Ryotaro Matsuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6063932/publications.pdf

Version: 2024-02-01

		19608	15218
143	16,251	61	126
papers	citations	h-index	g-index
159	159	159	11475
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility. Chemical Communications, 2022, 58, 1139-1142.	2.2	6
2	Topochemical [2 + 2] Cycloaddition in a Two-Dimensional Metal–Organic Framework via SCSC Transformation Impacts Halogen ⟨b>···⟨/b>Halogen Interactions. Inorganic Chemistry, 2022, 61, 3029-3032.	1.9	10
3	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202204568.	7.2	12
4	Heterobilayer membranes from isostructural metal-organic frameworks for efficient CO2 separation. Microporous and Mesoporous Materials, 2022, 338, 111950.	2.2	4
5	Molecular motion in the nanospace of MOFs upon gas adsorption investigated by <i>in situ</i> Raman spectroscopy. Faraday Discussions, 2021, 225, 70-83.	1.6	8
6	Trapping and Releasing of Oxygen in Liquid by Metal–Organic Framework with Light and Heat. Small, 2021, 17, 2004351.	5.2	6
7	Towards complex systems and devices: general discussion. Faraday Discussions, 2021, 225, 431-441.	1.6	O
8	Advanced characterisation techniques: multi-scale, <i>in situ</i> , and time-resolved: general discussion. Faraday Discussions, 2021, 225, 152-167.	1.6	2
9	Modulation of Selfâ€Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO ₂ Reduction. Small, 2021, 17, e2006150.	5.2	13
10	An Open-shell, Luminescent, Two-Dimensional Coordination Polymer with a Honeycomb Lattice and Triangular Organic Radical. Journal of the American Chemical Society, 2021, 143, 4329-4338.	6.6	57
11	Enhanced CO2 Adsorption by Insertion Reaction in the Nanospace of a Porphyrin-based MOF. Chemistry Letters, 2021, 50, 640-643.	0.7	O
12	Triplet Carbene with Highly Enhanced Thermal Stability in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 8129-8136.	6.6	8
13	Fabrication of a Kagoméâ€ŧype MOF Membrane by Seeded Growth on Aminoâ€functionalized Porous Al 2 O 3 Substrate. Chemistry - an Asian Journal, 2021, 16, 2018-2021.	1.7	5
14	Carbon Dioxide Reduction: Modulation of Selfâ€Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO ₂ Reduction (Small 22/2021). Small, 2021, 17, 2170110.	5.2	0
15	Water Confined in MIL-101(Cr): Unique Sorption–Desorption Behaviors Revealed by Diffuse Reflectance Infrared Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2021, 125, 17786-17795.	1.5	15
16	Selective Photochemical Reaction by Fixing Reactant as a MOF Building Block. Chemistry Letters, 2021, 50, 1987-1989.	0.7	0
17	Novel computational tools: general discussion. Faraday Discussions, 2021, 225, 341-357.	1.6	1
18	Stabilization of radical active species in a MOF nanospace to exploit unique reaction pathways. Chemical Communications, 2021, 57, 12115-12118.	2.2	1

#	Article	IF	Citations
19	Synthetic Strategy for Incorporating Carboxylate Ligands into Coordination Polymers under a Solvent-Free Reaction. Crystal Growth and Design, 2021, 21, 6031-6036.	1.4	3
20	Accelerated C ₂ H ₂ /CO ₂ Separation by a Se-Functionalized Porous Coordination Polymer with Low Binding Energy. ACS Applied Materials & Interfaces, 2020, 12, 3764-3772.	4.0	58
21	Pseudoâ€Gated Adsorption with Negligible Volume Change Evoked by Halogenâ€Bond Interaction in the Nanospace of MOFs. Chemistry - A European Journal, 2020, 26, 2148-2153.	1.7	21
22	Swift and Efficient Nuclear Spin Conversion of Molecular Hydrogen Confined in Prussian Blue Analogs. Chemistry Letters, 2020, 49, 149-152.	0.7	1
23	Molecular simulation study on the flexibility in the interpenetrated metal–organic framework LMOF-201 using reactive force field. Journal of Materials Chemistry A, 2020, 8, 16385-16391.	5.2	6
24	Augmenting the Carbon Dioxide Uptake and Selectivity of Metal–Organic Frameworks by Metal Substitution: Molecular Simulations of LMOF-202. ACS Omega, 2020, 5, 17193-17198.	1.6	7
25	Tuning Gateâ€Opening of a Flexible Metal–Organic Framework for Ternary Gas Sieving Separation. Angewandte Chemie - International Edition, 2020, 59, 22756-22762.	7.2	173
26	Tuning Gateâ€Opening of a Flexible Metal–Organic Framework for Ternary Gas Sieving Separation. Angewandte Chemie, 2020, 132, 22944-22950.	1.6	33
27	Direct observation of dimethyl sulfide trapped by MOF proving efficient removal of sulfur impurities. RSC Advances, 2020, 10, 4710-4714.	1.7	7
28	Selective Sensing of Fe ³⁺ lons Using a Water-stable Magnesium Coordination Polymer. Chemistry Letters, 2019, 48, 156-158.	0.7	6
29	One-Step Synthesis of an Adaptive Nanographene MOF: Adsorbed Gas-Dependent Geometrical Diversity. Journal of the American Chemical Society, 2019, 141, 15649-15655.	6.6	27
30	Grafting Free Carboxylic Acid Groups onto the Pore Surface of 3D Porous Coordination Polymers for High Proton Conductivity. Chemistry of Materials, 2019, 31, 8494-8503.	3.2	40
31	Reversible low-temperature redox activity and selective oxidation catalysis derived from the concerted activation of multiple metal species on Cr and Rh-incorporated ceria catalysts. Physical Chemistry Chemical Physics, 2019, 21, 20868-20877.	1.3	7
32	Dynamic Topochemical Reaction Tuned by Guest Molecules in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 15742-15746.	6.6	48
33	Creation of MOFs with open metal sites by partial replacement of metal ions with different coordination numbers. Dalton Transactions, 2019, 48, 2545-2548.	1.6	17
34	Microwaveâ€Assisted Hydrothermal Synthesis of [Al(OH)(1,4â€NDC)] Membranes with Superior Separation Performances. Chemistry - an Asian Journal, 2019, 14, 2072-2076.	1.7	18
35	CO2 Storage on Metal-Organic Frameworks. Green Energy and Technology, 2019, , 331-358.	0.4	1
36	Kinetics of Water Vapor Adsorption and Desorption in MIL-101 Metal–Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 387-398.	1.5	35

#	Article	IF	Citations
37	Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nature Chemistry, 2019, 11, 109-116.	6.6	7 5
38	Generation of thiyl radicals in a zinc(<scp>ii</scp>) porous coordination polymer by light-induced post-synthetic deprotection. Chemical Communications, 2018, 54, 4782-4785.	2.2	14
39	Purely Physisorptionâ€Based COâ€Selective Gateâ€Opening in Microporous Organically Pillared Layered Silicates. Angewandte Chemie, 2018, 130, 573-577.	1.6	4
40	Insights into inorganic buffer layer-assisted <i>in situ</i> fabrication of MOF films with controlled microstructures. CrystEngComm, 2018, 20, 6995-7000.	1.3	13
41	Gas-responsive porous magnet distinguishes the electron spin of molecular oxygen. Nature Communications, 2018, 9, 5420.	5.8	58
42	Theoretical Insight into Gate-Opening Adsorption Mechanism and Sigmoidal Adsorption Isotherm into Porous Coordination Polymer. Journal of the American Chemical Society, 2018, 140, 13958-13969.	6.6	48
43	Self-assembly of lattices with high structural complexity from a geometrically simple molecule. Science, 2018, 361, 1242-1246.	6.0	127
44	Tetrametallic Ln(III) (Ln = Gd, Dy) phosphonate clusters: Spin cooler and single-molecule magnet. Inorganica Chimica Acta, 2018, 482, 900-904.	1.2	5
45	Switchable gate-opening effect in metal–organic polyhedra assemblies through solution processing. Chemical Science, 2018, 9, 6463-6469.	3.7	40
46	Purely Physisorptionâ€Based COâ€Selective Gateâ€Opening in Microporous Organically Pillared Layered Silicates. Angewandte Chemie - International Edition, 2018, 57, 564-568.	7.2	7
47	Constant Volume Gate-Opening by Freezing Rotational Dynamics in Microporous Organically Pillared Layered Silicates. Journal of the American Chemical Society, 2017, 139, 904-909.	6.6	25
48	Tuning the flexibility of interpenetrated frameworks by a small difference in the fluorene moiety. Dalton Transactions, 2017, 46, 15200-15203.	1.6	8
49	Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers. Journal of the American Chemical Society, 2017, 139, 11576-11583.	6.6	118
50	Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid. Nature Communications, 2017, 8, 100.	5.8	100
51	Characteristic Features of CO ₂ and CO Adsorptions to Paddle-Wheel-type Porous Coordination Polymer. Journal of Physical Chemistry C, 2017, 121, 19129-19139.	1.5	13
52	Cooperative Bond Scission in a Soft Porous Crystal Enables Discriminatory Gate Opening for Ethylene over Ethane. Journal of the American Chemical Society, 2017, 139, 18313-18321.	6.6	72
53	Metal–Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis. Journal of the American Chemical Society, 2016, 138, 6525-6531.	6.6	93
54	Crystal Dynamics in Multiâ€stimuliâ€Responsive Entangled Metal–Organic Frameworks. Chemistry - A European Journal, 2016, 22, 15864-15873.	1.7	46

#	Article	IF	CITATIONS
55	Rhodium–Organic Cuboctahedra as Porous Solids with Strong Binding Sites. Inorganic Chemistry, 2016, 55, 10843-10846.	1.9	97
56	Electron Paramagnetic Resonance Study of Guest Molecule-Influenced Magnetism in Kagome Metalâ€"Organic Framework. Journal of Physical Chemistry C, 2016, 120, 27462-27467.	1.5	9
57	An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO ₂ over C ₂ H ₂ . Journal of the American Chemical Society, 2016, 138, 3022-3030.	6.6	359
58	New Developments of Molecular Separation Technology by Porous Coordination Compounds. Membrane, 2016, 41, 160-164.	0.0	0
59	High CO ₂ /CH ₄ Selectivity of a Flexible Copper(II) Porous Coordination Polymer under Humid Conditions. ChemPlusChem, 2015, 80, 1517-1524.	1.3	19
60	Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand. Nature Communications, 2015, 6, 5851.	5.8	92
61	Remarkable Oxygen Intake/Release of BaYMn ₂ O _{5+δ} Viewed from High-Temperature Crystal Structure. Journal of Physical Chemistry C, 2015, 119, 2356-2363.	1.5	17
62	A Convenient Strategy for Designing a Soft Nanospace: An Atomic Exchange in a Ligand with Isostructural Frameworks. Journal of the American Chemical Society, 2015, 137, 15825-15832.	6.6	37
63	Selectivity from flexibility. Nature, 2014, 509, 434-435.	13.7	41
64	A Crystalline Porous Coordination Polymer Decorated with Nitroxyl Radicals Catalyzes Aerobic Oxidation of Alcohols. Journal of the American Chemical Society, 2014, 136, 7543-7546.	6.6	105
65	Highly proton conductive nanoporous coordination polymers with sulfonic acid groups on the pore surface. Chemical Communications, 2014, 50, 1144-1146.	2.2	126
66	Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 2014, 26, 310-322.	3.2	358
67	Self-Accelerating CO Sorption in a Soft Nanoporous Crystal. Science, 2014, 343, 167-170.	6.0	434
68	The densely fluorinated nanospace of a porous coordination polymer composed of perfluorobutyl-functionalized ligands. Chemical Communications, 2014, 50, 10861.	2.2	17
69	Amineâ€Responsive Adaptable Nanospaces: Fluorescent Porous Coordination Polymer for Molecular Recognition. Angewandte Chemie - International Edition, 2014, 53, 11772-11777.	7.2	184
70	Catalytic Glucose Isomerization by Porous Coordination Polymers with Open Metal Sites. Chemistry - an Asian Journal, 2014, 9, 2772-2777.	1.7	62
71	Microporous structures having phenylene fin: Significance of substituent groups for rotational linkers in coordination polymers. Microporous and Mesoporous Materials, 2014, 189, 83-90.	2.2	8
72	Coordination Programming in the Design of Porous Coordination Polymers: Tuning of the Electronic Activity of Frameworks for Selective Nitrogen Monoxide Trapping. Chemistry Letters, 2014, 43, 890-892.	0.7	8

#	Article	IF	CITATIONS
73	In Situ Generation of Functionality in a Reactive Haloalkane-Based Ligand for the Design of New Porous Coordination Polymers. Inorganic Chemistry, 2013, 52, 10735-10737.	1.9	42
74	CO ₂ superabsorption in a paddlewheel-type Ru dimer chain compound: gate-open performance dependent on inter-chain interactions. Chemical Communications, 2013, 49, 1594-1596.	2.2	27
75	Selective NO Trapping in the Pores of Chain-Type Complex Assemblies Based on Electronically Activated Paddlewheel-Type [Ru ₂ [,]]/[Rh ₂ [,]] Dimers. Journal of the American Chemical Society, 2013, 135, 18469-18480.	6.6	47
76	Reversible Chemisorption of Sulfur Dioxide in a Spin Crossover Porous Coordination Polymer. Inorganic Chemistry, 2013, 52, 12777-12783.	1.9	72
77	Spin-Dependent Molecular Orientation of O2–O2Dimer Formed in the Nanoporous Coordination Polymer. Journal of the Physical Society of Japan, 2013, 82, 084703.	0.7	10
78	Design and Synthesis of Porous Coordination Polymers Showing Unique Guest Adsorption Behaviors. Bulletin of the Chemical Society of Japan, 2013, 86, 1117-1131.	2.0	29
79	Topological Difference in 2D Layers Steers the Formation of Rigid and Flexible 3D Supramolecular Isomers: Impact on the Adsorption Properties. Inorganic Chemistry, 2012, 51, 9141-9143.	1.9	41
80	Systematic mechanochemical preparation of a series of coordination pillared layer frameworks. Dalton Transactions, 2012, 41, 3956.	1.6	75
81	Photochemical cycloaddition on the pore surface of a porous coordination polymer impacts the sorption behavior. Chemical Communications, 2012, 48, 7919.	2.2	72
82	Inclusion and dielectric properties of a vinylidene fluoride oligomer in coordination nanochannels. Dalton Transactions, 2012, 41, 4195.	1.6	16
83	Guest-to-Host Transmission of Structural Changes for Stimuli-Responsive Adsorption Property. Journal of the American Chemical Society, 2012, 134, 4501-4504.	6.6	326
84	Selective CO2 uptake and inverse CO2/C2H2 selectivity in a dynamic bifunctional metal–organic framework. Chemical Science, 2012, 3, 2993.	3.7	117
85	Highly rigid and stable porous Cu(i) metal–organic framework with reversible single-crystal-to-single-crystal structural transformation. CrystEngComm, 2012, 14, 4153.	1.3	16
86	Effect of functional groups in MIL-101 on water sorption behavior. Microporous and Mesoporous Materials, 2012, 157, 89-93.	2.2	271
87	A pillared-bilayer porous coordination polymer with a 1D channel and a 2D interlayer space, showing unique gas and vapor sorption. Chemical Communications, 2011, 47, 8106.	2.2	96
88	Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nature Materials, 2011, 10, 787-793.	13.3	395
89	Impact of Metal-Ion Dependence on the Porous and Electronic Properties of TCNQ-Dianion-Based Porous Coordination Polymers. Inorganic Chemistry, 2011, 50, 172-177.	1.9	52
90	Highly Selective Guest Adsorption in the Nanospace of Porous Coordination Polymers. Bulletin of Japan Society of Coordination Chemistry, 2011, 57, 45-56.	0.1	1

#	Article	IF	Citations
91	Soft Secondary Building Unit: Dynamic Bond Rearrangement on Multinuclear Core of Porous Coordination Polymers in Gas Media. Journal of the American Chemical Society, 2011, 133, 9005-9013.	6.6	184
92	Cellulose Hydrolysis by a New Porous Coordination Polymer Decorated with Sulfonic Acid Functional Groups. Advanced Materials, 2011, 23, 3294-3297.	11.1	299
93	Relationship between Channel and Sorption Properties in Coordination Polymers with Interdigitated Structures. Chemistry - A European Journal, 2011, 17, 5138-5144.	1.7	76
94	The RIKEN Materials Science Beamline at SPring-8: Towards Visualization of Electrostatic Interaction. AIP Conference Proceedings, 2010, , .	0.3	75
95	Highly Porous and Stable Coordination Polymers as Water Sorption Materials. Chemistry Letters, 2010, 39, 360-361.	0.7	115
96	Systematic Construction of Porous Coordination Pillared-layer Structures and Their Sorption Properties. Chemistry Letters, 2010, 39, 218-219.	0.7	43
97	Magnetic properties of nitric oxide molecules physisorbed into nano-sized pores of MCM-41. Microporous and Mesoporous Materials, 2010, 132, 464-469.	2.2	8
98	Control of Interpenetration for Tuning Structural Flexibility Influences Sorption Properties. Angewandte Chemie - International Edition, 2010, 49, 7660-7664.	7.2	184
99	Incommensurate guest adsorption in bellows-shaped one-dimensional channels of porous coordination polymers. Microporous and Mesoporous Materials, 2010, 129, 296-303.	2.2	24
100	Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chemistry, 2010, 2, 633-637.	6.6	306
101	Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. Nature Materials, 2010, 9, 661-666.	13.3	183
102	Chemistry of Porous Coordination Polymers Having Multimodal Nanospace and Their Multimodal Functionality. Journal of Nanoscience and Nanotechnology, 2010, 10, 3-20.	0.9	26
103	Periodic molecular boxes in entangled enantiomorphic lcy nets. Chemical Communications, 2010, 46, 4142.	2.2	26
104	Flexibility of Porous Coordination Polymers Strongly Linked to Selective Sorption Mechanism. Chemistry of Materials, 2010, 22, 4129-4131.	3.2	40
105	Exceptional Thermal Stability in a Supramolecular Organic Framework: Porosity and Gas Storage. Journal of the American Chemical Society, 2010, 132, 14457-14469.	6.6	369
106	Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer. Chemical Science, 2010, 1, 315.	3.7	93
107	Modification of flexible part in Cu2+ interdigitated framework for CH4/CO2 separation. Chemical Communications, 2010, 46, 9229.	2.2	86
108	Hindered Rotation of Methane Molecules in the One-Dimensional Nanochannel of a Porous Coordination Polymer. Journal of Nanoscience and Nanotechnology, 2009, 9, 69-76.	0.9	4

#	Article	IF	Citations
109	A Porous Coordination Polymer with Accessible Metal Sites and its Complementary Coordination Action. Chemistry - A European Journal, 2009, 15, 4985-4989.	1.7	53
110	Heterogeneously Hybridized Porous Coordination Polymer Crystals: Fabrication of Heterometallic Core–Shell Single Crystals with an Inâ€Plane Rotational Epitaxial Relationship. Angewandte Chemie - International Edition, 2009, 48, 1766-1770.	7.2	287
111	Cover Picture: Heterogeneously Hybridized Porous Coordination Polymer Crystals: Fabrication of Heterometallic Core-Shell Single Crystals with an In-Plane Rotational Epitaxial Relationship (Angew.) Tj ETQq1 1 0.	7 8.4 314 rg	ßT/Overlo
112	New Interpenetrated Copper Coordination Polymer Frameworks having Porous Properties. Chemistry of Materials, 2009, 21, 5860-5866.	3.2	92
113	Bistability of Magnetization without Spin-Transition in a High-Spin Cobalt(II) Complex due to Angular Momentum Quenching. Journal of the American Chemical Society, 2009, 131, 4560-4561.	6.6	63
114	A Pillared-Layer Coordination Polymer with a Rotatable Pillar Acting as a Molecular Gate for Guest Molecules. Journal of the American Chemical Society, 2009, 131, 12792-12800.	6.6	298
115	Magnetic and photo-magnetic properties of Co dinuclear complexes. Inorganica Chimica Acta, 2008, 361, 3659-3662.	1.2	7
116	Storage and Sorption Properties of Acetylene in Jungleâ€Gymâ€Like Open Frameworks. Chemistry - an Asian Journal, 2008, 3, 1343-1349.	1.7	82
117	Nanochannels of Two Distinct Cross-Sections in a Porous Al-Based Coordination Polymer. Journal of the American Chemical Society, 2008, 130, 13664-13672.	6.6	280
118	Photo-induced Valence Tautomerism in Co Complexes. Accounts of Chemical Research, 2007, 40, 361-369.	7.6	198
119	Guest-Specific Function of a Flexible Undulating Channel in a 7,7,8,8-Tetracyano- <i>p</i> i>-quinodimethane Dimer-Based Porous Coordination Polymer. Journal of the American Chemical Society, 2007, 129, 10990-10991.	6.6	170
120	A flexible interpenetrating coordination framework with a bimodal porous functionality. Nature Materials, 2007, 6, 142-148.	13.3	734
121	Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:Â Selective Sorption and Catalysis. Journal of the American Chemical Society, 2007, 129, 2607-2614.	6.6	921
122	Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews, 2007, 251, 2490-2509.	9.5	880
123	Immobilization of Sodium Ions on the Pore Surface of a Porous Coordination Polymer. Journal of the American Chemical Society, 2006, 128, 4222-4223.	6.6	136
124	Chemical Reaction-Inspired Crystal Growth of a Coordination Polymer toward Morphology Design and Control. Journal of the American Chemical Society, 2006, 128, 15799-15808.	6.6	29
125	TCNQ Dianion-Based Coordination Polymer Whose Open Framework Shows Charge-Transfer Type Guest Inclusion. Journal of the American Chemical Society, 2006, 128, 16416-16417.	6.6	138
126	Metastable Sorption State of a Metal–Organic Porous Material Determined by In Situ Synchrotron Powder Diffraction. Angewandte Chemie - International Edition, 2006, 45, 4932-4936.	7.2	107

#	Article	IF	Citations
127	Dynamic Motion of Building Blocks in Porous Coordination Polymers. Angewandte Chemie - International Edition, 2006, 45, 7226-7230.	7.2	233
128	Flexible microporous coordination polymers. Journal of Solid State Chemistry, 2005, 178, 2420-2429.	1.4	358
129	Highly controlled acetylene accommodation in a metal–organic microporous material. Nature, 2005, 436, 238-241.	13.7	1,386
130	Direct Observation of Hydrogen Molecules Adsorbed onto a Microporous Coordination Polymer. Angewandte Chemie - International Edition, 2005, 44, 920-923.	7.2	211
131	Cover Picture: Direct Observation of Hydrogen Molecules Adsorbed onto a Microporous Coordination Polymer (Angew. Chem. Int. Ed. 6/2005). Angewandte Chemie - International Edition, 2005, 44, 829-829.	7.2	1
132	Magnetic Properties of Molecular Oxygen Adsorbed in Micro-Porous Metal-Organic Solids. Progress of Theoretical Physics Supplement, 2005, 159, 271-279.	0.2	26
133	Dynamics of guests in microporous coordination polymers studied by solid state NMR and X-ray analysis. Studies in Surface Science and Catalysis, 2005, 156, 725-732.	1.5	20
134	Guest-Induced Asymmetry in a Metalâ^'Organic Porous Solid with Reversible Single-Crystal-to-Single-Crystal Structural Transformation. Journal of the American Chemical Society, 2005, 127, 17152-17153.	6.6	320
135	Formation and Characterization of Crystalline Molecular Arrays of Gas Molecules in a 1-Dimensional Ultramicropore of a Porous Copper Coordination Polymer. Journal of Physical Chemistry B, 2005, 109, 23378-23385.	1.2	71
136	Immobilization of a Metallo Schiff Base into a Microporous Coordination Polymer. Angewandte Chemie - International Edition, 2004, 43, 2684-2687.	7.2	336
137	Expanding and Shrinking Porous Modulation Based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption. Angewandte Chemie - International Edition, 2004, 43, 3269-3272.	7.2	379
138	Cover Picture: Expanding and Shrinking Porous Modulation Based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption (Angew. Chem. Int. Ed. 25/2004). Angewandte Chemie - International Edition, 2004, 43, 3205-3205.	7.2	0
139	Motion of methanol adsorbed in porous coordination polymer with paramagnetic metal ions. Chemical Communications, 2004, , 2152.	2.2	29
140	Guest Shape-Responsive Fitting of Porous Coordination Polymer with Shrinkable Framework. Journal of the American Chemical Society, 2004, 126, 14063-14070.	6.6	286
141	Rational Design and Crystal Structure Determination of a 3-D Metalâ^'Organic Jungle-Gym-like Open Framework. Inorganic Chemistry, 2004, 43, 6522-6524.	1.9	202
142	Novel Crystalline Porous Compounds Based on Metal Complexes-Structures and Functions. Nihon Kessho Gakkaishi, 2004, 46, 53-58.	0.0	1
143	Delicate and Fast Photochemical Surface Modification of 2D Photoresponsive Organosilicon Metal‒Organic Frameworks. Angewandte Chemie, 0, , .	1.6	0