
Simonetta Gribaldo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6062221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the Archaea. Bmc Ecology and Evolution, 2022, 22, 1.	1.6	32
2	A catalogue of 1,167 genomes from the human gut archaeome. Nature Microbiology, 2022, 7, 48-61.	13.3	72
3	Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host. ELife, 2022, 11, .	6.0	9
4	Localization and functional characterization of the alternative oxidase in <i>Naegleria</i> . Journal of Eukaryotic Microbiology, 2022, 69, e12908.	1.7	3
5	Spotlight on FtsZ-based cell division in Archaea. Trends in Microbiology, 2022, 30, 665-678.	7.7	22
6	An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nature Microbiology, 2022, 7, 411-422.	13.3	26
7	Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. Nature Communications, 2022, 13, .	12.8	36
8	Diversity and Evolution of Methane-Related Pathways in Archaea. Annual Review of Microbiology, 2022, 76, 727-755.	7.3	37
9	Single-Stranded DNA-Binding Proteins in the. Methods in Molecular Biology, 2021, 2281, 23-47.	0.9	6
10	A Comprehensive Evolutionary Scenario of Cell Division and Associated Processes in the Firmicutes. Molecular Biology and Evolution, 2021, 38, 2396-2412.	8.9	4
11	A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes. Science, 2021, 372, 516-520.	12.6	40
12	SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system. Nature Communications, 2021, 12, 3214.	12.8	35
13	Comparative genomic analysis of <i>Methanimicrococcus blatticola</i> provides insights into host adaptation in archaea and the evolution of methanogenesis. ISME Communications, 2021, 1, .	4.2	17
14	Evolutionary relationships between Archaea and eukaryotes. Nature Ecology and Evolution, 2020, 4, 20-21.	7.8	11
15	Autotransporters Drive Biofilm Formation and Autoaggregation in the Diderm Firmicute Veillonella parvula. Journal of Bacteriology, 2020, 202, .	2.2	22
16	Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nature Ecology and Evolution, 2020, 4, 1661-1672.	7.8	52
17	The host-associated archaeome. Nature Reviews Microbiology, 2020, 18, 622-636.	28.6	122
18	Histone variants in archaea and the evolution of combinatorial chromatin complexity. Proceedings of the United States of America, 2020, 117, 33384-33395.	7.1	34

#	Article	IF	CITATIONS
19	Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994.	13.3	115
20	The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. BMC Biology, 2020, 18, 69.	3.8	54
21	One or two membranes? Diderm Firmicutes challenge the Gramâ€positive/Gramâ€negative divide. Molecular Microbiology, 2020, 113, 659-671.	2.5	71
22	A dynamic, ring-forming MucB / RseB-like protein influences spore shape in Bacillus subtilis. PLoS Genetics, 2020, 16, e1009246.	3.5	5
23	The SUF system: an ABC ATPase-dependent protein complex with a role in Fe–S cluster biogenesis. Research in Microbiology, 2019, 170, 426-434.	2.1	49
24	An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy. Nature Microbiology, 2019, 4, 2155-2163.	13.3	51
25	Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nature Microbiology, 2019, 4, 603-613.	13.3	187
26	Evolutionary placement of Methanonatronarchaeia. Nature Microbiology, 2019, 4, 558-559.	13.3	24
27	Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1166-E1173.	7.1	160
28	The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME Journal, 2017, 11, 2407-2425.	9.8	320
29	Outer Membrane Proteome of Veillonella parvula: A Diderm Firmicute of the Human Microbiome. Frontiers in Microbiology, 2017, 8, 1215.	3.5	55
30	Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus. PLoS ONE, 2016, 11, e0151449.	2.5	23
31	The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. Journal of Cell Science, 2016, 129, 3695-3703.	2.0	77
32	Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evolutionary Biology, 2016, 16, 252.	3.2	43
33	Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association. Genome Biology and Evolution, 2016, 8, 1706-1711.	2.5	167
34	Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. ELife, 2016, 5, .	6.0	69
35	S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence. Frontiers in Microbiology, 2015, 6, 543.	3.5	31
36	The two-domain tree of life is linked to a new root for the Archaea. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6670-6675.	7.1	234

#	Article	IF	CITATIONS
37	Special section on Molecular biology of Archaea. Biochimie, 2015, 118, 253.	2.6	1
38	Toward More Accurate Ancestral Protein Genotype–Phenotype Reconstructions with the Use of Species Tree-Aware Gene Trees. Molecular Biology and Evolution, 2015, 32, 13-22.	8.9	43
39	Paenibacillus faecis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4621-4626.	1.7	25
40	The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies. PLoS ONE, 2015, 10, e0133676.	2.5	25
41	Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette. Archaea, 2014, 2014, 1-11.	2.3	58
42	Global Phylogenomic Analysis Disentangles the Complex Evolutionary History of DNA Replication in Archaea. Genome Biology and Evolution, 2014, 6, 192-212.	2.5	68
43	Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nature Communications, 2014, 5, 5497.	12.8	119
44	Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires' disease. Genome Biology, 2014, 15, 505.	8.8	82
45	The <scp>TET2</scp> and <scp>TET3</scp> aminopeptidases from <scp><i>P</i></scp> <i>yrococcus horikoshii</i> form a heteroâ€subunit peptidasome with enhanced peptide destruction properties. Molecular Microbiology, 2014, 94, 803-814.	2.5	8
46	Deciphering the role of the chitin synthase families 1 and 2 in the <i>in vivo</i> and <i>in vitro</i> growth of <i>Aspergillus fumigatus</i> by multiple gene targeting deletion. Cellular Microbiology, 2014, 16, 1784-1805.	2.1	90
47	Eukaryotic Origins: How and When Was the Mitochondrion Acquired?. Cold Spring Harbor Perspectives in Biology, 2014, 6, a015990-a015990.	5.5	80
48	Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics, 2014, 15, 679.	2.8	246
49	Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires¿ disease. Genome Biology, 2014, 15, 505.	9.6	62
50	Genome Sequence of " <i>Candidatus</i> Methanomassiliicoccus intestinalis―Issoire-Mx1, a Third <i>Thermoplasmatales</i> -Related Methanogenic Archaeon from Human Feces. Genome Announcements, 2013, 1, .	0.8	85
51	Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis. Genome Biology and Evolution, 2013, 5, 1769-1780.	2.5	249
52	A Genomic Survey of Reb Homologs Suggests Widespread Occurrence of R-Bodies in Proteobacteria. G3: Genes, Genomes, Genetics, 2013, 3, 505-516.	1.8	20
53	Genome Sequence of "Candidatus Methanomethylophilus alvus―Mx1201, a Methanogenic Archaeon from the Human Gut Belonging to a Seventh Order of Methanogens. Journal of Bacteriology, 2012, 194, 6944-6945.	2.2	155
54	Time for order in microbial systematics. Trends in Microbiology, 2012, 20, 209-210.	7.7	27

#	Article	IF	CITATIONS
55	Phylogeny and evolution of the Archaea: one hundred genomes later. Current Opinion in Microbiology, 2011, 14, 274-281.	5.1	215
56	On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Research in Microbiology, 2011, 162, 53-70.	2.1	85
57	Editorial: Archaea and the Tree of Life. Research in Microbiology, 2011, 162, 1-4.	2.1	8
58	Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. Research in Microbiology, 2011, 162, 877-887.	2.1	51
59	A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea. Biochemical Society Transactions, 2011, 39, 82-88.	3.4	50
60	Diversity of virus–host systems in hypersaline Lake Retba, Senegal. Environmental Microbiology, 2011, 13, 1956-1972.	3.8	82
61	An rpoB signature sequence provides unique resolution for the molecular typing of cyanobacteria. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 170-183.	1.7	21
62	Large-Scale Phylogenomic Analyses Indicate a Deep Origin of Primary Plastids within Cyanobacteria. Molecular Biology and Evolution, 2011, 28, 3019-3032.	8.9	97
63	Phylogenetic and Functional Analysis of Aspergillus fumigatus MGTC, a Fungal Protein Homologous to a Bacterial Virulence Factor. Applied and Environmental Microbiology, 2011, 77, 4700-4703.	3.1	11
64	Crenarchaeal CdvA Forms Double-Helical Filaments Containing DNA and Interacts with ESCRT-III-Like CdvB. PLoS ONE, 2011, 6, e21921.	2.5	56
65	Bacteria with a eukaryotic touch: A glimpse of ancient evolution?. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12739-12740.	7.1	48
66	BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 2010, 10, 210.	3.2	1,153
67	Ribonucleotide reduction - horizontal transfer of a required function spans all three domains. BMC Evolutionary Biology, 2010, 10, 383.	3.2	61
68	The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse?. Nature Reviews Microbiology, 2010, 8, 743-752.	28.6	140
69	Geographic Structuring of the Plasmodium falciparum Sarco(endo)plasmic Reticulum Ca2+ ATPase (PfSERCA) Gene Diversity. PLoS ONE, 2010, 5, e9424.	2.5	35
70	The Evolutionary History of Archaeal MCM Helicases: A Case Study of Vertical Evolution Combined with Hitchhiking of Mobile Genetic Elements. Molecular Biology and Evolution, 2010, 27, 2716-2732.	8.9	65
71	Evidence for a Xer/dif System for Chromosome Resolution in Archaea. PLoS Genetics, 2010, 6, e1001166.	3.5	43
72	Phylogenomics of Sterol Synthesis: Insights into the Origin, Evolution, and Diversity of a Key Eukaryotic Feature. Genome Biology and Evolution, 2009, 1, 364-381.	2.5	229

#	Article	IF	CITATIONS
73	Evolution of the haem copper oxidases superfamily: a rooting tale. Trends in Biochemical Sciences, 2009, 34, 375-381.	7.5	47
74	The Evolution of Histidine Biosynthesis in Archaea: Insights into the his Genes Structure and Organization in LUCA. Journal of Molecular Evolution, 2009, 69, 512-526.	1.8	19
75	Happy together: genomic insights into the unique Nanoarchaeum/Ignicoccus association. Journal of Biology, 2009, 8, 7.	2.7	27
76	Phylogeny of prokaryotes: does it exist and why should we care?. Research in Microbiology, 2009, 160, 513-521.	2.1	60
77	A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biology Direct, 2009, 4, 7.	4.6	138
78	A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biology, 2009, 10, R65.	9.6	118
79	The Multiple Evolutionary Histories of Dioxygen Reductases: Implications for the Origin and Evolution of Aerobic Respiration. Molecular Biology and Evolution, 2009, 26, 285-297.	8.9	93
80	Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 2008, 6, 245-252.	28.6	1,043
81	Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics, 2008, 9, 274.	2.8	210
82	A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya. Biology Direct, 2008, 3, 54.	4.6	55
83	The origin of modern terrestrial life. HFSP Journal, 2007, 1, 156-168.	2.5	43
84	Origin and evolution of DNA topoisomerases. Biochimie, 2007, 89, 427-446.	2.6	298
85	Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure. BMC Evolutionary Biology, 2007, 7, 106.	3.2	47
86	The origin and evolution of Archaea: a state of the art. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1007-1022.	4.0	222
87	An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evolutionary Biology, 2005, 5, 36.	3.2	85
88	Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales?. Genome Biology, 2005, 6, R42.	9.6	136
89	Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biology, 2004, 5, R17.	9.6	104
90	Heterotachy and Functional Shift in Protein Evolution. IUBMB Life, 2003, 55, 257-265.	3.4	38

#	Article	IF	CITATIONS
91	The genome reduction hypothesis and the phylogeny of eukaryotes. Trends in Genetics, 2003, 19, 696-700.	6.7	14
92	Functional Divergence Prediction from Evolutionary Analysis: A Case Study of Vertebrate Hemoglobin. Molecular Biology and Evolution, 2003, 20, 1754-1759.	8.9	50
93	Identification, Purification, and Characterization of an Eukaryotic-like Phosphopantetheine Adenylyltransferase (Coenzyme A Biosynthetic Pathway) in the Hyperthermophilic Archaeon Pyrococcus abyssi. Journal of Biological Chemistry, 2003, 278, 31078-31087.	3.4	27
94	Ancient Phylogenetic Relationships. Theoretical Population Biology, 2002, 61, 391-408.	1.1	276
95	Updating Carbamoylphosphate Synthase (CPS) Phylogenies: Occurrence and Phylogenetic Identity of Archaeal CPS Genes. Journal of Molecular Evolution, 2002, 55, 153-160.	1.8	8
96	Phylogenetic Depth of the Bacterial Genera Aquifex and Thermotoga Inferred from Analysis of Ribosomal Protein, Elongation Factor, and RNA Polymerase Subunit Sequences. Journal of Molecular Evolution, 2000, 50, 366-380.	1.8	75
97	Discontinuous Occurrence of the <i>hsp70</i> (<i>dnaK</i>) Gene among <i>Archaea</i> and Sequence Features of HSP70 Suggest a Novel Outlook on Phylogenies Inferred from This Protein. Journal of Bacteriology, 1999, 181, 434-443.	2.2	97
98	The Root of the Universal Tree of Life Inferred from Anciently Duplicated Genes Encoding Components of the Protein-Targeting Machinery. Journal of Molecular Evolution, 1998, 47, 508-516.	1.8	96
99	Natural History of the Archaeal Domain. , 0, , 17-28.		3
100	Structure and Evolution of Genomes. , 0, , 411-433.		0
101	A Comprehensive Analysis of the Global Human Gut Archaeome from a Thousand Genome Catalogue. SSRN Electronic Journal, 0, , .	0.4	0