Valerie Gaboriau-Routhiau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6062417/publications.pdf

Version: 2024-02-01

27 papers

6,009 citations

279798 23 h-index 28 g-index

29 all docs

29 docs citations

times ranked

29

9585 citing authors

#	Article	IF	CITATIONS
1	Intracellular offspring released from SFB filaments are flagellated. Nature Microbiology, 2020, 5, 34-39.	13.3	4
2	Microbiota Sensing by Mincle-Syk Axis in Dendritic Cells Regulates Interleukin-17 and -22 Production and Promotes Intestinal Barrier Integrity. Immunity, 2019, 50, 446-461.e9.	14.3	143
3	Modulation of the gut microbiota to improve innate resistance. Current Opinion in Immunology, 2018, 54, 137-144.	5.5	28
4	Segmented filamentous bacteria, Th17 inducers and helpers in a hostile world. Current Opinion in Microbiology, 2017, 35, 100-109.	5.1	72
5	Human Gut Symbiont Roseburia hominis Promotes and Regulates Innate Immunity. Frontiers in Immunology, 2017, 8, 1166.	4.8	128
6	Commensal microbiota influence systemic autoimmune responses. EMBO Journal, 2015, 34, 466-474.	7.8	93
7	Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature, 2015, 520, 99-103.	27.8	136
8	Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nature Immunology, 2015, 16, 880-888.	14.5	192
9	The microbiota regulates type 2 immunity through RORÎ 3 t ⁺ T cells. Science, 2015, 349, 989-993.	12.6	7 09
10	Genome Sequence of " <i>Candidatus</i> Arthromitus―sp. Strain SFB-Mouse-NL, a Commensal Bacterium with a Key Role in Postnatal Maturation of Gut Immune Functions. Genome Announcements, 2014, 2, .	0.8	35
11	Segmented Filamentous Bacterium Uses Secondary and Tertiary Lymphoid Tissues to Induce Gut IgA and Specific T Helper 17 Cell Responses. Immunity, 2014, 40, 608-620.	14.3	280
12	Host interactions with Segmented Filamentous Bacteria: An unusual trade-off that drives the post-natal maturation of the gut immune system. Seminars in Immunology, 2013, 25, 342-351.	5.6	71
13	The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 2013, 342, 971-976.	12.6	1,580
14	Role of microbiota in postnatal maturation of intestinal T-cell responses. Current Opinion in Gastroenterology, 2011, 27, 502-508.	2.3	26
15	Restricted Microbiota and Absence of Cognate TCR Antigen Leads to an Unbalanced Generation of Th17 Cells. Journal of Immunology, 2011, 186, 1531-1537.	0.8	67
16	Trade-Off between Bile Resistance and Nutritional Competence Drives Escherichia coli Diversification in the Mouse Gut. PLoS Genetics, 2011, 7, e1002107.	3.5	67
17	The immune system and the gut microbiota: friends or foes?. Nature Reviews Immunology, 2010, 10, 735-744.	22.7	582
18	The Key Role of Segmented Filamentous Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses. Immunity, 2009, 31, 677-689.	14.3	1,252

#	Article	IF	CITATION
19	Gnotobiotic Mouse Immune Response Induced by <i>Bifidobacterium </i> sp. Strains Isolated from Infants. Applied and Environmental Microbiology, 2008, 74, 660-666.	3.1	102
20	Dissecting the Genetic Components of Adaptation of Escherichia coli to the Mouse Gut. PLoS Genetics, 2008, 4, e2.	3. 5	89
21	Stimulation of Immunity Without Alteration of Oral Tolerance in Mice Fed With Heat-Treated Fermented Infant Formula. Journal of Pediatric Gastroenterology and Nutrition, 2006, 43, 451-458.	1.8	13
22	In Vitro and ex Vivo Activation of the TLR5 Signaling Pathway in Intestinal Epithelial Cells by a Commensal Escherichia coli Strain. Journal of Biological Chemistry, 2004, 279, 42984-42992.	3.4	166
23	Gastric Helicobacter Infection Inhibits Development of Oral Tolerance to Food Antigens in Mice. Infection and Immunity, 2003, 71, 5219-5224.	2.2	24
24	Colonization of Gnotobiotic Mice with Human Gut Microflora at Birth Protects Against Escherichia coli Heat-Labile Enterotoxin-Mediated Abrogation of Oral Tolerance. Pediatric Research, 2003, 54, 739-746.	2.3	29
25	Influence of Resident Intestinal Microflora on the Development and Functions of the Gut-Associated Lymphoid Tissue. Microbial Ecology in Health and Disease, 2001, 13, 65-86.	3.5	24
26	Oral Tolerance to Ovalbumin in Mice: Induction and Long-Term Persistence Unaffected by Staphylococcus aureus Enterotoxin B and Clostridium perfringens Type A Enterotoxin. Pediatric Research, 1997, 42, 503-508.	2.3	12
27	Gut Flora Allows Recovery of Oral Tolerance to Ovalbumin in Mice after Transient Breakdown Mediated by Cholera Toxin or Escherichia coli Heat-Labile Enterotoxin. Pediatric Research, 1996, 39, 625-629.	2.3	60