Biological Chemistry, 2020, 295, 13812-13828.	3.4	54
12	Prenatal to early postnatal neurotrophic treatment prevents Alzheimer-like behavior and pathology in mice. Alzheimer's Research and Therapy, 2020, 12, 102.	6.2	7
13	Tau immunotherapy rescues cognitive impairment by clearing extracellular tau. Alzheimer's and Dementia, 2020, 16, e037315.	0.8	O
14	Neonatal Exposure to Anesthesia Leads to Cognitive Deficits in Old Age: Prevention with Intranasal Administration of Insulin in Mice. Neurotoxicity Research, 2020, 38, 299-311.	2.7	15
15	Young blood plasma reduces Alzheimer's disease-like brain pathologies and ameliorates cognitive impairment in 3×Tg-AD mice. Alzheimer's Research and Therapy, 2020, 12, 70.	6.2	27
16	Why delay in effective treatment for Alzheimer's disease and related conditions. Progress in Molecular Biology and Translational Science, 2019, 168, 243-256.	1.7	0
17	Pathological Tau From Alzheimer's Brain Induces Site-Specific Hyperphosphorylation and SDS- and Reducing Agent-Resistant Aggregation of Tau in vivo. Frontiers in Aging Neuroscience, 2019, 11, 34.	3.4	85
18	Subacute to chronic Alzheimer-like alterations after controlled cortical impact in human tau transgenic mice. Scientific Reports, 2019, 9, 3789.	3.3	8

#	Article	IF	CITATIONS
19	Pathological Alterations of Tau in Alzheimer's Disease and 3xTg-AD Mouse Brains. Molecular Neurobiology, 2019, 56, 6168-6183.	4.0	29
20	Inhibition of AMD-Like Pathology With a Neurotrophic Compound in Aged Rats and 3xTg-AD Mice. Frontiers in Aging Neuroscience, 2019, 11, 309.	3.4	10
21	Recent developments with tau-based drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 399-410.	5.0	35
22	A Novel Therapeutic Approach to Treat Alzheimer's Disease by Neurotrophic Support During the Period of Synaptic Compensation. Journal of Alzheimer's Disease, 2018, 62, 1211-1218.	2.6	33
23	Mechanism of Tau Hyperphosphorylation Involving Lysosomal Enzyme Asparagine Endopeptidase in a Mouse Model of Brain Ischemia. Journal of Alzheimer's Disease, 2018, 63, 821-833.	2.6	33
24	Multifactorial Hypothesis and Multi-Targets for Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, S107-S117.	2.6	112
25	P3â€055: RESCUE OF NEUROTROPHIC DEFICIT DURING PRENATAL TO EARLY POSTNATAL DEVELOPMENT CAN PREVENT ALZHEIMER‣IKE COGNITIVE IMPAIRMENT LATER IN LIFE. Alzheimer's and Dementia, 2018, 14, P1085.	0.8	O
26	Relevance of Phosphorylation and Truncation of Tau to the Etiopathogenesis of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 27.	3.4	86
27	Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3 × Tg-AD mice. Alzheimer's Research and Therapy, 2018, 10, 13.	6.2	73
28	Involvement of Activation of Asparaginyl Endopeptidase in Tau Hyperphosphorylation in Repetitive Mild Traumatic Brain Injury. Journal of Alzheimer's Disease, 2018, 64, 709-722.	2.6	20
29	Tau passive immunization inhibits not only tau but also ${\sf A\hat{l}^2}$ pathology. Alzheimer's Research and Therapy, 2017, 9, 1.	6.2	147
30	Synaptic Compensation as a Probable Cause of Prolonged Mild Cognitive Impairment in Alzheimer's Disease: Implications from a Transgenic Mouse Model of the Disease. Journal of Alzheimer's Disease, 2017, 56, 1385-1401.	2.6	21
31	Prevention of Amyloid-Î ² and Tau Pathologies, Associated Neurodegeneration, and Cognitive Deficit by Early Treatment with a Neurotrophic Compound. Journal of Alzheimer's Disease, 2017, 58, 215-230.	2.6	18
32	Early neurotrophic pharmacotherapy rescues developmental delay and Alzheimer's-like memory deficits in the Ts65Dn mouse model of Down syndrome. Scientific Reports, 2017, 7, 45561.	3.3	23
33	[F3–07–02]: TAU IMMUNOTHERAPY PREVENTS THE SPREAD AND PROMOTES THE CLEARANCE OF PATHOLO IN MICE. Alzheimer's and Dementia, 2017, 13, P888.	0.8	О
34	Prevention of dendritic and synaptic deficits and cognitive impairment with a neurotrophic compound. Alzheimer's Research and Therapy, 2017, 9, 45.	6.2	25
35	[P2–169]: ALZHEIMER's DISEASE IN DOWN SYNDROME CAN BE PREVENTED BY PHARMACOLOGIC TREATMENT DURING PRENATAL TO EARLY POSTNATAL DEVELOPMENT. Alzheimer's and Dementia, 2017, 13, P671.	0.8	О
36	Early-Onset Network Hyperexcitability in Presymptomatic Alzheimer's Disease Transgenic Mice Is Suppressed by Passive Immunization with Anti-Human APP/Aβ Antibody and by mGluR5 Blockade. Frontiers in Aging Neuroscience, 2017, 9, 71.	3.4	75

#	Article	IF	Citations
37	Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis. Frontiers in Aging Neuroscience, 2017, 9, 311.	3.4	40
38	Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer's disease. Molecular Neurodegeneration, 2016, 11, 50.	10.8	82
39	O4-04-03: Molecular Mechanism of Tau Spread and Tau Sites to Target for Immunotherapy. , 2016, 12, P340-P341.		0
40	Hyperphosphorylation determines both the spread and the morphology ofÂtau pathology. Alzheimer's and Dementia, 2016, 12, 1066-1077.	0.8	112
41	Oâ€GlcNAcylation: A regulator of tau pathology and neurodegeneration. Alzheimer's and Dementia, 2016, 12, 1078-1089.	0.8	79
42	Alzheimer's disease research in Ibero America. Alzheimer's and Dementia, 2016, 12, 749-754.	0.8	7
43	Tau and neurodegenerative disease: the story so far. Nature Reviews Neurology, 2016, 12, 15-27.	10.1	603
44	Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurology, The, 2016, 15, 455-532.	10.2	1,242
45	GSK- $3\hat{l}^2$ is Dephosphorylated by PP2A in a Leu309 Methylation-Independent Manner. Journal of Alzheimer's Disease, 2015, 49, 365-375.	2.6	24
46	Elevated Tau Level in Aged Rat Cerebrospinal Fluid Reduced by Treatment with a Neurotrophic Compound. Journal of Alzheimer's Disease, 2015, 47, 557-564.	2.6	15
47	Enhancement of Neurogenesis and Memory by a Neurotrophic Peptide in Mild to Moderate Traumatic Brain Injury. Neurosurgery, 2015, 76, 201-215.	1.1	26
48	Sera from Children with Autism Induce Autistic Features Which Can Be Rescued with a CNTF Small Peptide Mimetic in Rats. PLoS ONE, 2015, 10, e0118627.	2.5	18
49	O3-04-05: Rescue of pathology and cognitive impairment by tau immunotherapy at a moderate to severe stage of the disease in $3xTg$ -alzheimer's disease mice., 2015, 11, P227-P227.		0
50	Inhibition of Protein Phosphatase-2A (PP2A) by I1PP2A Leads to Hyperphosphorylation of Tau, Neurodegeneration, and Cognitive Impairment in Rats. Journal of Alzheimer's Disease, 2015, 45, 423-435.	2.6	19
51	Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. Journal of Neural Transmission, 2015, 122, 607-617.	2.8	79
52	Truncation and Activation of Dual Specificity Tyrosine Phosphorylation-regulated Kinase 1A by Calpain I. Journal of Biological Chemistry, 2015, 290, 15219-15237.	3.4	51
53	Cross talk between PI3K-AKT-GSK- $3\hat{l}^2$ and PP2A pathways determines tau hyperphosphorylation. Neurobiology of Aging, 2015, 36, 188-200.	3.1	99
54	Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice. Journal of Neural Transmission, 2015, 122, 593-606.	2.8	53

#	Article	IF	Citations
55	Memantine Attenuates Alzheimer's Disease-Like Pathology and Cognitive Impairment. PLoS ONE, 2015, 10, e0145441.	2.5	20
56	Intranasal insulin prevents anesthesia-induced hyperphosphorylation of tau in 3xTg-AD mice. Frontiers in Aging Neuroscience, 2014, 6, 100.	3.4	41
57	Cytoplasmic Retention of Protein Phosphatase 2A Inhibitor 2 (I2PP2A) Induces Alzheimer-like Abnormal Hyperphosphorylation of Tau. Journal of Biological Chemistry, 2014, 289, 27677-27691.	3.4	59
58	Therapeutic benefits of a component of coffee in a rat model of Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2701-2712.	3.1	46
59	Alzheimer disease and amyotrophic lateral sclerosis: an etiopathogenic connection. Acta Neuropathologica, 2014, 127, 243-256.	7.7	26
60	Intracerebroventricular Streptozotocin Exacerbates Alzheimer-Like Changes of 3xTg-AD Mice. Molecular Neurobiology, 2014, 49, 547-562.	4.0	85
61	Microtubule-associated protein tau as a therapeutic target in Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2014, 18, 307-318.	3.4	65
62	Alzheimer disease therapeutics: Focus on the disease and not just plaques and tangles. Biochemical Pharmacology, 2014, 88, 631-639.	4.4	95
63	Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1144-1149.	7.1	79
64	Disease modifying effect of chronic oral treatment with a neurotrophic peptidergic compound in a triple transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 2014, 71, 110-130.	4.4	71
65	Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiology of Aging, 2014, 35, 2134-2146.	3.1	45
66	Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces $\hat{Al^2}$ level and microglia activation in the brains of 3xTg-AD mice. Experimental Neurology, 2014, 261, 610-619.	4.1	94
67	O2-06-04: A NOVEL PHARMACOLOGIC THERAPEUTIC APPROACH TO ALZHEIMER DISEASE AND COGNITIVE AGING. , 2014, 10, P175-P175.		1
68	Shifting balance from neurodegeneration to regeneration of the brain: a novel therapeutic approach to Alzheimer′s disease and related neurodegenerative conditions. Neural Regeneration Research, 2014, 9, 1518.	3.0	17
69	CSF biomarker variability in the Alzheimer's Association quality control program. Alzheimer's and Dementia, 2013, 9, 251-261.	0.8	344
70	A Non-transgenic Mouse Model (icv-STZ Mouse) of Alzheimer's Disease: Similarities to and Differences from the Transgenic Model (3xTg-AD Mouse). Molecular Neurobiology, 2013, 47, 711-725.	4.0	226
71	Hyperphosphorylation-Induced Tau Oligomers. Frontiers in Neurology, 2013, 4, 112.	2.4	80
72	Activation of Asparaginyl Endopeptidase Leads to Tau Hyperphosphorylation in Alzheimer Disease. Journal of Biological Chemistry, 2013, 288, 17495-17507.	3.4	100

#	Article	IF	CITATIONS
73	Role of Ciliary Neurotrophic Factor in the Proliferation and Differentiation of Neural Stem Cells. Journal of Alzheimer's Disease, 2013, 37, 587-592.	2.6	17
74	Animal Models of the Sporadic Form of Alzheimer's Disease: Focus on the Disease and Not Just the Lesions 1. Journal of Alzheimer's Disease, 2013, 37, 469-474.	2.6	27
75	Neurogenic and Neurotrophic Effects of BDNF Peptides in Mouse Hippocampal Primary Neuronal Cell Cultures. PLoS ONE, 2013, 8, e53596.	2.5	54
76	O-GlcNAc cycling modulates neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17319-17320.	7.1	27
77	Dual-specificity Tyrosine Phosphorylation-regulated Kinase 1A (Dyrk1A) Modulates Serine/Arginine-rich Protein 55 (SRp55)-promoted Tau Exon 10 Inclusion. Journal of Biological Chemistry, 2012, 287, 30497-30506.	3.4	81
78	Abnormal Hyperphosphorylation of Tau: Sites, Regulation, and Molecular Mechanism of Neurofibrillary Degeneration. Journal of Alzheimer's Disease, 2012, 33, S123-S139.	2.6	318
79	Differential Effects of an O-GlcNAcase Inhibitor on Tau Phosphorylation. PLoS ONE, 2012, 7, e35277.	2.5	76
80	Brain Gene Expression of a Sporadic (icv-STZ Mouse) and a Familial Mouse Model (3xTg-AD Mouse) of Alzheimer's Disease. PLoS ONE, 2012, 7, e51432.	2.5	47
81	An experimental rat model of sporadic Alzheimer's disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathologica, 2012, 123, 133-151.	7.7	72
82	Enhancement of dentate gyrus neurogenesis, dendritic and synaptic plasticity and memory by a neurotrophic peptide. Neurobiology of Aging, 2011, 32, 1420-1434.	3.1	76
83	Blood-Cerebrospinal Fluid Barrier Permeability in Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 25, 505-515.	2.6	70
84	Regional Comparison of the Neurogenic Effects of CNTF-Derived Peptides and Cerebrolysin in $\hat{Al^2PP}$ Transgenic Mice. Journal of Alzheimer's Disease, 2011, 27, 743-752.	2.6	19
85	Rescue of Synaptic Failure and Alleviation of Learning and Memory Impairments in a Trisomic Mouse Model of Down Syndrome. Journal of Neuropathology and Experimental Neurology, 2011, 70, 1070-1079.	1.7	28
86	Mechanism of inhibition of PP2A activity and abnormal hyperphosphorylation of tau by I ₂ ^{PP2A} /SET. FEBS Letters, 2011, 585, 2653-2659.	2.8	94
87	Opportunities and challenges in developing Alzheimer disease therapeutics. Acta Neuropathologica, 2011, 122, 543-549.	7.7	47
88	Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. Journal of Pathology, 2011, 225, 54-62.	4.5	401
89	Regulation of the alternative splicing of tau exon 10 by SC35 and Dyrk1A. Nucleic Acids Research, 2011, 39, 6161-6171.	14.5	84
90	Cyclic AMP-dependent Protein Kinase Regulates the Alternative Splicing of Tau Exon 10. Journal of Biological Chemistry, 2011, 286, 14639-14648.	3.4	76

#	Article	IF	CITATIONS
91	Beneficial Effect of a CNTF Tetrapeptide on Adult Hippocampal Neurogenesis, Neuronal Plasticity, and Spatial Memory in Mice. Journal of Alzheimer's Disease, 2010, 21, 1185-1195.	2.6	51
92	Alzheimer's disease neurofibrillary degeneration: pivotal and multifactorial. Biochemical Society Transactions, 2010, 38, 962-966.	3.4	58
93	Pharmacologic reversal of neurogenic and neuroplastic abnormalities and cognitive impairments without affecting $A\hat{l}^2$ and tau pathologies in 3xTg-AD mice. Acta Neuropathologica, 2010, 120, 605-621.	7.7	93
94	Neurotrophic peptides incorporating adamantane improve learning and memory, promote neurogenesis and synaptic plasticity in mice. FEBS Letters, 2010, 584, 3359-3365.	2.8	44
95	Phosphorylation of Tau at Thr212, Thr231, and Ser262 Combined Causes Neurodegeneration. Journal of Biological Chemistry, 2010, 285, 30851-30860.	3.4	177
96	PP2A Regulates Tau Phosphorylation Directly and also Indirectly via Activating GSK-3 \hat{I}^2 . Journal of Alzheimer's Disease, 2010, 19, 1221-1229.	2.6	143
97	The carboxyâ€terminal fragment of inhibitorâ€2 of protein phosphataseâ€2A induces Alzheimer disease pathology and cognitive impairment. FASEB Journal, 2010, 24, 4420-4432.	0.5	79
98	Tau in Alzheimer Disease and Related Tauopathies. Current Alzheimer Research, 2010, 7, 656-664.	1.4	822
99	Targeting Tau Protein in Alzheimer $\hat{E}^{1}\!\!/\!\!4$ s Disease. Drugs and Aging, 2010, 27, 351-365.	2.7	82
100	Cerebrospinal fluid secretory Ca2+-dependent phospholipase A2 activity: A biomarker of blood–cerebrospinal fluid barrier permeability. Neuroscience Letters, 2010, 478, 179-183.	2.1	30
101	Alzheimer's disease, a multifactorial disorder seeking multitherapies. Alzheimer's and Dementia, 2010, 6, 420-424.	0.8	186
102	Anesthesia Induces Phosphorylation of Tau. Journal of Alzheimer's Disease, 2009, 16, 619-626.	2.6	101
103	Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain, 2009, 132, 1820-1832.	7.6	350
104	Cerebrospinal Fluid Secretory Ca2+-Dependent Phospholipase A2 Activity Is Increased in Alzheimer Disease. Clinical Chemistry, 2009, 55, 2171-2179.	3.2	48
105	Mechanisms of tau-induced neurodegeneration. Acta Neuropathologica, 2009, 118, 53-69.	7.7	577
106	Brain glucose transporters, <i>O</i> â€GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer's disease. Journal of Neurochemistry, 2009, 111, 242-249.	3.9	167
107	I PP2A 1 Affects Tau Phosphorylation via Association with the Catalytic Subunit of Protein Phosphatase 2A. Journal of Biological Chemistry, 2008, 283, 10513-10521.	3.4	68
108	Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB Journal, 2008, 22, 3224-3233.	0.5	210

#	Article	IF	CITATIONS
109	Regulation between Oâ€GlcNAcylation and phosphorylation of neurofilamentâ€M and their dysregulation in Alzheimer disease. FASEB Journal, 2008, 22, 138-145.	0.5	72
110	Increased Dosage of Dyrk1A Alters Alternative Splicing Factor (ASF)-regulated Alternative Splicing of Tau in Down Syndrome. Journal of Biological Chemistry, 2008, 283, 28660-28669.	3.4	136
111	Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus. Journal of Neuropathology and Experimental Neurology, 2008, 67, 78-84.	1.7	212
112	Cytosolic Abnormally Hyperphosphorylated Tau But Not Paired Helical Filaments Sequester Normal MAPs and Inhibit Microtubule Assembly. Journal of Alzheimer's Disease, 2008, 14, 365-370.	2.6	76
113	Decrease of Protein Phosphatase 2A and its Association with Accumulation and Hyperphosphorylation of Tau in Down Syndrome. Journal of Alzheimer's Disease, 2008, 13, 295-302.	2.6	39
114	Stratification of Patients is the Way to Go to Develop Neuroprotective/Disease-Modifying Drugs for Alzheimer's Disease. Journal of Alzheimer's Disease, 2008, 15, 339-345.	2.6	9
115	Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis. Neurobiology of Aging, 2007, 28, 1148-1162.	3.1	123
116	Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. European Journal of Neuroscience, 2007, 25, 59-68.	2.6	461
117	Downâ€regulation of cAMPâ€dependent protein kinase by overâ€activated calpain in Alzheimer disease brain. Journal of Neurochemistry, 2007, 103, 2462-2470.	3.9	123
118	Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathologica, 2007, 113, 501-511.	7.7	140
119	PKA modulates GSK-3 \hat{l}^2 - and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Letters, 2006, 580, 6269-6274.	2.8	114
120	Involvement of in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Letters, 2006, 580, 3973-3979.	2.8	106
121	Regulation of phosphorylation of tau by cyclin-dependent kinase 5 and glycogen synthase kinase-3 at substrate level. FEBS Letters, 2006, 580, 5925-5933.	2.8	56
122	Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation. Journal of Alzheimer's Disease, 2006, 9, 1-12.	2.6	120
123	Regulation of Phosphorylation of tau by Protein Kinases in Rat Brain. Neurochemical Research, 2006, 31, 1473-1480.	3.3	37
124	Dysregulation of Protein Phosphorylation/Dephosphorylation in Alzheimer's Disease: A Therapeutic Target. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-11.	3.0	56
125	Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8864-8869.	7.1	174
126	Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. European Journal of Neuroscience, 2005, 22, 1942-1950.	2.6	657

#	Article	IF	CITATIONS
127	Subgroups of Alzheimer's disease based on cerebrospinal fluid molecular markers. Annals of Neurology, 2005, 58, 748-757.	5.3	144
128	Metabolic/signal transduction hypothesis of Alzheimer?s disease and other tauopathies. Acta Neuropathologica, 2005, 109, 25-31.	7.7	89
129	Tau pathology in Alzheimer disease and other tauopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 198-210.	3.8	786
130	Inhibitors of protein phosphatase-2A from human brain structures, immunocytological localization and activities towards dephosphorylation of the Alzheimer type hyperphosphorylated tau. FEBS Letters, 2005, 579, 363-372.	2.8	72
131	Up-Regulation of Inhibitors of Protein Phosphatase-2A in Alzheimer's Disease. American Journal of Pathology, 2005, 166, 1761-1771.	3.8	203
132	Dephosphorylation of microtubuleâ€associated protein tau by protein phosphatase 5. Journal of Neurochemistry, 2004, 88, 298-310.	3.9	66
133	Role of tau phosphorylation by glycogen synthase kinase- $3\hat{l}^2$ in the regulation of organelle transport. Journal of Cell Science, 2004, 117, 1653-1663.	2.0	92
134	Promotion of Hyperphosphorylation by Frontotemporal Dementia Tau Mutations. Journal of Biological Chemistry, 2004, 279, 34873-34881.	3.4	251
135	Tau Becomes a More Favorable Substrate for GSK-3 When It Is Prephosphorylated by PKA in Rat Brain. Journal of Biological Chemistry, 2004, 279, 50078-50088.	3.4	168
136	O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10804-10809.	7.1	650
137	Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Letters, 2004, 566, 261-269.	2.8	131
138	Inhibitors of protein phosphatase-2A: topography and subcellular localization. Molecular Brain Research, 2004, 126, 146-156.	2.3	21
139	The dentate gyrus neurogenesis: a therapeutic target for Alzheimer's disease. Acta Neuropathologica, 2003, 105, 225-232.	7.7	108
140	Okadaic-Acid-Induced Inhibition of Protein Phosphatase 2A Produces Activation of Mitogen-Activated Protein Kinases ERK1/2, MEK1/2, and p70 S6, Similar to That in Alzheimer's Disease. American Journal of Pathology, 2003, 163, 845-858.	3.8	134
141	Up-Regulation of Phosphorylated/Activated p70 S6 Kinase and Its Relationship to Neurofibrillary Pathology in Alzheimer's Disease. American Journal of Pathology, 2003, 163, 591-607.	3.8	294
142	Inhibition of protein phosphatase 2A induces phosphorylation and accumulation of neurofilaments in metabolically active rat brain slices. Neuroscience Letters, 2003, 340, 107-110.	2.1	54
143	Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease. FEBS Letters, 2002, 512, 101-106.	2.8	123
144	Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3β. FEBS Letters, 2002, 530, 209-214.	2.8	174

#	Article	IF	CITATIONS
145	Alzheimer's Disease Abnormally Phosphorylated Ï,, Is Dephosphorylated by Protein Phosphatase-2B (Calcineurin). Journal of Neurochemistry, 2002, 62, 803-806.	3.9	137
146	Guanosine Triphosphate Binding to \hat{l}^2 -Subunit of Tubulin in Alzheimer's Disease Brain: Role of Microtubule-Associated Protein \hat{l}_{in} . Journal of Neurochemistry, 2002, 64, 777-787.	3.9	23
147	Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. FEBS Letters, 2001, 490, 15-22.	2.8	87
148	Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Letters, 2001, 507, 81-87.	2.8	116
149	A pool of β-tubulin is hyperphosphorylated at serine residues in Alzheimer disease brain. FEBS Letters, 2001, 509, 375-381.	2.8	25
150	Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer's disease brains at different stages of neurofibrillary degeneration. Journal of Alzheimer's Disease, 2001, 3, 41-48.	2.6	156
151	Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue nonbinding phosphatase activities. Neurochemical Research, 2001, 26, 425-438.	3.3	12
152	Interaction of Tau Isoforms with Alzheimer's Disease Abnormally Hyperphosphorylated Tau and in VitroPhosphorylation into the Disease-like Protein. Journal of Biological Chemistry, 2001, 276, 37967-37973.	3.4	131
153	Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. Brain Research, 2000, 853, 299-309.	2.2	75
154	Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue binding phosphatases. Neurochemical Research, 2000, 25, 107-120.	3.3	15
155	Phosphorylation of Microtubule-associated Protein Tau Is Regulated by Protein Phosphatase 2A in Mammalian Brain. Journal of Biological Chemistry, 2000, 275, 5535-5544.	3.4	374
156	Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Letters, 2000, 485, 87-93.	2.8	165
157	Dynamic Regulation of Expression and Phosphorylation of Tau by Fibroblast Growth Factor-2 In Neural Progenitor Cells from Adult Rat Hippocampus. Journal of Neuroscience, 1999, 19, 5245-5254.	3.6	102
158	Distribution of Active Glycogen Synthase Kinase $3\hat{l}^2$ (GSK- $3\hat{l}^2$) in Brains Staged for Alzheimer Disease Neurofibrillary Changes. Journal of Neuropathology and Experimental Neurology, 1999, 58, 1010-1019.	1.7	429
159	Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrillary degeneration. Brain Research, 1998, 797, 267-277.	2.2	220
160	The regulation of phosphorylation of \ddot{l} , in SY5Y neuroblastoma cells: the role of protein phosphatases. FEBS Letters, 1998, 426, 248-254.	2.8	108
161	Ï" is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Letters, 1998, 436, 28-34.	2.8	174
162	Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by CaMKII than PKA or PhK. FEBS Letters, 1998, 436, 471-475.	2.8	61

#	Article	IF	CITATIONS
163	Distribution, Levels, and Activity of Glycogen Synthase Kinase-3 in the Alzheimer Disease Brain. Journal of Neuropathology and Experimental Neurology, 1997, 56, 70-78.	1.7	316
164	Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Molecular and Cellular Biochemistry, 1997, 167, 99-105.	3.1	144
165	Restoration of biological activity of Alzheimer abnormally phosphorylated Ï., by dephosphorylation with protein phosphatase-2A, â~2B and â~1. Molecular Brain Research, 1996, 38, 200-208.	2.3	152
166	Calcium/calmodulin-dependent protein kinase II phosphorylates tau at Ser-262 but only partially inhibits its binding to microtubules. FEBS Letters, 1996, 387, 145-148.	2.8	69
167	Inhibition of protein phosphatase-2B (calcineurin) activity towards Alzheimer abnormally phosphorylated Ï,, by neuroleptics. Brain Research, 1996, 741, 95-102.	2.2	43
168	Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nature Medicine, 1996, 2, 783-787.	30.7	768
169	Glycosylation of microtubule–associated protein tau: An abnormal posttranslational modification in Alzheimer's disease. Nature Medicine, 1996, 2, 871-875.	30.7	310
170	Dephosphorylation of Alzheimer Paired Helical Filaments by Protein Phosphatase-2A and â^2B. Journal of Biological Chemistry, 1995, 270, 4854-4860.	3.4	238
171	Modulation of GSK-3-catalyzed phosphorylation of microtubule-associated protein tau by non-proline-dependent protein kinases. FEBS Letters, 1995, 358, 4-8.	2.8	87
172	Rapid Alzheimer-like phosphorylation of tau by the synergistic actions of non-proline-dependent protein kinases and GSK-3. FEBS Letters, 1995, 358, 267-272.	2.8	77
173	Phosphorylation of Ï,, Protein by Casein Kinaseâ€1 Converts It to an Abnormal Alzheimerâ€Like State. Journal of Neurochemistry, 1995, 64, 1420-1423.	3.9	72
174	Phosphatase Activity Toward Abnormally Phosphorylated I,: Decrease in Alzheimer Disease Brain. Journal of Neurochemistry, 1995, 65, 732-738.	3.9	398
175	Comparison of the phosphorylation of microtubule-associated protein tau by non-proline dependent protein kinases. Molecular and Cellular Biochemistry, 1994, 131, 181-189.	3.1	55
176	Alzheimer paired helical filaments Restoration of the biological activity by dephosphorylation. FEBS Letters, 1994, 349, 104-108.	2.8	142
177	Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Letters, 1994, 351, 80-84.	2.8	146
178	Dephosphorylation of microtubule-associated protein tau by protein phosphatase-1 and -2C and its implication in Alzheimer disease. FEBS Letters, 1994, 341, 94-98.	2.8	92
179	Phosphoprotein Phosphatase Activities in Alzheimer Disease Brain. Journal of Neurochemistry, 1993, 61, 921-927.	3.9	489
180	Brain Levels of Microtubule-Associated Protein? Are Elevated in Alzheimer's Disease: A Radioimmuno-Slot-Blot Assay for Nanograms of the Protein. Journal of Neurochemistry, 1992, 59, 750-753.	3.9	298

#	ARTICLE	IF	CITATION
181	Immunochemical Properties of Ubiquitin Conjugates in the Paired Helical Filaments of Alzheimer Disease. Journal of Neurochemistry, 1989, 52, 1523-1528.	3.9	73
182	Microtubule-associated polypeptides tau are altered in Alzheimer paired helical filaments. Molecular Brain Research, 1988, 4, 43-52.	2.3	119
183	Occurrence of neuropil threads in the senile human brain and in Alzheimer's disease: A third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neuroscience Letters, 1986, 65, 351-355.	2.1	413
184	DEFECTIVE BRAIN MICROTUBULE ASSEMBLY IN ALZHEIMER'S DISEASE. Lancet, The, 1986, 328, 421-426.	13.7	450
185	Protein changes in senile dementia. Brain Research, 1974, 77, 337-343.	2.2	118
186	Isolation of neurons and glial cells from normal and pathological human brains. Brain Research, 1972, 45, 296-301.	2.2	82