Changxian Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6065440/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deregulation of AKT–mTOR Signaling Contributes to Chemoradiation Resistance in Lung Squamous Cell Carcinoma. Molecular Cancer Research, 2022, 20, 425-433.	1.5	3
2	Regulation of DNA duplication by the mTOR signaling pathway. Cell Cycle, 2021, 20, 742-751.	1.3	6
3	Oncogenic KRAS drives radioresistance through upregulation of NRF2-53BP1-mediated non-homologous end-joining repair. Nucleic Acids Research, 2021, 49, 11067-11082.	6.5	26
4	Narrative review of emerging roles for AKT-mTOR signaling in cancer radioimmunotherapy. Annals of Translational Medicine, 2021, 9, 1596-1596.	0.7	9
5	EGFL7 Antagonizes NOTCH Signaling and Represents a Novel Therapeutic Target in Acute Myeloid Leukemia. Clinical Cancer Research, 2020, 26, 669-678.	3.2	18
6	Wee1 Kinase Inhibitor AZD1775 Effectively Sensitizes Esophageal Cancer to Radiotherapy. Clinical Cancer Research, 2020, 26, 3740-3750.	3.2	29
7	Abstract P1-10-01: Caveolin gene expression predicts for response and clinical outcomes of patients treated with preoperative paclitaxel-based chemotherapy regimens in early stage breast cancer. , 2020, , .		Ο
8	mTOR Signaling Upregulates CDC6 via Suppressing miR-3178 and Promotes the Loading of DNA Replication Helicase. Scientific Reports, 2019, 9, 9805.	1.6	8
9	Inhibiting BRAF Oncogene–Mediated Radioresistance Effectively Radiosensitizes BRAFV600E-Mutant Thyroid Cancer Cells by Constraining DNA Double-Strand Break Repair. Clinical Cancer Research, 2019, 25, 4749-4760.	3.2	39
10	LCL161, a SMAC-mimetic, Preferentially Radiosensitizes Human Papillomavirus–negative Head and Neck Squamous Cell Carcinoma. Molecular Cancer Therapeutics, 2019, 18, 1025-1035.	1.9	20
11	EGFL7 Antagonizes NOTCH Signaling and Represents a Novel Therapeutic Target in Acute Myeloid Leukemia (AML). Blood, 2019, 134, 2546-2546.	0.6	0
12	Regulation of CHK1 by mTOR contributes to the evasion of DNA damage barrier of cancer cells. Scientific Reports, 2017, 7, 1535.	1.6	30
13	Prognostic and biological significance of the proangiogenic factor EGFL7 in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4641-E4647.	3.3	36
14	P53 suppresses ribonucleotide reductase via inhibiting mTORC1. Oncotarget, 2017, 8, 41422-41431.	0.8	24
15	EGFL7 Antagonizes NOTCH Signaling, Stimulates Blast Proliferation and Confers Poor Prognosis in Cytogenetically-Normal Acute Myeloid Leukemia (CN-AML). Blood, 2016, 128, 2689-2689.	0.6	Ο
16	Inhibition of MEK confers hypersensitivity to X-radiation in the context of BRAF mutation in a model of childhood astrocytoma. Pediatric Blood and Cancer, 2015, 62, 1768-1774.	0.8	15
17	Noncatalytic <i>PTEN</i> missense mutation predisposes to organ-selective cancer development in vivo. Genes and Development, 2015, 29, 1707-1720.	2.7	29
18	FANCD2 Is a Potential Therapeutic Target and Biomarker in Alveolar Rhabdomyosarcoma Harboring the PAX3–FOXO1 Fusion Gene. Clinical Cancer Research, 2014, 20, 3884-3895.	3.2	12

CHANGXIAN SHEN

#	Article	IF	CITATIONS
19	Targeting FANCD2 for therapy sensitization. Oncotarget, 2014, 5, 3426-3427.	0.8	5
20	The mTOR pathway negatively controls ATM by up-regulating miRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11869-11874.	3.3	43
21	Regulation of FANCD2 by the mTOR Pathway Contributes to the Resistance of Cancer Cells to DNA Double-Strand Breaks. Cancer Research, 2013, 73, 3393-3401.	0.4	78
22	Abstract 4437: Regulation of FANCD2 by the mTOR pathway contributes to the resistance of cancer cells to DNA double strand breaks , 2013, , .		1
23	Abstract LB-149: Sustained activity of the mTOR pathway is required for DNA damage-induced up-regulation of RRM2 in cancer cells , 2013, , .		Ο
24	Abstract 2535: Regulation of Chk1 by the mTOR pathway is essential for cancer cells to complete DNA replication in response to replication stress. , 2012, , .		0
25	Abstract LB-192: DNA damage checkpoints control spindle assembly checkpoint by regulating Mad2. , 2011, , .		Ο
26	Molecular imaging of proliferation in vivo: Positron emission tomography with [18F]fluorothymidine. Methods, 2009, 48, 205-215.	1.9	49
27	Pro-apoptosis and anti-proliferation effects of a recombinant dominant-negative survivin-T34A in human cancer cells. Anticancer Research, 2009, 29, 1423-8.	0.5	11
28	Chromosome instability and tumor lethality suppression in carcinogenesis. Journal of Cellular Biochemistry, 2008, 105, 1327-1341.	1.2	3
29	TOR Signaling Is a Determinant of Cell Survival in Response to DNA Damage. Molecular and Cellular Biology, 2007, 27, 7007-7017.	1.1	83
30	Adenovirus-Delivered siRNA. , 2004, 252, 523-532.		16
31	Triplex-forming oligodeoxynucleotides targeting survivin inhibit proliferation and induce apoptosis of human lung carcinoma cells. Cancer Gene Therapy, 2003, 10, 403-410.	2.2	39
32	Gene silencing by adenovirus-delivered siRNA. FEBS Letters, 2003, 539, 111-114.	1.3	176
33	Targeting bcl-2 by Triplex-Forming Oligonucleotide—A Promising Carrier for Gene–Radiotherapy. Cancer Biotherapy and Radiopharmaceuticals, 2003, 18, 17-26.	0.7	17
34	Liposomal Delivery of Antisense Oligonucleotides for Efficient Downregulation of Bcl-2 and Induction of Apoptosis. Cancer Biotherapy and Radiopharmaceuticals, 2002, 17, 281-289.	0.7	8
35	FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. European Journal of Nuclear Medicine and Molecular Imaging, 2002, 29, 1317-1323.	3.3	274