Xin-Feng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6062555/publications.pdf Version: 2024-02-01

XIN-FENC LUL

#	Article	IF	CITATIONS
1	Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices. Chinese Physics B, 2022, 31, 017802.	1.4	3
2	Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Research, 2022, 15, 2667-2673.	10.4	12
3	Edge Raman enhancement at layered PbI ₂ platelets induced by laser waveguide effect. Nanotechnology, 2022, 33, 035203.	2.6	2
4	Electroluminescent Solar Cells Based on CsPbI ₃ Perovskite Quantum Dots. Advanced Functional Materials, 2022, 32, 2108615.	14.9	38
5	Controllable synthesis of high-quality two-dimensional tellurium by a facile chemical vapor transport strategy. IScience, 2022, 25, 103594.	4.1	11
6	Persistent radical cation sp2 carbon-covalent organic framework for photocatalytic oxidative organic transformations. Applied Catalysis B: Environmental, 2022, 306, 121110.	20.2	48
7	Integrating Unexpected High Charge arrier Mobility and Lowâ€Threshold Lasing Action in an Organic Semiconductor. Angewandte Chemie, 2022, 134, .	2.0	1
8	Integrating Unexpected High Charge arrier Mobility and Lowâ€Threshold Lasing Action in an Organic Semiconductor. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
9	Phase/size dual controlled 2D semiconductor In2X3 (X = S, Se, Te) for saturable absorption modulation. Nano Research, 2022, 15, 5633-5639.	10.4	5
10	An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of <scp>twoâ€dimensional</scp> materials. InformaÄnÃ-Materiály, 2022, 4, .	17.3	25
11	Ti ₃ AlC ₂ MAX and Ti ₃ C ₂ MXene Quantum Sheets for Record-High Optical Nonlinearity. Journal of Physical Chemistry Letters, 2022, 13, 3929-3936.	4.6	7
12	Ultrafast Antisolvent Growth of Single-Crystalline CsPbCl ₃ Microcavity for Low-Threshold Room Temperature Blue Lasing. ACS Applied Materials & Interfaces, 2022, 14, 21356-21362.	8.0	6
13	Pseudohalide-Assisted Growth of Oriented Large Grains for High-Performance and Stable 2D Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1842-1849.	17.4	29
14	Engineering Near-Infrared Light Emission in Mechanically Exfoliated InSe Platelets through Hydrostatic Pressure for Multicolor Microlasing. Nano Letters, 2022, 22, 3840-3847.	9.1	11
15	All Optical Switching through Anistropic Gain of CsPbBr ₃ Single Crystal Microplatelet. Nano Letters, 2022, 22, 4049-4057.	9.1	29
16	Enhancing Self-Trapped Exciton Emission via Energy Transfer in Two-Dimensional/Quantum Dot Perovskite Heterostructures. ACS Photonics, 2022, 9, 2008-2014.	6.6	11
17	Tailoring Phase Alignment and Interfaces via Polyelectrolyte Anchoring Enables Largeâ€Area 2D Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
18	W ⁵⁺ –W ⁵⁺ Pair Induced LSPR of W ₁₈ O ₄₉ to Sensitize ZnIn ₂ S ₄ for Fullâ€6pectrum Solarâ€Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	14.9	48

#	Article	IF	CITATIONS
19	Investigation of charge transfer between donor and acceptor for small-molecule organic solar cells by scanning tunneling microscopy and ultrafast transient absorption spectroscopy. Nano Research, 2022, 15, 8019-8027.	10.4	3
20	Ultrafast Internal Exciton Dissociation through Edge States in MoS ₂ Nanosheets with Diffusion Blocking. Nano Letters, 2022, 22, 5651-5658.	9.1	16
21	Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. Angewandte Chemie - International Edition, 2021, 60, 281-289.	13.8	33
22	Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells via Chemical Binding. Advanced Science, 2021, 8, 2003138.	11.2	40
23	Integrated hetero-nanoelectrodes for plasmon-enhanced electrocatalysis of hydrogen evolution. Nano Research, 2021, 14, 1195-1201.	10.4	18
24	Uniform cobalt nanoparticles-decorated biscuit-like VN nanosheets by in situ segregation for Li-ion batteries and oxygen evolution reaction. Applied Surface Science, 2021, 536, 147982.	6.1	23
25	Quantum-sized silicon for enhanced photoluminescence and optical nonlinearity. Materials Chemistry Frontiers, 2021, 5, 7817-7823.	5.9	7
26	Lanthanide-doping enables kinetically controlled growth of deep-blue two-monolayer halide perovskite nanoplatelets. Nanoscale, 2021, 13, 11552-11560.	5.6	16
27	Introducing methoxy or fluorine substitutions on the conjugated side chain to reduce the voltage loss of organic solar cells. Journal of Materials Chemistry C, 2021, 9, 11163-11171.	5.5	10
28	A general strategy for semiconductor quantum dot production. Nanoscale, 2021, 13, 8004-8011.	5.6	13
29	Anchoring single Pt atoms and black phosphorene dual co-catalysts on CdS nanospheres to boost visible-light photocatalytic H2 evolution. Nano Today, 2021, 37, 101080.	11.9	105
30	High Optical Gain of Solutionâ€Processed Mixed ation CsPbBr ₃ Thin Films towards Enhanced Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2102210.	14.9	35
31	Zone-Folded Longitudinal Acoustic Phonons Driving Self-Trapped State Emission in Colloidal CdSe Nanoplatelet Superlattices. Nano Letters, 2021, 21, 4137-4144.	9.1	22
32	Creating Side Transport Pathways in Organic Solar Cells by Introducing Delayed Fluorescence Molecules. Chemistry of Materials, 2021, 33, 4578-4585.	6.7	11
33	Revealing the interrelation between C- and A-exciton dynamics in monolayer WS2 via transient absorption spectroscopy. Applied Physics Letters, 2021, 119, .	3.3	10
34	Lead-free perovskites: growth, properties, and applications. Science China Materials, 2021, 64, 2889-2914.	6.3	12
35	Solvent Recrystallizationâ€Enabled Green Amplified Spontaneous Emissions with an Ultraâ€Low Threshold from Pinholeâ€Free Perovskite Films. Advanced Functional Materials, 2021, 31, 2106108.	14.9	31
36	Nanoscale heterogeneous distribution of surface energy at interlayers in organic bulk-heterojunction solar cells. Joule, 2021, 5, 3154-3168.	24.0	45

#	Article	IF	CITATIONS
37	Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy, 2021, 89, 106392.	16.0	39
38	18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today, 2021, 41, 101289.	11.9	47
39	Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. Small Methods, 2021, 5, e2000937.	8.6	24
40	Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Research, 2021, 14, 2314.	10.4	27
41	Inch-Scale Ball-in-Bowl Plasmonic Nanostructure Arrays for Polarization-Independent Second-Harmonic Generation. ACS Nano, 2021, 15, 1291-1300.	14.6	19
42	Individual concave twin ZnO microdisks with optical resonances. Chemical Communications, 2021, 58, 116-119.	4.1	0
43	Enhanced Optical Absorption and Slowed Light of Reduced-Dimensional CsPbBr ₃ Nanowire Crystal by Exciton–Polariton. Nano Letters, 2020, 20, 1023-1032.	9.1	55
44	Efficient Quasi-Two-Dimensional Perovskite Light-Emitting Diodes with Improved Multiple Quantum Well Structure. ACS Applied Materials & Interfaces, 2020, 12, 1721-1727.	8.0	25
45	Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity. ACS Photonics, 2020, 7, 327-337.	6.6	36
46	Perovskite quantum dot lasers. InformaÄnÃ-Materiály, 2020, 2, 170-183.	17.3	97
47	Unveiling Bandgap Evolution and Carrier Redistribution in Multilayer WSe 2 : Enhanced Photon Emission via Heat Engineering. Advanced Optical Materials, 2020, 8, 1901226.	7.3	12
48	Relieving the Photosensitivity of Organic Fieldâ€Effect Transistors. Advanced Materials, 2020, 32, e1906122.	21.0	61
49	Controlled Production of MoS ₂ Fullâ€5cale Nanosheets and Their Strong Size Effects. Advanced Materials Interfaces, 2020, 7, 2001130.	3.7	17
50	Water as a cocatalyst for photocatalytic H2 production from formic acid. Nano Today, 2020, 35, 100968.	11.9	23
51	Tailoring Multi-Walled Carbon Nanotubes into Graphene Quantum Sheets. ACS Applied Materials & Interfaces, 2020, 12, 47784-47791.	8.0	10
52	Large-Scale Thin CsPbBr ₃ Single-Crystal Film Grown on Sapphire <i>via</i> Chemical Vapor Deposition: Toward Laser Array Application. ACS Nano, 2020, 14, 15605-15615.	14.6	112
53	Role of the Exciton–Polariton in a Continuous-Wave Optically Pumped CsPbBr ₃ Perovskite Laser. Nano Letters, 2020, 20, 6636-6643.	9.1	145
54	Graphoepitaxy of Large Scale, Highly Ordered CsPbBr 3 Nanowire Array on Muscovite Mica (001) Driven by Surface Reconstructed Grooves. Advanced Optical Materials, 2020, 8, 2000743.	7.3	15

#	Article	IF	CITATIONS
55	Enhanced Trion Emission and Carrier Dynamics in Monolayer WS ₂ Coupled with Plasmonic Nanocavity. Advanced Optical Materials, 2020, 8, 2001147.	7.3	36
56	Overall Regulation of Exciton Dynamics by Defect Engineering in Polymeric Photocatalysts for Hydrogen Evolution. Journal of Physical Chemistry C, 2020, 124, 24667-24676.	3.1	10
57	Growth of metal halide perovskite materials. Science China Materials, 2020, 63, 1438-1463.	6.3	31
58	Space-confined and substrate-directed synthesis of transition-metal dichalcogenide nanostructures with tunable dimensionality. Science Bulletin, 2020, 65, 1013-1021.	9.0	25
59	ZnS Nanospheres for Optical Modulator in an Erbiumâ€Đoped Fiber Laser. Annalen Der Physik, 2020, 532, 1900454.	2.4	8
60	Heterostructural CsPbX ₃ -PbS (X = Cl, Br, I) Quantum Dots with Tunable Vis–NIR Dual Emission. Journal of the American Chemical Society, 2020, 142, 4464-4471.	13.7	107
61	Highâ€Efficient Charge Generation in Singleâ€Donorâ€Componentâ€Based pâ€iâ€n Structure Organic Solar Cells Solar Rrl, 2020, 4, 1900580.	^{5.} 5.8	14
62	Molecular and Energetic Order Dominate the Photocurrent Generation Process in Organic Solar Cells with Small Energetic Offsets. ACS Energy Letters, 2020, 5, 589-596.	17.4	36
63	Aggregation-Dependent Photoreactive Hemicyanine Assembly as a Photobactericide. ACS Applied Materials & Interfaces, 2020, 12, 22552-22559.	8.0	13
64	Enhanced type I photoreaction of indocyanine green <i>via</i> electrostatic-force-driven aggregation. Nanoscale, 2020, 12, 9517-9523.	5.6	21
65	Bandgap engineering of few-layered MoS ₂ with low concentrations of S vacancies. RSC Advances, 2020, 10, 15702-15706.	3.6	6
66	Ultra-large local field enhancement effect of isolated thick triangular silver nanoplates on a silicon substrate in the green waveband. Optics Letters, 2020, 45, 2099.	3.3	13
67	Cavity engineering of two-dimensional perovskites and inherent light-matter interaction. Photonics Research, 2020, 8, A72.	7.0	18
68	Perovskite-based lasers. , 2019, , 41-74.		5
69	Lasing from Mechanically Exfoliated 2D Homologous Ruddlesden–Popper Perovskite Engineered by Inorganic Layer Thickness. Advanced Materials, 2019, 31, e1903030.	21.0	128
70	SnSe ₂ Nanosheets for Subpicosecond Harmonic Mode‣ocked Pulse Generation. Small, 2019, 15, e1902811.	10.0	138
71	Vapor-Phase Incommensurate Heteroepitaxy of Oriented Single-Crystal CsPbBr ₃ on GaN: Toward Integrated Optoelectronic Applications. ACS Nano, 2019, 13, 10085-10094.	14.6	59
72	Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance. Communications Physics, 2019, 2, .	5.3	36

#	Article	IF	CITATIONS
73	Highâ€Quality Hexagonal Nonlayered CdS Nanoplatelets for Lowâ€Threshold Whisperingâ€Galleryâ€Mode Lasing. Small, 2019, 15, e1901364.	10.0	24
74	Probing Far-Infrared Surface Phonon Polaritons in Semiconductor Nanostructures at Nanoscale. Nano Letters, 2019, 19, 5070-5076.	9.1	16
75	Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu ₂ O core–shell nanorods. Nanoscale, 2019, 11, 16445-16454.	5.6	40
76	Lateral and Vertical MoSe ₂ –MoS ₂ Heterostructures via Epitaxial Growth: Triggered by High-Temperature Annealing and Precursor Concentration. Journal of Physical Chemistry Letters, 2019, 10, 5027-5035.	4.6	13
77	Direct Wide Bandgap 2D GeSe ₂ Monolayer toward Anisotropic UV Photodetection. Advanced Optical Materials, 2019, 7, 1900622.	7.3	70
78	Exciton–polaritons in semiconductors. Journal of Semiconductors, 2019, 40, 090401.	3.7	5
79	Individual nanostructure optimization in donor and acceptor phases to achieve efficient quaternary organic solar cells. Nano Energy, 2019, 66, 104176.	16.0	14
80	Crystalline Cooperativity of Donor and Acceptor Segments in Doubleâ€Cable Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 15532-15540.	13.8	53
81	Twisted-Angle-Dependent Optical Behaviors of Intralayer Excitons and Trions in WS ₂ /WSe ₂ Heterostructure. ACS Photonics, 2019, 6, 3082-3091.	6.6	41
82	Locally collective hydrogen bonding isolates lead octahedra for white emission improvement. Nature Communications, 2019, 10, 5190.	12.8	109
83	Anisotropic Growth and Scanning Tunneling Microscopy Identification of Ultrathin Even‣ayered PdSe ₂ Ribbons. Small, 2019, 15, e1902789.	10.0	50
84	Magnetism and Optical Anisotropy in van der Waals Antiferromagnetic Insulator CrOCl. ACS Nano, 2019, 13, 11353-11362.	14.6	97
85	Growth of 4-N,N-Dimethylamino-4'-N'-methyl-stilbazolium Tosylate (DAST) Organic Single Crystals Controlled by Oleic Acid. Crystals, 2019, 9, 494.	2.2	4
86	Unveiling lasing mechanism in CsPbBr ₃ microsphere cavities. Nanoscale, 2019, 11, 3145-3153.	5.6	71
87	Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy, 2019, 58, 596-603.	16.0	52
88	Perseverance of direct bandgap in multilayer 2D PbI ₂ under an experimental strain up to 7.69%. 2D Materials, 2019, 6, 025014.	4.4	20
89	Two-Photon Absorption-Based Upconverted Circularly Polarized Luminescence Generated in Chiral Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 3290-3295.	4.6	122
90	Continuousâ€Wave Pumped Perovskite Lasers. Advanced Optical Materials, 2019, 7, 1900544.	7.3	42

#	Article	IF	CITATIONS
91	Robust production of 2D quantum sheets from bulk layered materials. Materials Horizons, 2019, 6, 1416-1424.	12.2	28
92	Giant Nonlinear Optical Response in 2D Perovskite Heterostructures. Advanced Optical Materials, 2019, 7, 1900398.	7.3	58
93	Charge-Transfer-Induced Photoluminescence Properties of WSe ₂ Monolayer–Bilayer Homojunction. ACS Applied Materials & Interfaces, 2019, 11, 20566-20573.	8.0	15
94	Increasing Quantum Efficiency of Polymer Solar Cells with Efficient Exciton Splitting and Long Carrier Lifetime by Molecular Doping at Heterojunctions. ACS Energy Letters, 2019, 4, 1356-1363.	17.4	45
95	One-Step Vapor-Phase Synthesis and Quantum-Confined Exciton in Single-Crystal Platelets of Hybrid Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 2363-2371.	4.6	25
96	Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. Journal of Materials Chemistry C, 2019, 7, 4304-4319.	5.5	51
97	Engineering fluorescence intensity and electron concentration of monolayer MoS ₂ by forming heterostructures with semiconductor dots. Nanoscale, 2019, 11, 6544-6551.	5.6	14
98	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nature Communications, 2019, 10, 1112.	12.8	185
99	Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Applied Physics Letters, 2019, 114, .	3.3	59
100	Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 11928-11933.	10.3	192
101	Significant enhancement of responsivity of organic photodetectors upon molecular engineering. Journal of Materials Chemistry C, 2019, 7, 5739-5747.	5.5	28
102	Sulfur vs. tellurium: the heteroatom effects on the nonfullerene acceptors. Science China Chemistry, 2019, 62, 897-903.	8.2	10
103	Slow Cooling of Highâ€Energy C Excitons Is Limited by Intervalleyâ€Transfer in Monolayer MoS 2. Laser and Photonics Reviews, 2019, 13, 1800270.	8.7	22
104	Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode?. Journal of Chemical Physics, 2019, 151, 211101.	3.0	12
105	Simultaneous Enhancement of Three Parameters of P3HTâ€Based Organic Solar Cells with One Oxygen Atom. Advanced Energy Materials, 2019, 9, 1803012.	19.5	54
106	Recent Progress of Strong Exciton–Photon Coupling in Lead Halide Perovskites. Advanced Materials, 2019, 31, e1804894.	21.0	60
107	Focus on 2D material nanophotonics. Nanotechnology, 2019, 30, 030201.	2.6	4
108	Efficient Quaternary Organic Solar Cells with Parallelâ€Alloy Morphology. Advanced Functional Materials, 2019, 29, 1806804.	14.9	53

#	Article	IF	CITATIONS
109	Nanowire-Based Lasers. Nanostructure Science and Technology, 2019, , 367-393.	0.1	1
110	InSe monolayer: synthesis, structure and ultra-high second-harmonic generation. 2D Materials, 2018, 5, 025019.	4.4	92
111	Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature. Applied Physics Letters, 2018, 112, .	3.3	34
112	Cocrystals Strategy towards Materials for Nearâ€infrared Photothermal Conversion and Imaging. Angewandte Chemie, 2018, 130, 4027-4031.	2.0	50
113	Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. Energy and Environmental Science, 2018, 11, 841-849.	30.8	210
114	DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2018, 57, 2846-2850.	13.8	150
115	Efficient Ternary Polymer Solar Cells with Two Well ompatible Donors and One Ultranarrow Bandgap Nonfullerene Acceptor. Advanced Energy Materials, 2018, 8, 1702854.	19.5	195
116	Cocrystals Strategy towards Materials for Nearâ€infrared Photothermal Conversion and Imaging. Angewandte Chemie - International Edition, 2018, 57, 3963-3967.	13.8	255
117	Accurate identification of layer number for few-layer WS ₂ and WSe ₂ via spectroscopic study. Nanotechnology, 2018, 29, 124001.	2.6	52
118	Tellurophene-Based Random Copolymers for High Responsivity and Detectivity Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 1917-1924.	8.0	23
119	Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Micro/Nanowires. Advanced Optical Materials, 2018, 6, 1701032.	7.3	114
120	Fabry–Pérot Oscillation and Room Temperature Lasing in Perovskite Cube orner Pyramid Cavities. Small, 2018, 14, 1703136.	10.0	61
121	Surface Plasmon Enhanced Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Nanowires. Nano Letters, 2018, 18, 3335-3343.	9.1	133
122	A bumpy gold nanostructure exhibiting DNA-engineered stimuli-responsive SERS signals. Nanoscale, 2018, 10, 9455-9459.	5.6	10
123	Ultrasmall CoP Nanoparticles as Efficient Cocatalysts for Photocatalytic Formic Acid Dehydrogenation. Joule, 2018, 2, 549-557.	24.0	126
124	Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures. Journal of Physical Chemistry Letters, 2018, 9, 1655-1662.	4.6	75
125	Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr ₃ Micro/Nanowire Fabry-Pérot Cavity. ACS Photonics, 2018, 5, 2051-2059.	6.6	145
126	Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2. Applied Surface Science, 2018, 436, 596-602.	6.1	55

#	Article	IF	CITATIONS
127	What is the predominant electron transfer process for Au NRs/TiO2 nanodumbbell heterostructure under sunlight irradiation?. Applied Catalysis B: Environmental, 2018, 220, 471-476.	20.2	42
128	Research progress of low-dimensional metal halide perovskites for lasing applications. Chinese Physics B, 2018, 27, 114209.	1.4	10
129	Over 13% Efficiency Ternary Nonfullerene Polymer Solar Cells with Tilted Up Absorption Edge by Incorporating a Medium Bandgap Acceptor. Advanced Energy Materials, 2018, 8, 1801968.	19.5	167
130	Allâ€Inorganic CsPbBr ₃ Nanowire Based Plasmonic Lasers. Advanced Optical Materials, 2018, 6, 1800674.	7.3	107
131	Morphologyâ€Tailored Halide Perovskite Platelets and Wires: From Synthesis, Properties to Optoelectronic Devices. Advanced Optical Materials, 2018, 6, 1800413.	7.3	34
132	High-temperature driven inter-valley carrier transfer and significant fluorescence enhancement in multilayer WS ₂ . Nanoscale Horizons, 2018, 3, 598-605.	8.0	13
133	Low Threshold Fabry–Pérot Mode Lasing from Lead Iodide Trapezoidal Nanoplatelets. Small, 2018, 14, e1801938.	10.0	17
134	Anchoring black phosphorus quantum dots on molybdenum disulfide nanosheets: a 0D/2D nanohybrid with enhanced visibleâ^and NIR â^ilight photoactivity. Applied Catalysis B: Environmental, 2018, 238, 444-453.	20.2	68
135	High-Temperature Continuous-Wave Pumped Lasing from Large-Area Monolayer Semiconductors Grown by Chemical Vapor Deposition. ACS Nano, 2018, 12, 9390-9396.	14.6	44
136	Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy, 2018, 50, 552-561.	16.0	148
137	The Auger process in multilayer WSe ₂ crystals. Nanoscale, 2018, 10, 17585-17592.	5.6	20
138	Morphology Engineering in Monolayer MoS ₂ â€WS ₂ Lateral Heterostructures. Advanced Functional Materials, 2018, 28, 1801568.	14.9	67
139	Ultrathin CsPbX ₃ Nanowire Arrays with Strong Emission Anisotropy. Advanced Materials, 2018, 30, e1801805.	21.0	135
140	Enhancement of Exciton Emission from Multilayer MoS ₂ at High Temperatures: Intervalley Transfer versus Interlayer Decoupling. Small, 2017, 13, 1700157.	10.0	19
141	Thermal conductivity of suspended single crystal CH ₃ NH ₃ PbI ₃ platelets at room temperature. Nanoscale, 2017, 9, 8281-8287.	5.6	20
142	Investigation of Physical and Electronic Properties of GeSe for Photovoltaic Applications. Advanced Electronic Materials, 2017, 3, 1700141.	5.1	81
143	3R MoS ₂ with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device. Advanced Materials, 2017, 29, 1701486.	21.0	197
144	Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS ₂ / <i>h</i> -BN van der Waals Heterostructures on Au Foils. ACS Nano, 2017, 11, 4328-4336.	14.6	87

#	Article	IF	CITATIONS
145	Large-scale 2D PbI ₂ monolayers: experimental realization and their indirect band-gap related properties. Nanoscale, 2017, 9, 3736-3741.	5.6	98
146	Al ₂ O ₃ Surface Complexation for Photocatalytic Organic Transformations. Journal of the American Chemical Society, 2017, 139, 269-276.	13.7	64
147	The effect of directed photogenerated carrier separation on photocatalytic hydrogen production. Nano Energy, 2017, 41, 488-493.	16.0	51
148	Surface State Mediated Interlayer Excitons in a 2D Nonlayered–Layered Semiconductor Heterojunction. Advanced Electronic Materials, 2017, 3, 1700373.	5.1	15
149	Wavelength Tunable Plasmonic Lasers Based on Intrinsic Self-Absorption of Gain Material. ACS Photonics, 2017, 4, 2789-2796.	6.6	30
150	Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature Communications, 2017, 8, 958.	12.8	191
151	Unveiling Structurally Engineered Carrier Dynamics in Hybrid Quasi-Two-Dimensional Perovskite Thin Films toward Controllable Emission. Journal of Physical Chemistry Letters, 2017, 8, 4431-4438.	4.6	147
152	Tuning Excitonic Properties of Monolayer MoS ₂ with Microsphere Cavity by Highâ€Throughput Chemical Vapor Deposition Method. Small, 2017, 13, 1701694.	10.0	35
153	Ternary small molecule solar cells exhibiting power conversion efficiency of 10.3%. Nano Energy, 2017, 39, 571-581.	16.0	83
154	High Performing Ternary Solar Cells through Förster Resonance Energy Transfer between Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2017, 9, 26928-26936.	8.0	44
155	Advances in Small Perovskiteâ€Based Lasers. Small Methods, 2017, 1, 1700163.	8.6	268
156	Controlled Gas Molecules Doping of Monolayer MoS ₂ via Atomic-Layer-Deposited Al ₂ O ₃ Films. ACS Applied Materials & Interfaces, 2017, 9, 27402-27408.	8.0	23
157	High-Yield Production of MoS ₂ and WS ₂ Quantum Sheets from Their Bulk Materials. Nano Letters, 2017, 17, 7767-7772.	9.1	77
158	From small lasers to ultrathin nonlinear crystals. , 2017, , .		0
159	Controlled Growth and Reliable Thicknessâ€Dependent Properties of Organic–Inorganic Perovskite Platelet Crystal. Advanced Functional Materials, 2016, 26, 5263-5270.	14.9	64
160	Phononâ€Assisted Antiâ€Stokes Lasing in ZnTe Nanoribbons. Advanced Materials, 2016, 28, 276-283.	21.0	41
161	Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Physical Chemistry Chemical Physics, 2016, 18, 14701-14708.	2.8	73
162	Ultrafast charge transfer in MoS ₂ /WSe ₂ p–n Heterojunction. 2D Materials, 2016, 3, 025020.	4.4	179

#	Article	IF	CITATIONS
163	Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Roomâ€Temperature Lasing. Advanced Science, 2016, 3, 1600137.	11.2	121
164	Lasing from halide perovskites. , 2016, , .		0
165	New Insights into the Correlation between Morphology, Excited State Dynamics, and Device Performance of Small Molecule Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600961.	19.5	34
166	Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets. Advanced Functional Materials, 2016, 26, 6238-6245.	14.9	529
167	Solutionâ€Processed Tinâ€Based Perovskite for Nearâ€Infrared Lasing. Advanced Materials, 2016, 28, 8191-8196.	21.0	222
168	CdS bulk crystal growth by optical floating zone method: strong photoluminescence upconversion and minimum trapped state emission. Optical Engineering, 2016, 56, 011109.	1.0	7
169	Achieving Ultrafast Hole Transfer at the Monolayer MoS ₂ and CH ₃ NH ₃ PbI ₃ Perovskite Interface by Defect Engineering. ACS Nano, 2016, 10, 6383-6391.	14.6	130
170	Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers. Applied Physics Letters, 2015, 107, .	3.3	25
171	Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light–Matter Interactions. Advanced Materials, 2015, 27, 7800-7808.	21.0	109
172	Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Letters, 2015, 15, 4571-4577.	9.1	405
173	Whispering Gallery Mode Lasing from Hexagonal Shaped Layered Lead Iodide Crystals. ACS Nano, 2015, 9, 687-695.	14.6	118
174	Engineering Interfacial Photoâ€Induced Charge Transfer Based on Nanobamboo Array Architecture for Efficient Solarâ€toâ€Chemical Energy Conversion. Advanced Materials, 2015, 27, 2207-2214.	21.0	172
175	Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters. Nanotechnology, 2015, 26, 342001.	2.6	75
176	Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure. ACS Nano, 2015, 9, 5018-5026.	14.6	43
177	Purified plasmonic lasing with strong polarization selectivity by reflection. Optics Express, 2015, 23, 15657.	3.4	4
178	Synthesis of fluorescent phenylethanethiolated gold nanoclusters via pseudo-AGR method. Nanoscale, 2015, 7, 16200-16203.	5.6	41
179	Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Applied Catalysis B: Environmental, 2014, 147, 940-946.	20.2	398
180	Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014. 13. 476-480.	27.5	2,725

#	Article	IF	CITATIONS
181	Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards Highâ€Performance Perovskite Solar Cells and Optoelectronic Devices. Advanced Optical Materials, 2014, 2, 838-844.	7.3	363
182	Spatially-Resolved Ultrafast Optical Spectroscopy of Polymer-Grafted Residues on CVD Graphene. Journal of Physical Chemistry C, 2014, 118, 708-713.	3.1	10
183	Novel self-assembled 2D networks based on zinc metal ion co-ordination: synthesis and comparative study with 3D networks. RSC Advances, 2014, 4, 17680-17693.	3.6	8
184	Elucidating the Localized Plasmonic Enhancement Effects from a Single Ag Nanowire in Organic Solar Cells. ACS Nano, 2014, 8, 10101-10110.	14.6	33
185	Solar Cells: Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices (Advanced Optical Materials) Tj ETQq1 1 0.7	′8 43 14 rg	BT3/Overlock
186	A room temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communications, 2014, 5, 4953.	12.8	278
187	Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. Nano Letters, 2014, 14, 5995-6001.	9.1	702
188	Enhanced Photocatalytic Hydrogen Production with Synergistic Two-Phase Anatase/Brookite TiO ₂ Nanostructures. Journal of Physical Chemistry C, 2013, 117, 14973-14982.	3.1	134
189	Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein–Moss Effect. Nano Letters, 2013, 13, 5336-5343.	9.1	145
190	Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime. Physical Chemistry Chemical Physics, 2013, 15, 18363.	2.8	101
191	Photon Upconversion in Heteroâ€nanostructured Photoanodes for Enhanced Nearâ€Infrared Light Harvesting. Advanced Materials, 2013, 25, 1603-1607.	21.0	127
192	Ultrafast Exciton Dynamics and Twoâ€₽hoton Pumped Lasing from ZnSe Nanowires. Advanced Optical Materials, 2013, 1, 319-326.	7.3	22
193	Exciton Dynamics: Ultrafast Exciton Dynamics and Twoâ€Photon Pumped Lasing from ZnSe Nanowires (Advanced Optical Materials 4/2013). Advanced Optical Materials, 2013, 1, 276-276.	7.3	1
194	Tailoring the Lasing Modes in Semiconductor Nanowire Cavities Using Intrinsic Self-Absorption. Nano Letters, 2013, 13, 1080-1085.	9.1	133
195	Threeâ€Dimensional CdS–Titanate Composite Nanomaterials for Enhanced Visibleâ€Lightâ€Driven Hydrogen Evolution. Small, 2013, 9, 996-1002.	10.0	124
196	Size-Dependent Exciton Recombination Dynamics in Single CdS Nanowires beyond the Quantum Confinement Regime. Journal of Physical Chemistry C, 2013, 117, 10716-10722.	3.1	52
197	Light Harvesting: Photon Upconversion in Heteroâ€nanostructured Photoanodes for Enhanced Nearâ€Infrared Light Harvesting (Adv. Mater. 11/2013). Advanced Materials, 2013, 25, 1656-1656.	21.0	0
198	Ultrafast Charge Carrier Dynamics and Upconversion Lasing from ZnSe Nanowires. , 2013, , .		0

#	Article	IF	CITATIONS
199	Highly Enhanced Exciton Recombination Rate by Strong Electron–Phonon Coupling in Single ZnTe Nanobelt. Nano Letters, 2012, 12, 6420-6427.	9.1	43
200	Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures. ACS Nano, 2012, 6, 10835-10844.	14.6	124
201	Optical Spectroscopy Investigation of the Structural and Electrical Evolution of Controllably Oxidized Graphene by a Solution Method. Journal of Physical Chemistry C, 2012, 116, 10702-10707.	3.1	25
202	Experimental and theoretical studies on pyrene-grafted polyoxometalate hybrid. Dalton Transactions, 2012, 41, 12185.	3.3	32
203	Resonant Aluminum Nanodisk Array for Enhanced Tunable Broadband Light Trapping in Ultrathin Bulk Heterojunction Organic Photovoltaic Devices. Plasmonics, 2012, 7, 677-684.	3.4	22
204	Fluorophore-Doped Core–Multishell Spherical Plasmonic Nanocavities: Resonant Energy Transfer toward a Loss Compensation. ACS Nano, 2012, 6, 6250-6259.	14.6	71
205	Compositionâ€Tunable Vertically Aligned CdS _{<i>x</i>} Se _{1â€<i>x</i>} Nanowire Arrays via van der Waals Epitaxy: Investigation of Optical Properties and Photocatalytic Behavior. Advanced Materials, 2012, 24, 4151-4156.	21.0	69
206	Efficiency Enhancement in Bulk-Heterojunction Solar Cells Integrated with Large-Area Ag Nanotriangle Arrays. Journal of Physical Chemistry C, 2012, 116, 14820-14825.	3.1	46
207	Self-Assembly of Cold Nanorods into Symmetric Superlattices Directed by OH-Terminated Hexa(ethylene glycol) Alkanethiol. Langmuir, 2011, 27, 11394-11400.	3.5	75
208	Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes. Angewandte Chemie - International Edition, 2011, 50, 1593-1596.	13.8	206
209	Reversible Photoswitchable Fluorescence in Thin Films of Inorganic Nanoparticle and Polyoxometalate Assemblies. Journal of the American Chemical Society, 2010, 132, 2886-2888.	13.7	171
210	Stepwise Selfâ€Assembly of P3HT/CdSe Hybrid Nanowires with Enhanced Photoconductivity. Macromolecular Rapid Communications, 2009, 30, 1419-1423.	3.9	54
211	Self-Reorganization of CdTe Nanoparticles into Near-Infrared Hg _{1â^'<i>x</i>} Cd _{<i>x</i>} Te Nanowire Networks. Chemistry of Materials, 2009, 21, 3177-3182.	6.7	30
212	A Facile Strategy for Controllable Synthesis of High-Quality Two-Dimensional Tellurium by Chemical Vapor Transport. SSRN Electronic Journal, 0, , .	0.4	0
213	Interfacial Molecular Doping at Donor and Acceptor Interface in Bilayer Organic Solar Cells. Solar Rrl, 0, , .	5.8	1