
Christian Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6065773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. Oncolmmunology, 2022, 11, 2030021.	4.6	7
2	Analysis of the Seasonal Fluctuation of γδT Cells and Its Potential Relation with Vitamin D3. Cells, 2022, 11, 1460.	4.1	6
3	Vitamin C and Vitamin D—friends or foes in modulating γδT-cell differentiation?. , 2022, 19, 1198-1200.		2
4	Allogeneic VÎ ³ 9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cellular and Molecular Immunology, 2021, 18, 427-439.	10.5	122
5	Reply to: Vitamin C as a promoter of Î ³ δT cells. Cellular and Molecular Immunology, 2021, 18, 495-495.	10.5	0
6	Erroneous expression of NKG2D on granulocytes detected by phycoerythrinâ€conjugated clone 149810 antibody. Cytometry Part B - Clinical Cytometry, 2021, , .	1.5	4
7	Monocyte-dependent co-stimulation of cytokine induction in human Î ³ δT cells by TLR8 RNA ligands. Scientific Reports, 2021, 11, 15231.	3.3	5
8	Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy?. Frontiers in Immunology, 2021, 12, 765906.	4.8	12
9	Vitamin C promotes the proliferation and effector functions of human γĨ´T cells. Cellular and Molecular Immunology, 2020, 17, 462-473.	10.5	68
10	Degranulation of human cytotoxic lymphocytes is a major source of proteolytically active soluble CD26/DPP4. Cellular and Molecular Life Sciences, 2020, 77, 751-764.	5.4	15
11	Cancer immunotherapy with $\hat{I}^{\hat{j}\hat{l}'}$ T cells: many paths ahead of us. Cellular and Molecular Immunology, 2020, 17, 925-939.	10.5	180
12	Influence of Indoleamine-2,3-Dioxygenase and Its Metabolite Kynurenine on γδT Cell Cytotoxicity against Ductal Pancreatic Adenocarcinoma Cells. Cells, 2020, 9, 1140.	4.1	31
13	A comparative view on vitamin C effects on αβ―versus γδTâ€cell activation and differentiation. Journal of Leukocyte Biology, 2020, 107, 1009-1022.	3.3	10
14	In vitro expansion of Vγ9Vδ2 T cells for immunotherapy. Methods in Enzymology, 2020, 631, 223-237.	1.0	13
15	Real-time cell analysis (RTCA) to measure killer cell activity against adherent tumor cells in vitro. Methods in Enzymology, 2020, 631, 429-441.	1.0	14
16	Pitfalls in the characterization of circulating and tissue-resident human γδT cells. Journal of Leukocyte Biology, 2020, 107, 1097-1105.	3.3	12
17	Vitamin C supports conversion of human γδT cells into FOXP3-expressing regulatory cells by epigenetic regulation. Scientific Reports, 2020, 10, 6550.	3.3	25
18	TGF- $\hat{1}^2$ enhances the cytotoxic activity of VÎ $\hat{2}$ T cells. Oncolmmunology, 2019, 8, e1522471.	4.6	43

CHRISTIAN PETERS

#	Article	IF	CITATIONS
19	Regulatory functions of $\hat{I}^{3}\hat{I}$ T cells. Cellular and Molecular Life Sciences, 2018, 75, 2125-2135.	5.4	60
20	Immunotherapy With Human Gamma Delta T Cells—Synergistic Potential of Epigenetic Drugs?. Frontiers in Immunology, 2018, 9, 512.	4.8	11
21	In-depth immunophenotyping of patients with glioblastoma multiforme: Impact of steroid treatment. Oncolmmunology, 2017, 6, e1358839.	4.6	37
22	Butyrophilin 3A/CD277–Dependent Activation of Human γÎ′ T Cells: Accessory Cell Capacity of Distinct Leukocyte Populations. Journal of Immunology, 2016, 197, 3059-3068.	0.8	40
23	Human Vδ2 T cells are a major source of interleukin-9. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12520-12525.	7.1	68
24	$\hat{I}^{3}\hat{I}$ T cell activation by bispecific antibodies. Cellular Immunology, 2015, 296, 41-49.	3.0	54
25	Human Gamma Delta T Regulatory Cells in Cancer: Fact or Fiction?. Frontiers in Immunology, 2014, 5, 598.	4.8	59
26	Phenotype and regulation of immunosuppressive Vδ2-expressing γδT cells. Cellular and Molecular Life Sciences, 2014, 71, 1943-1960.	5.4	76
27	Regulatory functions of $\hat{I}^{3}\hat{I}$ T cells. International Immunopharmacology, 2013, 16, 382-387.	3.8	31
28	poly(I:C) costimulation induces a stronger antiviral chemokine and granzyme B release in human CD4 T cells than CD28 costimulation. Journal of Leukocyte Biology, 2012, 92, 765-774.	3.3	9
29	Modulation of $\hat{I}^{3}\hat{I}$ T cell responses by TLR ligands. Cellular and Molecular Life Sciences, 2011, 68, 2357-2370.	5.4	110
30	Differential Poly(I:C) Responses of Human Vγ9VÎ′2 T Cells Stimulated with Pyrophosphates Versus Aminobisphosphonates. The Open Immunology Journal, 2009, 2, 135-142.	1.5	1