W J Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6062104/publications.pdf

Version: 2024-02-01

47006 53230 8,853 219 47 85 citations h-index g-index papers 231 231 231 4465 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling. Journal of Materials Science and Technology, 2022, 111, 152-166.	10.7	11
2	Microstructural and Texture Evolution in Pure Niobium during Severe Plastic Deformation by Differential Speed Rolling. Materials, 2022, 15, 752.	2.9	2
3	The hot compressive deformation behavior of cast Mg-Gd-Y-Zn-Zr alloys with and without LPSO phase in their initial microstructures. Journal of Magnesium and Alloys, 2022, 10, 2901-2917.	11.9	23
4	Critical review of superplastic magnesium alloys with emphasis on tensile elongation behavior and deformation mechanisms. Journal of Magnesium and Alloys, 2022, 10, 1133-1153.	11.9	24
5	Class I type creep behavior of coarse-grained Al0.5CoCrFeMnNi high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143239.	5.6	1
6	Low-cycle fatigue behavior and deformation mechanisms of a dual-phase Al0.5CoCrFeMnNi high-entropy alloy. International Journal of Fatigue, 2022, 163, 107075.	5.7	19
7	Enhancement of compressive strength and strain ductility of SMA fiber reinforced concrete considering fiber's aspect ratios. Construction and Building Materials, 2022, 345, 128346.	7.2	5
8	Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment. Journal of Materials Science and Technology, 2021, 71, 228-240.	10.7	37
9	Prestressing effect of embedded Fe-based SMA wire on the flexural behavior of mortar beams. Engineering Structures, 2021, 227, 111472.	5.3	18
10	Additive manufacturing of a porous titanium layer structure Ti on a Co–Cr alloy for manufacturing cementless implants. Journal of Materials Research and Technology, 2021, 10, 250-267.	5.8	13
11	Hot deformation behavior and processing map of a Sn0.5CoCrFeMnNi high entropy alloy with dual phases. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140394.	5.6	30
12	Uniaxial compressive cyclic behavior of mortar reinforced with crimped or dog-bone-shaped SMA fibers. Composite Structures, 2021, 262, 113600.	5.8	9
13	Austenite grain size effect on recovery stress and recovery strain of Fe-Mn-Si-Cr-Ni-0.01C alloy severely plastically deformed by differential speed rolling. Materials Characterization, 2021, 175, 111097.	4.4	11
14	Processing maps (with flow instability criterion based on power-law breakdown) integrated into finite element simulations for evaluating the hot workability of 7075 aluminum alloy. Materials Today Communications, 2021, 27, 102254.	1.9	2
15	Effect of microalloying by Ca on the microstructure and mechanical properties of as-cast and wrought Mg–Mg2Si composites. Materials Science & Droperties, Microstructure and Processing, 2021, 820, 141574.	5.6	26
16	Calculation and construction of deformation mechanism maps and processing maps for CoCrFeMnNi and Al0.5CoCrFeMnNi high-entropy alloys. Journal of Alloys and Compounds, 2021, 869, 159256.	5.5	17
17	Dynamic recrystallization and hot deformation mechanisms of a eutectic Al0.7CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 2021, 871, 159488.	5.5	41
18	Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy. Journal of Materials Science and Technology, 2020, 42, 190-202.	10.7	16

#	Article	IF	CITATIONS
19	Successful transition from low-temperature superplasticity to high-strain-rate superplasticity with increasing temperature in anÂultrafine-grained Mg–Y–Zn—Zr alloy. Journal of Alloys and Compounds, 2020, 817, 153298.	5.5	13
20	The effect of addition of Sn to copper on hot compressive deformation mechanisms, microstructural evolution and processing maps. Journal of Materials Research and Technology, 2020, 9, 749-761.	5.8	33
21	Examination of high-temperature mechanisms and behavior under compression and processing maps of pure copper. Journal of Materials Research and Technology, 2020, 9, 960-968.	5.8	9
22	Achievement of nearly fully amorphous structure from NiTi alloys via differential speed rolling at 268ÅK and effect of annealing on superelasticity. Materials Characterization, 2020, 169, 110584.	4.4	11
23	Strain hardening behavior and strengthening mechanism in Mg-rich Al–Mg binary alloys subjected to aging treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 794, 139862.	5.6	16
24	Microstructure and tensile properties of magnesium nanocomposites fabricated using magnesium chips and carbon black. Journal of Magnesium and Alloys, 2020, 8, 860-872.	11.9	16
25	Construction of processing maps combined with deformation mechanism maps using creep deformation equations. Journal of Materials Research and Technology, 2020, 9, 13434-13449.	5.8	16
26	Operation of solute-drag creep in an AlCoCrFeMnNi high-entropy alloy and enhanced hot workability. Journal of Alloys and Compounds, 2020, 824, 153829.	5.5	19
27	High-strain-rate solute drag creep in a Cu- 22% Sn alloy (Cu 17 Sn 3) with near peritectic composition. Materials Characterization, 2020, 164 , 110325 .	4.4	8
28	Easy construction of processing maps for metallic alloys using a flow instability criterion based on power-law breakdown. Journal of Materials Research and Technology, 2020, 9, 5134-5143.	5.8	9
29	Mechanical properties and Hall-Petch relationship of the extruded Mg-Zn-Y alloys with different volume fractions of icosahedral phase. Journal of Alloys and Compounds, 2019, 770, 589-599.	5.5	52
30	Design of Mg-6wt%Al alloy with high toughness and corrosion resistance prepared by mechanical alloying and spark plasma sintering. Materials Characterization, 2019, 158, 109995.	4.4	5
31	The effect of Al to high-temperature deformation mechanisms and processing maps of Al0.5CoCrFeMnNi high entropy alloy. Journal of Alloys and Compounds, 2019, 802, 152-165.	5.5	42
32	Effect of I(Mg3YZn6)-, W(Mg3Y2Zn3)- and LPSO(Mg12ZnY)-phases on tensile work-hardening and fracture behaviors of rolled Mg–Y–Zn alloys. Journal of Materials Research and Technology, 2019, 8, 2316-2325.	5.8	20
33	High-temperature deformation mechanisms and processing maps of equiatomic CoCrFeMnNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 528-537.	5.6	79
34	Fabrication of a thin open-cell Ni foam sheet with a high specific strength and moderate porosity using severe plastic deformation via differential speed rolling. Materials Science & mp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 750, 7-13.	5.6	4
35	Effects of large amounts of Mg (5–13†wt%) on hot compressive deformation behavior and processing maps of Al-Mg alloys. Journal of Alloys and Compounds, 2019, 788, 1282-1299.	5.5	38
36	Comparison of Hot Deformation Behavior Characteristics Between As-Cast and Extruded Al-Zn-Mg-Cu (7075) Aluminum Alloys with a Similar Grain Size. Materials, 2019, 12, 3807.	2.9	21

#	Article	IF	CITATIONS
37	Effect of refinement of grains and icosahedral phase on hot compressive deformation and processing maps of Mg-Zn-Y magnesium alloys with different volume fractions of icosahedral phase. Journal of Materials Science and Technology, 2019, 35, 181-191.	10.7	27
38	Pronounced yield drop phenomenon at high temperatures in Al-Mg alloys with high contents of Mg (5â€"13â€"wt%). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 590-596.	5.6	17
39	Significant strengthening in superlight Al-Mg alloy with an exceptionally large amount of Mg (13†wt%) after cold rolling. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 36-44.	5.6	52
40	Pullout behavior of superelastic SMA fibers with various end-shapes embedded in cement mortar. Construction and Building Materials, 2018, 167, 605-616.	7.2	28
41	Effect of Post-annealing and Strong Deformation Process on the Mechanical and Corrosion Properties of a Mg-Mn alloy for Biomedical Application. Journal of the Korean Physical Society, 2018, 72, 692-698.	0.7	12
42	Microstructures and mechanical properties of the non-equiatomic FeMnNiCoCr high entropy alloy processed by differential speed rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 38-42.	5.6	29
43	Warm Temperature Deformation Behavior and Processing Maps of 5182 and 7075 Aluminum Alloy Sheets with Fine Grains. Metals and Materials International, 2018, 24, 455-463.	3.4	15
44	Characterization of the microstructures and the shape memory properties of the Fe-Mn-Si-Cr-Ni-C shape memory alloy after severe plastic deformation by differential speed rolling and subsequent annealing. Materials Characterization, 2018, 136, 12-19.	4.4	27
45	Microstructural Evolution and Electrochemical Properties of HRDSR AZ61- $\langle i \rangle X \langle i \rangle$ ($\langle i \rangle X \langle i \rangle$ = Ca, Ti) Alloys. Journal of Nanoscience and Nanotechnology, 2018, 18, 6081-6089.	0.9	4
46	Shape memory and superelasticity of nanograined Ti-51.2†at.% Ni alloy processed by severe plastic deformation via high-ratio differential speed rolling. Materials Characterization, 2018, 145, 284-293.	4.4	16
47	Investigation of MRS and SMA Dampers Effects on Bridge Seismic Resistance Employing Analytical Models. International Journal of Steel Structures, 2018, 18, 1325-1335.	1.3	6
48	A Springback Prediction Model for Warm Forming of Aluminum Alloy Sheets Using Tangential Stresses on a Cross-Section of Sheet. Metals, 2018, 8, 257.	2.3	4
49	Characteristics and interrelation of recovery stress and recovery strain of an ultrafine-grained Ni-50.2Ti alloy processed by high-ratio differential speed rolling. Smart Materials and Structures, 2017, 26, 035005.	3.5	2
50	Constitutive modeling and understanding of the hot compressive deformation of Mg–9.5Zn–2.0Y magnesium alloy with reduced number of strain-dependent constitutive parameters. Metals and Materials International, 2017, 23, 660-672.	3.4	13
51	The effect of volume fraction and dispersion of icosahedral phase particles on the strength and work hardening of Mg-Zn-Y alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 284-291.	5.6	20
52	Effect of the volume fraction of the icosahedral phase on the microstructures, hot compressive behaviors and processing maps of Mg-Zn-Y alloys. Journal of Alloys and Compounds, 2017, 725, 711-723.	5.5	18
53	Superplastic behavior of an ultrafine-grained Mg-13Zn-1.55Y alloy with a high volume fraction of icosahedral phases prepared by high-ratio differential speed rolling. Journal of Materials Science and Technology, 2017, 33, 919-925.	10.7	23
54	Achieving ultrafine grained Fe-Mn-Si shape memory alloys with enhanced shape memory recovery stresses. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 285-288.	5.6	19

#	Article	IF	CITATIONS
55	Enhanced Hot Workability and Post-Hot Deformation Microstructure of the As-Cast Al-Zn-Cu-Mg Alloy Fabricated by Use of a High-Frequency Electromagnetic Casting with Electromagnetic Stirring. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3523-3539.	2.2	11
56	The improvement of corrosion resistance of AZ91 magnesium alloy through development of dense and tight network structure of Al-rich $\hat{l}\pm$ phase by addition of a trace amount of Ti. Journal of Alloys and Compounds, 2017, 696, 736-745.	5.5	32
57	Estimation of Fracture Toughness of Metallic Materials Using Instrumented Indentation: Critical Indentation Stress and Strain Model. Experimental Mechanics, 2017, 57, 1013-1025.	2.0	21
58	Accelerated Formation of an Ultrafine-Grained Microstructure in Closed-Cell Aluminum Foam after Extrusion and Differential Speed Rolling. Materials Transactions, 2017, 58, 291-293.	1.2	4
59	Enhancement of recovery stresses of the Ni-50.2Ti alloy by severe plastic deformation using a high-ratio differential speed rolling technique. Scripta Materialia, 2016, 124, 95-98.	5.2	13
60	The effect of 0.5Âwt.% Ca addition on the hot compressive characteristics and processing maps of the cast and extruded Mg–3Al–1Zn alloys. Journal of Alloys and Compounds, 2016, 658, 157-169.	5.5	23
61	Microstructure and superplasticity of the as-cast Mg–9Al–1Zn magnesium alloy after high-ratio differential speed rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 332-339.	5.6	30
62	Prestressing effect of cold-drawn short NiTi SMA fibres in steel reinforced mortar beams. Smart Materials and Structures, 2016, 25, 085041.	3.5	28
63	Difference in the Hot Compressive Behavior and Processing Maps between the As-cast and Homogenized Al-Zn-Mg-Cu (7075) Alloys. Journal of Materials Science and Technology, 2016, 32, 660-670.	10.7	95
64	Development of the highly corrosion resistant AZ31 magnesium alloy by the addition of a trace amount of Ti. Journal of Alloys and Compounds, 2016, 664, 25-37.	5. 5	26
65	Biomechanics of Posterior Instrumentation for Spinal Arthrodesis. , 2016, , 437-467.		4
66	Pedicle Screw Fixation in Thoracic or Thoracolumbar Burst Fractures., 2016,, 405-427.		4
67	Effect of Ca and CaO on the microstructure and hot compressive deformation behavior of Mg–9.5Zn–2.0Y alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 146-156.	5.6	18
68	Stress corrosion cracking of high-strength AZ31 processed by high-ratio differential speed rolling. Journal of Magnesium and Alloys, 2015, 3, 271-282.	11.9	22
69	Flame-resistant Ca-containing AZ31 magnesium alloy sheets with good mechanical properties fabricated by a combination of strip casting and high-ratio differential speed rolling methods. Metals and Materials International, 2015, 21, 374-381.	3.4	16
70	Hot compression behavior of the ignition-resistant Mg–5Y–2.5Zn–1.2Ca alloy with long-period stacking ordered structures. Journal of Alloys and Compounds, 2015, 632, 417-428.	5.5	15
71	Mg-Ca binary alloy sheets with Ca contents of â‰⊈ wt.% with high corrosion resistance and high toughness. Corrosion Science, 2015, 98, 372-381.	6.6	32
72	Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 291-301.	3.1	32

#	Article	IF	CITATIONS
73	Low temperature superplasticity of ultrafine grained Mg–9.25Zn–1.66Y alloy with an icosahedral quasicrystalline phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 643, 47-50.	5. 6	12
74	Refinement of the icosahedral quasicrystalline phase and the grain size of Mg–9.25Zn–1.66Y alloy by high-ratio differential speed rolling. Scripta Materialia, 2015, 103, 49-52.	5.2	29
75	Hot compression characteristics and processing maps of a cast Mg–9.5Zn–2.0Y alloy with icosahedral quasicrystalline phase. Journal of Alloys and Compounds, 2015, 644, 645-653.	5.5	31
76	Development of biodegradable Mg–Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg2Ca phase by high-ratio differential speed rolling. Acta Biomaterialia, 2015, 11, 531-542.	8.3	124
77	Corrosion behavior of magnesium powder fabricated by high-energy ball milling and spark plasma sintering. Metals and Materials International, 2014, 20, 1095-1101.	3.4	16
78	The significant effect of adding trace amounts of Ti on the high-temperature deformation behavior of fine-grained Mg–6Al–1Zn magnesium alloys. Journal of Alloys and Compounds, 2014, 617, 352-358.	5 . 5	17
79	Hot compression behavior of the 1 wt% calcium containing Mg–8Al–0.5Zn (AZ80) alloy fabricated using electromagnetic casting technology. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 615, 222-230.	5.6	18
80	Ductility enhancement through texture control and strength restoration through subsequent age-hardening in Mg–Zn–Zr alloys. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 157-163.	5. 6	15
81	Two different types of deformation behaviors in ultrafine grained Mg alloys at high temperatures and development of the generalized constitutive equation for describing their deformation behavior. Materials Science & Drocessing, 2014, 613, 264-273.	5. 6	5
82	Verification on the extreme scalability of STT-MRAM without loss of thermal stability below 15 nm MTJ cell., 2014,,.		18
83	Significant effects of adding trace amounts of Ti on the microstructure and corrosion properties of Mg–6Al–1Zn magnesium alloy. Journal of Alloys and Compounds, 2014, 614, 49-55.	5.5	40
84	Annealing effects on the corrosion resistance of ultrafine-grained pure titanium. Corrosion Science, 2014, 89, 331-337.	6.6	80
85	High-temperature deformation behavior of carbon nanotube (CNT)-reinforced aluminum composites and prediction of their high-temperature strength. Composites Part A: Applied Science and Manufacturing, 2014, 67, 308-315.	7.6	47
86	The effect of the addition of multiwalled carbon nanotubes on the uniform distribution of TiC nanoparticles in aluminum nanocomposites. Scripta Materialia, 2014, 72-73, 25-28.	5.2	67
87	Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion. Corrosion Science, 2014, 82, 392-403.	6.6	199
88	Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon, 2014, 69, 55-65.	10.3	313
89	Fabrication of ultrafine-grained Mg–3Al–1Zn magnesium alloy sheets using a continuous high-ratio differential speed rolling technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 594, 189-192.	5.6	32
90	Microstructure and Strengthening Mechanisms of Carbon Nanotube Reinforced Magnesium Matrix Composites Fabricated by Accumulative Roll Bonding. Journal of Korean Institute of Metals and Materials, 2014, 52, 561-572.	1.0	10

#	Article	IF	Citations
91	A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites. Carbon, 2013, 61, 487-500.	10.3	110
92	Importance of diffusional creep in fine grained Mg–3Al–1Zn alloys. Materials Science & Camp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 133-141.	5.6	12
93	Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes. Scripta Materialia, 2013, 68, 711-714.	5.2	160
94	Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containing very fine particles of Mg17Al12 phase. Corrosion Science, 2013, 75, 228-238.	6.6	102
95	Strength enhancement by shear-flow assisted dispersion of carbon nanotubes in aluminum matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 570, 102-105.	5.6	16
96	Enhanced corrosion resistance of high strength Mg–3Al–1Zn alloy sheets with ultrafine grains in a phosphate-buffered saline solution. Corrosion Science, 2013, 74, 139-148.	6.6	50
97	Dispersion of TiC particles in an in situ aluminum matrix composite by shear plastic flow during high-ratio differential speed rolling. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 325-332.	5.6	22
98	Enhanced superplasticity and diffusional creep in ultrafine-grained Mg–6Al–1Zn alloy with high thermal stability. Scripta Materialia, 2013, 68, 179-182.	5.2	26
99	Enhancement of the strain hardening ability in ultrafine grained Mg alloys with high strength. Scripta Materialia, 2012, 67, 689-692.	5.2	53
100	Formation of a nanocomposite-like microstructure in Mg–6Al–1Zn alloy. Scripta Materialia, 2012, 66, 590-593.	5.2	30
101	Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube-containing aluminum powders. Scripta Materialia, 2012, 67, 129-132.	5.2	47
102	Ultrafine-grained Mg–Zn–Zr alloy with high strength and high-strain-rate superplasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 374-385.	5.6	56
103	Molecular imprinting into organogel nanofibers. Soft Matter, 2011, 7, 4160.	2.7	13
104	Effect of speed-ratio on microstructure, and mechanical properties of Mg–3Al–1Zn alloy, in differential speed rolling. Journal of Alloys and Compounds, 2011, 509, 8510-8517.	5.5	65
105	Thickness Reduction Effect in Obtaining Ultrafine-Grained Microstructure from Oxygen-Free Copper Using High-Ratio Differential Speed Rolling. Journal of Nanoscience and Nanotechnology, 2011, 11, 1472-1475.	0.9	1
106	Ultrafine grained titanium sheets with high strength and high corrosion resistance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8479-8485.	5.6	95
107	Effect of the speed ratio on grain refinement and texture development in pure Ti during differential speed rolling. Scripta Materialia, 2011, 64, 49-52.	5.2	64
108	Exceptionally high strength in Mg–3Al–1Zn alloy processed by high-ratio differential speed rolling. Scripta Materialia, 2011, 65, 1105-1108.	5.2	62

#	Article	IF	CITATIONS
109	High-strength Mg–Al–Ca alloy with ultrafine grain size sensitive to strain rate. Materials Science & Samp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2062-2066.	5.6	28
110	Texture and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloy sheets prepared by high-ratio differential speed rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 874-879.	5 . 6	51
111	Fabrication and Evaluation of Nanostructure Al-SiC _p Composite by Accumulative Roll-Bonding. Journal of Nanoscience and Nanotechnology, 2011, 11, 7451-7455.	0.9	O
112	OS19-3-1 Benefits of having ultrafine grains in Mg alloys. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2011, 2011.10, _OS19-3-1	0.0	0
113	Factors influencing tensile ductility of ultrafine-grained Mg–3Al–1Zn alloy sheet at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5984-5989.	5.6	6
114	Hot-air forming of Al-Mg-Cr alloy and prediction of failure based on Zener-Holloman parameter. Metals and Materials International, 2010, 16, 895-903.	3.4	8
115	A strategy for creating ultrafine-grained microstructure in magnesium alloy sheets. Materials Letters, 2010, 64, 647-649.	2.6	14
116	Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature. Scripta Materialia, 2010, 62, 451-454.	5.2	109
117	Synthesis of high-strain-rate superplastic magnesium alloy sheets using a high-ratio differential speed rolling technique. Scripta Materialia, 2010, 63, 772-775.	5.2	35
118	Failure prediction of magnesium alloy sheets deforming at warm temperatures using the Zener-Holloman parameter. Mechanics of Materials, 2010, 42, 293-303.	3.2	24
119	Continuous Casting of Magnesium Alloy Billet Using Electromagnetic Techniques. Materials Science Forum, 2010, 654-656, 787-790.	0.3	0
120	Enhanced superplasticity of $1\ \text{wt.}\%\text{Ca-AZ80}\ \text{Mg}$ alloy with ultrafine grains. Materials Letters, 2010, 64, 1759-1762.	2.6	9
121	Grain size and texture control of Mg–3Al–1Zn alloy sheet using a combination of equal-channel angular rolling and high-speed-ratio differential speed-rolling processes. Scripta Materialia, 2009, 60, 897-900.	5.2	64
122	Enhanced ductility and deformation mechanisms of ultrafine-grained Al–Mg–Si alloy in sheet form at warm temperatures. Scripta Materialia, 2009, 61, 125-128.	5.2	15
123	Explanation for deviations from the Hall–Petch Relation based on the creep behavior of an ultrafine-grained Mg–Li alloy with low diffusivity. Scripta Materialia, 2009, 61, 652-655.	5.2	19
124	Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging. Scripta Materialia, 2009, 61, 1040-1043.	5.2	155
125	Achieving Low Temperature Superplasticity from Ca ontaining Magnesium Alloy Sheets. Advanced Engineering Materials, 2009, 11, 525-529.	3.5	14
126	Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 527, 322-327.	5 . 6	60

#	Article	IF	Citations
127	Microstructures and mechanical properties of Mg–Al–Zn–Ca alloys fabricated by high frequency electromagnetic casting method. Journal of Materials Science, 2009, 44, 47-54.	3.7	47
128	Preparation of smectic layered polymer networks using dide chain liquid crystalline polymers having latent reactive monomeric units. Macromolecular Research, 2009, 17, 84-90.	2.4	3
129	Mechanical properties and microstructure of ultra fine-grained copper prepared by a high-speed-ratio differential speed rolling. Materials Science & Differential Structural Materials: Properties, Microstructure and Processing, 2009, 506, 71-79.	5.6	67
130	Synthesis of ultra high strength Alâ€"Mgâ€"Si alloy sheets by differential speed rolling. Materials Science & Science & Properties, Microstructure and Processing, 2009, 520, 23-28.	5.6	35
131	Ultrafine-grained Mg–9Li–1Zn alloy sheets exhibiting low temperature superplasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 516, 17-22.	5.6	64
132	Forging of Mg–3Al–1Zn–1Ca alloy prepared by high-frequency electromagnetic casting. Materials & Design, 2009, 30, 4120-4125.	5.1	16
133	Microstructure and superplasticity of AZ31 sheet fabricated by differential speed rolling. Journal of Alloys and Compounds, 2009, 483, 279-282.	5.5	25
134	Micro-forming of Zr65Al10Ni10Cu15 metallic glasses under superplastic condition. Journal of Alloys and Compounds, 2009, 483, 283-285.	5.5	8
135	Retardation of grain growth in Mg–3Al–1Zn alloy processed by strip-casting method. Journal of Alloys and Compounds, 2009, 482, 106-109.	5.5	13
136	Temperature and strain rate effect incorporated failure criteria for sheet forming of magnesium alloys. Materials Science & Degraphic Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 468-474.	5.6	38
137	Microstructure and superplasticity of Mg–Al–Ca electromagnetic casting alloys after hot extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 494, 391-396.	5.6	30
138	Plastic forming of the equal-channel angular pressing processed 6061 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 360-368.	5.6	45
139	On Coble creep in Mg–9Al–1Zn alloy with ultrafine-grained microstructure. Scripta Materialia, 2008, 58, 659-662.	5.2	10
140	Embedding Nanofibers in a Polymer Matrix by Polymerization of Organogels Comprising Heterobifunctional Organogelators and Monomeric Solvents. Chemistry of Materials, 2008, 20, 5532-5540.	6.7	26
141	Effect of post equal-channel-angular-pressing aging on the modified 7075 Al alloy containing Sc. Journal of Alloys and Compounds, 2008, 450, 222-228.	5.5	61
142	Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy. Journal of Alloys and Compounds, 2008, 460, 289-293.	5.5	110
143	Superplasticity and superplastic forming of Mg–Al–Zn alloy sheets fabricated by strip casting method. Journal of Alloys and Compounds, 2008, 464, 197-204.	5.5	24
144	Experimental Study of Thermally Activated Magnetization Reversal With a Spin-Transfer Torque in a Nanowire. IEEE Transactions on Magnetics, 2008, 44, 2531-2534.	2.1	0

#	Article	IF	CITATIONS
145	Electrical conduction of polyimide films prepared from polyamic acid (PAA) and pre-imidized polyimide (PI) solution. E-Polymers, 2008, 8, .	3.0	4
146	The Influence of Rolling Parameters on Microstructure and Mechanical Properties of the As-Rolled AZ31 Magnesium Alloy Sheet. Materials Science Forum, 2007, 539-543, 1675-1678.	0.3	0
147	Effect of Post-ECAP Aging on Mechanical Properties of Age-Hardenable Aluminum Alloys. Solid State Phenomena, 2007, 124-126, 1437-1440.	0.3	3
148	Annealing Effects on Mechanical Properties and Microstructure of AZ31 Alloy Sheet Differential-Speed-Rolled at Low Temperatures. Materials Science Forum, 2007, 558-559, 213-216.	0.3	2
149	Temperature Dependent Microstructure and Mechanical Behavior in AZ31 Alloy Processed by an Asymmetric Rolling. Advanced Materials Research, 2007, 26-28, 373-376.	0.3	0
150	Correlation between crystallization and strain hardening during homogeneous deformation of Cu54Ni6Zr22Ti18 bulk metallic glass. Intermetallics, 2007, 15, 282-287.	3.9	14
151	Effect of ac on current-induced domain wall motion. Journal of Applied Physics, 2007, 101, 09A504.	2.5	1
152	Finite element analysis of severe deformation in Mg–3Al–1Zn sheets through differential-speed rolling with a high speed ratio. Materials Science & Droperties, Microstructure and Processing, 2007, 454-455, 570-574.	5.6	83
153	Microstructure of the post-ECAP aging processed 6061 Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 464, 23-27.	5 . 6	83
154	Vortex dynamics in submicron exchangeâ€biased disks. Physica Status Solidi (B): Basic Research, 2007, 244, 4491-4494.	1.5	2
155	Effect of aspect ratio of nanostrip on transformation of transverse domain wall due to adiabatic spin torque. Physica Status Solidi (B): Basic Research, 2007, 244, 4460-4463.	1.5	1
156	Domain wall pinning by alternating materials in currentâ€induced domain wall motion. Physica Status Solidi (B): Basic Research, 2007, 244, 4439-4442.	1.5	2
157	Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling. Scripta Materialia, 2007, 56, 309-312.	5.2	213
158	Realization of low-temperature superplasticity in Mg–Al–Zn alloy sheets processed by differential speed rolling. Scripta Materialia, 2007, 57, 755-758.	5. 2	62
159	Creep behavior of AZ31 magnesium alloy in low temperature range between 423ÂK and 473ÂK. Journal of Materials Science, 2007, 42, 6171-6176.	3.7	42
160	Development of Aluminum Suspension by Hot Air Forming Process. , 2006, , .		0
161	The Effect of Differential Speed Rolling on Microstructure and Mechanical Properties of an AZ31 Alloy Sheet. Solid State Phenomena, 2006, 116-117, 235-238.	0.3	2
162	High-strain-rate superplasticity of Zr65Al10Ni10Cu15 sheet fabricated by squeeze casting method. Intermetallics, 2006, 14, 377-381.	3.9	12

#	Article	IF	CITATIONS
163	Superplastic deformation and crystallization behavior of Cu54Ni6Zr22Ti18 metallic-glass sheet. Intermetallics, 2006, 14, 1391-1396.	3.9	20
164	Analysis of deformation behavior in 3D during equal channel angular extrusion. Journal of Materials Processing Technology, 2006, 176, 260-267.	6.3	16
165	Superplastic gas pressure forming of Zr65Al10Ni10Cu15 metallic glass sheets fabricated by squeeze mold casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 428, 205-210.	5.6	21
166	Effect of the Angle-Dependent Gilbert Damping Constant on the Magnetization Dynamics Induced by a Spin Polarized Current. IEEE Transactions on Magnetics, 2006, 42, 3207-3209.	2.1	3
167	Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears. Scripta Materialia, 2006, 54, 1391-1395.	5.2	117
168	Micromagnetic study on the threshold current density for continuous domain wall motion. , 2006, , .		0
169	Grain-Size Strengthening in Equal-Channel-Angular-Pressing Processed AZ31 Mg Alloys with a Constant Texture. Materials Transactions, 2005, 46, 251-258.	1.2	102
170	Computational analysis of effect of route on strain uniformity in equal channel angular extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 412, 287-297.	5.6	31
171	Analysis of strain uniformity during multi-pressing in equal channel angular extrusion. Scripta Materialia, 2005, 53, 293-298.	5.2	21
172	Large enhancement in mechanical properties of the 6061 Al alloys after a single pressing by ECAP. Scripta Materialia, 2005, 53, 1207-1211.	5.2	111
173	Blanking of Bulk Amorphous Alloy Sheets Fabricated by a Squeeze Casting Method under Hydraulics Pressure. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 85-88.	0.1	0
174	Grain Refinement and Texture Evolution in AZ31 Alloy during ECAP Process and Their Effects on Mechanical Properties. Materials Science Forum, 2005, 475-479, 549-554.	0.3	5
175	Mechanical Properties and Texture Evolution of AZ31 Mg Alloy during Equal Channel Angular Pressing. Materials Science Forum, 2005, 475-479, 545-548.	0.3	4
176	Hardening by Crystallization During Superplastic Flow in a Powder-metallurgy-processed Zr65Al10Ni10Cu15 Glass Metallic Alloy. Journal of Materials Research, 2005, 20, 1447-1455.	2.6	3
177	Crystallization during Superplastic Deformation in a Zr ₆₅ Al ₁₀ Ni ₁₀ Cu ₁₅ Glass Metallic Alloy. Materials Science Forum, 2005, 475-479, 2981-2986.	0.3	0
178	The effect of die geometry on the double shear extrusion by parametric FVM simulation. Scripta Materialia, 2004, 51, 1117-1122.	5.2	17
179	Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 372, 15-20.	5.6	36
180	Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2004, 385, 300-308.	5.6	191

#	Article	IF	Citations
181	Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation. Materials Science & Department of the American Science & Department of the Az31 Mg alloy after severe plastic deformation. Materials Science & Department of the Az31 Mg alloy after severe plastic deformation. Processing, 2004, 385, 300-308.	5.6	40
182	Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging. Scripta Materialia, 2003, 49, 333-338.	5.2	227
183	Superplastic flow in a Zr65Al10Ni10Cu15 metallic glass crystallized during deformation in a supercooled liquid region. Scripta Materialia, 2003, 49, 1067-1073.	5.2	77
184	Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia, 2003, 51, 3293-3307.	7.9	508
185	Mechanical Properties and Texture Evolution in ECAP Processed AZ61 Mg Alloys. Materials Science Forum, 2003, 419-422, 201-206.	0.3	16
186	Superplastic Deformation Behavior in the Commercial AZ61 Mg Alloy during Biaxial Gas-Pressure Forming. Materials Science Forum, 2003, 419-422, 539-544.	0.3	2
187	Mechanical Property - Microstructure Relations in Iron-Carbon Alloys from $1.0\mathrm{to}~5.2\%$ Carbon. Materials Science Forum, 2003, 426-432, $11\text{-}18$.	0.3	5
188	High-strain-rate Superplastic Flow in 6061 Al Composite Enhanced by Liquid Phase. Journal of Materials Research, 2002, 17, 65-74.	2.6	2
189	Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing. Scripta Materialia, 2002, 47, 39-44.	5.2	330
190	Superplastic behavior of PM SiCp/6061 aluminum alloy composites at high strain rates. Metals and Materials International, 2002, 8, 37-44.	3.4	4
191	Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 3155-3164.	2.2	162
192	Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing. Materials Science & Department of the American Science &	5.6	139
193	Analysis on the anelasticity of a superplastic Zn–22% Al eutectoid. Materials Science & Description of the Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 322, 159-166.	5.6	3
194	Large strain hardening in Ti–V carbon steel processed by equal channel angular pressing. Materials Letters, 2001, 51, 177-182.	2.6	17
195	Thoracic Pedicle Screw Fixation in Spinal Deformities. Spine, 2001, 26, 2049-2057.	2.0	441
196	Compressive behaviour capable of predicting hot tensile ductility behaviour in a O·1%C–Mn steel. Materials Science and Technology, 2001, 17, 409-414.	1.6	7
197	Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures. Acta Materialia, 2001, 49, 3337-3345.	7.9	297
198	Superplasticity in PM 6061 Al alloy and elimination of strengthening effect by reinforcement in superplastic PM aluminum composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 298, 166-173.	5.6	16

#	Article	IF	CITATIONS
199	Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 316, 145-152.	5.6	115
200	Superplasticity in a relatively coarse-grained AZ61 magnesium alloy. Journal of Materials Science Letters, 2001, 20, 1635-1637.	0.5	9
201	Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing. Scripta Materialia, 2001, 45, 901-907.	5.2	197
202	Interface structure and solute segregation behavior in SiC/2124 and SiC/6061 Al composites exhibiting high-strain-rate superplasticity. Journal of Materials Research, 2001, 16, 2429-2435.	2.6	8
203	High strain rate superplasticity in powder metallurgy aluminium alloy 6061 + 20 vol%SiC _p composite with relatively large particle size. Materials Science and Technology, 2000, 16, 675-680.	1.6	8
204	Variation of true strain-rate sensitivity exponent as a function of plastic strain in the PM processed superplastic 7475Al+0.7Zr alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2000, 277, 134-142.	5.6	14
205	Particle weakening in superplastic SiC/2124 Al composites at high temperature. Acta Materialia, 2000, 48, 1763-1774.	7.9	22
206	High-strain-rate superplastic deformation behavior of a powder metallurgy-processed 2124 Al alloy. Journal of Materials Science, 2000, 35, 2779-2784.	3.7	5
207	Title is missing!. Journal of Materials Science Letters, 2000, 19, 77-79.	0.5	2
208	Superplasticity in fine-grained AZ61 magnesium alloy. Metals and Materials International, 2000, 6, 255-259.	0.2	8
209	Superplastic deformation behavior of spray-deposited hyper-eutectic Al–25Si alloy. Journal of Alloys and Compounds, 2000, 308, 237-243.	5. 5	22
210	High strain rate superplastic behaviour of powder-metallurgy processed 7475Al+0.7Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 260, 170-177.	5.6	18
211	Deformation behavior of powder-metallurgy processed high-strain-rate superplastic 20%SiCp/2124 Al composite in a wide range of temperature. Materials Science & Defineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 269, 142-151.	5.6	23
212	The Effect of Grain Size on the Threshold Stress for Superplastic Flow in Aluminum Alloys. Materials Transactions, JIM, 1999, 40, 760-764.	0.9	7
213	Restoration of thoracic kyphosis in the hypokyphotic spine: a comparison between multiple-hook and segmental pedicle screw fixation in adolescent idiopathic scoliosis. Journal of Spinal Disorders, 1999, 12, 489-95.	1.1	34
214	Tensile ductility behaviour of fine-grained alumina at elevated temperature. Journal of Materials Science, 1998, 33, 1319-1324.	3.7	0
215	High strain rate superplasticity of an ultra-fine grained Al-Ti-Fe alloy. Scripta Materialia, 1998, 40, 223-228.	5.2	12
216	Superplastic behavior of a kappa carbide material (Fe ₃ AlC _{<i>x</i>}). Journal of Materials Research, 1997, 12, 2317-2324.	2.6	10

#	Article	IF	CITATIONS
217	Effects of Mg concentration on the quasi-superplasticity of coarse-grained Al-Mg alloys. Scripta Materialia, 1997, 37, 1351-1358.	5.2	54
218	Superplastic gas-pressure deformation of iron carbide sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 194, 69-76.	5.6	4
219	Superplastic Properties of Hipped and Extruded Iron Carbide. Materials Research Society Symposia Proceedings, 1990, 196, 359.	0.1	0