
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6066454/publications.pdf Version: 2024-02-01

KUANG-HSU MU

#	Article	IF	CITATIONS
1	Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nature Energy, 2020, 5, 881-890.	39.5	647
2	Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chemical Science, 2018, 9, 3470-3476.	7.4	443
3	A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Physical Chemistry Chemical Physics, 2012, 14, 8703.	2.8	273
4	Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter, 2020, 3, 1442-1476.	10.0	196
5	Confined Fe–Cu Clusters as Subâ€Nanometer Reactors for Efficiently Regulating the Electrochemical Nitrogen Reduction Reaction. Advanced Materials, 2020, 32, e2004382.	21.0	152
6	Revealing the Origin of Activity in Nitrogenâ€Đoped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide. ChemSusChem, 2016, 9, 1085-1089.	6.8	143
7	Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In Situ Interface Engineering with Surfactants. CheM, 2020, 6, 1443-1458.	11.7	141
8	Reduced graphene oxide: a metal-free catalyst for aerobic oxidative desulfurization. Green Chemistry, 2017, 19, 1175-1181.	9.0	134
9	Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the <i>d</i> â€Band Center via Local Coordination Tuning. Angewandte Chemie - International Edition, 2021, 60, 21911-21917.	13.8	132
10	Direct Insight into Ethane Oxidative Dehydrogenation over Boron Nitrides. ChemCatChem, 2017, 9, 3293-3297.	3.7	112
11	A Discussion on the Activity Origin in Metalâ€Free Nitrogenâ€Doped Carbons For Oxygen Reduction Reaction and their Mechanisms. ChemSusChem, 2015, 8, 2772-2788.	6.8	111
12	Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2022, 144, 2208-2217.	13.7	103
13	Highly Efficient Electroâ€reforming of 5â€Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angewandte Chemie - International Edition, 2021, 60, 14528-14535.	13.8	98
14	Modulating Activity through Defect Engineering of Tin Oxides for Electrochemical CO ₂ Reduction. Advanced Science, 2019, 6, 1900678.	11.2	92
15	Faceted Branched Nickel Nanoparticles with Tunable Branch Length for Highâ€Activity Electrocatalytic Oxidation of Biomass. Angewandte Chemie - International Edition, 2020, 59, 15487-15491.	13.8	83
16	N,P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 14732-14742.	10.3	80
17	Oxygen reduction to hydrogen peroxide on oxidized nanocarbon: Identification and quantification of active sites. Journal of Colloid and Interface Science, 2020, 573, 376-383.	9.4	78
18	Electroactive cellulose-supported graphene oxide interlayers for Li–S batteries. Carbon, 2015, 93, 611-619.	10.3	71

#	Article	IF	CITATIONS
19	Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS Energy Letters, 2020, 5, 3560-3568.	17.4	70
20	Revisiting oxygen reduction reaction on oxidized and unzipped carbon nanotubes. Carbon, 2015, 81, 295-304.	10.3	64
21	Surface chemistry of nanocarbon: Characterization strategies from the viewpoint of catalysis and energy conversion. Carbon, 2019, 143, 915-936.	10.3	61
22	Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction. Advanced Energy Materials, 2021, 11, 2100303.	19.5	61
23	Structural Origin of the Activity in Mn ₃ O ₄ –Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 3331-3339.	6.8	56
24	Molybdenum Carbide Modified Nanocarbon Catalysts for Alkane Dehydrogenation Reactions. ACS Catalysis, 2017, 7, 5820-5827.	11.2	55
25	A hierarchical porous Fe-N impregnated carbon-graphene hybrid for high-performance oxygen reduction reaction. Carbon, 2019, 144, 798-804.	10.3	51
26	Regulating electron transfer over asymmetric low-spin Co(II) for highly selective electrocatalysis. Chem Catalysis, 2022, 2, 372-385.	6.1	50
27	Spherical Murray-Type Assembly of Co–N–C Nanoparticles as a High-Performance Trifunctional Electrocatalyst. ACS Applied Materials & Interfaces, 2019, 11, 9925-9933.	8.0	49
28	Electrocatalytic Water Oxidation at Quinone-on-Carbon: A Model System Study. Journal of the American Chemical Society, 2018, 140, 14717-14724.	13.7	48
29	Dependence of LiNO 3 decomposition on cathode binders in Li–S batteries. Journal of Power Sources, 2015, 288, 13-19.	7.8	45
30	Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature. Carbon, 2012, 50, 3333-3341.	10.3	44
31	Enhanced Stability of Immobilized Platinum Nanoparticles through Nitrogen Heteroatoms on Doped Carbon Supports. Chemistry of Materials, 2017, 29, 8670-8678.	6.7	44
32	N-Doped 3D Mesoporous Carbon/Carbon Nanotubes Monolithic Catalyst for H ₂ S Selective Oxidation. ACS Applied Nano Materials, 2019, 2, 3780-3792.	5.0	43
33	Overall Oxygen Electrocatalysis on Nitrogenâ€Modified Carbon Catalysts: Identification of Active Sites and Inâ€Situ Observation of Reactive Intermediates. Angewandte Chemie - International Edition, 2021, 60, 3299-3306.	13.8	42
34	Reduction-induced surface amorphization enhances the oxygen evolution activity in Co3O4. RSC Advances, 2015, 5, 27823-27828.	3.6	40
35	Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction. Journal of Energy Chemistry, 2020, 50, 37-43.	12.9	38
36	Functions in cooperation for enhanced oxygen reduction reaction: the independent roles of oxygen and nitrogen sites in metal-free nanocarbon and their functional synergy. Journal of Materials Chemistry A, 2017, 5, 3239-3248.	10.3	37

#	Article	IF	CITATIONS
37	Pd@C core–shell nanoparticles on carbon nanotubes as highly stable and selective catalysts for hydrogenation of acetylene to ethylene. Nanoscale, 2017, 9, 14317-14321.	5.6	37
38	Synergy of nanoconfinement and surface oxygen in recrystallization of sulfur melt in carbon nanocapsules and the related Li–S cathode properties. Journal of Materials Chemistry A, 2014, 2, 6439.	10.3	36
39	A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes. Green Chemistry, 2017, 19, 1052-1062.	9.0	36
40	Tuning the Chemical Properties of Co–Ti ₃ C ₂ T <i>_x</i> MXene Materials for Catalytic CO ₂ Reduction. Small, 2021, 17, e2007509.	10.0	35
41	Ternary MnO/CoMn alloy@N-doped graphitic composites derived from a bi-metallic pigment as bi-functional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 20649-20657.	10.3	33
42	Structure-performance relationship of nanodiamonds @ nitrogen-doped mesoporous carbon in the direct dehydrogenation of ethylbenzene. Catalysis Today, 2018, 301, 38-47.	4.4	31
43	Long-chain solid organic polysulfide cathode for high-capacity secondary lithium batteries. Energy Storage Materials, 2018, 12, 30-36.	18.0	31
44	Creation of N-C=O active groups on N-doped CNT as an efficient CarboCatalyst for solvent-free aerobic coupling of benzylamine. Carbon, 2020, 170, 338-346.	10.3	27
45	Core/Shell NiFe Nanoalloy with a Discrete Nâ€doped Graphitic Carbon Cover for Enhanced Water Oxidation. ChemElectroChem, 2018, 5, 732-736.	3.4	26
46	Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction. Chinese Journal of Catalysis, 2014, 35, 884-890.	14.0	25
47	Ionic liquid derived Fe, N, B co-doped bamboo-like carbon nanotubes as an efficient oxygen reduction catalyst. Journal of Colloid and Interface Science, 2020, 579, 637-644.	9.4	25
48	Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO ₂ Reduction toward Valuable Products. ACS Catalysis, 2022, 12, 4792-4805.	11.2	24
49	In Situ Electrostatic Modulation of Path Selectivity for the Oxygen Reduction Reaction on Fe–N Doped Carbon Catalyst. Chemistry of Materials, 2017, 29, 4649-4653.	6.7	23
50	<i>In Situ</i> Sulfurized Carbon-Confined Cobalt for Long-Life Mg/S Batteries. ACS Applied Energy Materials, 2020, 3, 2516-2525.	5.1	23
51	Pt ₃ Co@Pt Core@shell Nanoparticles as Efficient Oxygen Reduction Electrocatalysts in Direct Methanol Fuel Cell. ChemCatChem, 2021, 13, 1587-1594.	3.7	23
52	Bimetallic Metal-Organic Framework Derived Metal-Carbon Hybrid for Efficient Reversible Oxygen Electrocatalysis. Frontiers in Chemistry, 2019, 7, 747.	3.6	22
53	Electron-beam writing of deoxygenated micro-patterns on graphene oxide film. Carbon, 2015, 95, 738-745.	10.3	20
54	The Coulombic Nature of Active Nitrogen Sites in N-Doped Nanodiamond Revealed In Situ by Ionic Surfactants. ACS Catalysis, 2017, 7, 3295-3300.	11.2	20

#	Article	IF	CITATIONS
55	An Extension to the Analytical Evaluation of the Oxygen Reduction Reaction Based On the Electrokinetics On a Rotating Ring–Disk Electrode. ChemElectroChem, 2016, 3, 622-628.	3.4	19
56	High yield electrooxidation of 5-hydroxymethyl furfural catalysed by unsaturated metal sites in CoFe Prussian Blue Analogue films. Green Chemistry, 2021, 23, 4333-4337.	9.0	19
57	Facettierte verzweigte Nickelâ€Nanopartikel mit variierbarer Verzweigungsläge für die hochaktive elektrokatalytische Oxidation von Biomasse. Angewandte Chemie, 2020, 132, 15615-15620.	2.0	18
58	Highly Efficient Electroâ€reforming of 5â€Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angewandte Chemie, 2021, 133, 14649-14656.	2.0	18
59	Nanodiamonds @ N, P co-modified mesoporous carbon supported on macroscopic SiC foam for oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2020, 357, 231-239.	4.4	17
60	The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions. Journal of Colloid and Interface Science, 2016, 480, 175-183.	9.4	16
61	Nanodiamondâ€Coreâ€Reinforced, Grapheneâ€Shellâ€Immobilized Platinum Nanoparticles as a Highly Active Catalyst for the Lowâ€Temperature Dehydrogenation of <i>n</i> â€Butane. ChemCatChem, 2018, 10, 520-524.	3.7	15
62	A generalized approach to adjust the catalytic activity of borocarbonitride for alkane oxidative dehydrogenation reactions. Journal of Catalysis, 2022, 405, 105-115.	6.2	15
63	The value of mixed conduction for oxygen electroreduction on graphene–chitosan composites. Carbon, 2014, 73, 234-243.	10.3	14
64	Efficient and Highly Selective Solventâ€Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond. ChemSusChem, 2017, 10, 3497-3505.	6.8	14
65	Unlocking high-potential non-persistent radical chemistry for semi-aqueous redox batteries. Chemical Communications, 2019, 55, 2154-2157.	4.1	14
66	Metal–Ligand Complexes as Molecular Metal-Ion Reservoirs for Highly Promoted Growth of β-Co(OH)2 Microplates. Crystal Growth and Design, 2016, 16, 8-11.	3.0	13
67	Enhanced Electroactivity of Facet-Controlled Co3O4 Nanocrystals for Enzymeless Biosensing. Journal of Materials Science and Technology, 2016, 32, 24-27.	10.7	12
68	Hydrotalcite-wrapped Co–B alloy with enhanced oxygen evolution activity. Chinese Journal of Catalysis, 2017, 38, 1021-1027.	14.0	11
69	Phosphorus oxide clusters stabilized by carbon nanotubes for selective isomerization and dehydrogenation of Î ² -isopentene. Catalysis Science and Technology, 2018, 8, 1522-1527.	4.1	11
70	Translated structural morphology of conductive polymer nanofilms synthesized by vapor phase polymerization. Synthetic Metals, 2018, 244, 113-119.	3.9	11
71	A comparative study on layered cobalt hydroxides in water oxidation. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 415-423.	1.5	10
72	Benchmarking the Oxygen Reduction Electroactivity of Firstâ€Row Transitionâ€Metal Oxide Clusters on Carbon Nanotubes. ChemElectroChem, 2018, 5, 1862-1867.	3.4	10

KUANG-HSU WU

#	Article	IF	CITATIONS
73	Decisive Intermediates Responsible for the Carbonaceous Products of CO ₂ Electroâ€reduction on Nitrogenâ€Doped sp ² Nanocarbon Catalysts in NaHCO ₃ Aqueous Electrolyte. ChemElectroChem, 2017, 4, 1274-1278.	3.4	9
74	Carbocatalysing the preparation of N-Rich heterocycles with an unprecedented mechanism. Carbon, 2018, 130, 714-723.	10.3	7
75	Oxygen Electrocatalysis at Mn ^{III} –O <i>_x</i> –C Hybrid Heterojunction: An Electronic Synergy or Cooperative Catalysis?. ACS Applied Materials & Interfaces, 2019, 11, 706-713.	8.0	7
76	Ligandâ€Promoted Cooperative Electrochemical Oxidation of Bioâ€Alcohol on Distorted Cobalt Hydroxides for Bioâ€Hydrogen Extraction. ChemSusChem, 2021, 14, 2612-2620.	6.8	6
77	Probing the origin of the enhanced catalytic performance of sp3@sp2 nanocarbon supported Pd catalyst for CO oxidation. Carbon, 2020, 156, 463-469.	10.3	5
78	Gesamtâ€Sauerstoffâ€Elektrokatalyse auf stickstoffmodifizierten Kohlenstoffkatalysatoren: Identifizierung aktiver Zentren und Inâ€situâ€Beobachtung reaktiver Zwischenprodukte. Angewandte Chemie, 2021, 133, 3336-3343.	2.0	5
79	Insight into the Metalâ€Support Interactions between Ruthenium and Nanodiamondâ€derived Carbon material for CO Oxidation. ChemCatChem, 2021, 13, 1368-1374.	3.7	5
80	Realâ€Time Carbon Monoxide Detection using a Rotating Gold Ring Electrode: A Feasibility Study. ChemElectroChem, 2020, 7, 4417-4422.	3.4	4
81	Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the d â€Band Center via Local Coordination Tuning. Angewandte Chemie, 2021, 133, 22082-22088.	2.0	4
82	Hydrophilic tannic acid-modified WS ₂ nanosheets for enhanced polysulfide conversion in aqueous media. JPhys Energy, 2019, 1, 015005.	5.3	2
83	Oxygen Reduction Reaction: Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction (Adv. Energy Mater. 17/2021). Advanced Energy Materials, 2021, 11, 2170067.	19.5	2
84	Dynamic single-site polysulfide immobilization in long-range disorder Cu-MOFs. Chemical Communications, 2020, 56, 10074-10077.	4.1	1
85	Editorial: Carbon Catalysis: Focus on Sustainable Chemical Technology. Frontiers in Chemistry, 2020, 8, 308.	3.6	1
86	Rotating Ringâ€Ðisc Electrode Method: Dissecting Oxygen Reduction Reaction Through a Different Lens. ChemElectroChem, 2021, 8, 644-647.	3.4	1
87	A Special Section on Hierarchical Nanostructured Materials for Sustainable Catalysis. Journal of Nanoscience and Nanotechnology, 2020, 20, 1083-1084.	0.9	0