Hiroshi Inaba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6060706/publications.pdf

Version: 2024-02-01

567281 552781 38 701 15 26 citations h-index g-index papers 40 40 40 855 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural Changes of Microtubules by Encapsulation of Gold Nanoparticles Using a Tau-derived Peptide. Chemistry Letters, 2022, 51, 348-351.	1.3	7
2	Embedding a membrane protein into an enveloped artificial viral replica. RSC Chemical Biology, 2022, 3, 231-241.	4.1	6
3	Encapsulation of Nanomaterials Inside Microtubules by Using a Tau-Derived Peptide. Methods in Molecular Biology, 2022, 2430, 243-260.	0.9	3
4	Anticancer Activity of Reconstituted Ribonuclease Sâ€Decorated Artificial Viral Capsid. ChemBioChem, 2022, 23, .	2.6	6
5	Live-Cell Fluorescence Imaging of Microtubules by Using a Tau-Derived Peptide. Methods in Molecular Biology, 2021, 2274, 169-179.	0.9	5
6	Directional Propulsion of DNA Microspheres Based on Light-Induced Asymmetric Growth of Peptide Nanofibers. ACS Applied Bio Materials, 2021, 4, 5425-5434.	4.6	14
7	Fluorescence Correlation Spectroscopy Analysis of Effect of Molecular Crowding on Self-Assembly of \hat{l}^2 -Annulus Peptide into Artificial Viral Capsid. International Journal of Molecular Sciences, 2021, 22, 4754.	4.1	3
8	Modulation of Microtubule Properties and Functions by Encapsulation of Nanomaterials Using a Tau-Derived Peptide. Bulletin of the Chemical Society of Japan, 2021, 94, 2100-2112.	3.2	25
9	Functional Peptide Nanocapsules Self-Assembled from \hat{l}^2 -Annulus Peptides. Methods in Molecular Biology, 2021, 2208, 101-121.	0.9	1
10	Construction of Ribonuclease-Decorated Artificial Virus-like Capsid by Peptide Self-assembly. Journal of Organic Chemistry, 2020, 85, 1668-1673.	3.2	24
11	Encapsulation of mRNA into Artificial Viral Capsids via Hybridization of a Î ² -Annulus-dT20 Conjugate and the Poly(A) Tail of mRNA. Applied Sciences (Switzerland), 2020, 10, 8004.	2.5	13
12	Horseradish Peroxidase-Decorated Artificial Viral Capsid Constructed from \hat{I}^2 -Annulus Peptide via Interaction between His-Tag and Ni-NTA. Processes, 2020, 8, 1455.	2.8	7
13	Enveloped artificial viral capsids self-assembled from anionic \hat{l}^2 -annulus peptide and cationic lipid bilayer. Chemical Communications, 2020, 56, 7092-7095.	4.1	13
14	Magnetic Force-Induced Alignment of Microtubules by Encapsulation of CoPt Nanoparticles Using a Tau-Derived Peptide. Nano Letters, 2020, 20, 5251-5258.	9.1	20
15	Cyclic Tau-derived peptides for stabilization of microtubules. Polymer Journal, 2020, 52, 1143-1151.	2.7	15
16	Immunological Evaluation of Coâ€Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Selfâ€Adjuvanting Antiâ€Breastâ€Cancer Vaccine Candidates. Angewandte Chemie, 2020, 132, 17858-17864.	2.0	0
17	Immunological Evaluation of Coâ€Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Selfâ€Adjuvanting Antiâ€Breastâ€Cancer Vaccine Candidates. Angewandte Chemie - International Edition, 2020, 59, 17705-17711.	13.8	27
18	Fluorescent Tau-derived Peptide for Monitoring Microtubules in Living Cells. ACS Omega, 2019, 4, 11245-11250.	3.5	18

#	Article	IF	CITATIONS
19	Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chemical Communications, 2019, 55, 9072-9075.	4.1	22
20	Construction of Artificial Viral Capsids Encapsulating Short DNAs via Disulfide Bonds and Controlled Release of DNAs by Reduction. Chemistry Letters, 2019, 48, 544-546.	1.3	16
21	Peptide Nanomaterials Designed from Natural Supramolecular Systems. Chemical Record, 2019, 19, 843-858.	5.8	39
22	Light-induced propulsion of a giant liposome driven by peptide nanofibre growth. Scientific Reports, 2018, 8, 6243.	3.3	29
23	Artificial bio-nanomachines based on protein needles derived from bacteriophage T4. Biophysical Reviews, 2018, 10, 641-658.	3.2	4
24	Surveillance of Cancer Stem Cell Plasticity Using an Isoform-Selective Fluorescent Probe for Aldehyde Dehydrogenase 1A1. ACS Central Science, 2018, 4, 1045-1055.	11.3	39
25	Molecular Encapsulation Inside Microtubules Based on Tauâ€Đerived Peptides. Chemistry - A European Journal, 2018, 24, 14958-14967.	3.3	30
26	Light responsive metal–organic frameworks as controllable CO-releasing cell culture substrates. Chemical Science, 2017, 8, 2381-2386.	7.4	96
27	Modulation of Cellular Functions by Protein Needles. Seibutsu Butsuri, 2015, 55, 089-091.	0.1	0
28	Protein Needles as Molecular Templates for Artificial Metalloenzymes. Israel Journal of Chemistry, 2015, 55, 40-50.	2.3	10
29	Design of biomaterials for intracellular delivery of carbon monoxide. Biomaterials Science, 2015, 3, 1423-1438.	5.4	61
30	A metal carbonyl–protein needle composite designed for intracellular CO delivery to modulate NF-κB activity. Molecular BioSystems, 2015, 11, 3111-3118.	2.9	16
31	Plasma membrane translocation of a protein needle based on a triple-stranded \hat{l}^2 -helix motif. Molecular BioSystems, 2014, 10, 2677.	2.9	10
32	Intracellular Protein Delivery System with Protein Needle–GFP Construct. Chemistry Letters, 2014, 43, 1505-1507.	1.3	10
33	Inorganic Design of Protein Assemblies as Supramolecular Platforms. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 50-60.	3.7	2
34	Semi-synthesis of an artificial scandium(iii) enzyme with a β-helical bio-nanotube. Dalton Transactions, 2012, 41, 11424.	3.3	26
35	Dual modification of a triple-stranded \hat{l}^2 -helix nanotube with Ru and Re metal complexes to promote photocatalytic reduction of CO2. Chemical Communications, 2011, 47, 2074.	4.1	37
36	Construction of Robust Bioâ€nanotubes using the Controlled Selfâ€Assembly of Component Proteins of Bacteriophage T4. Small, 2010, 6, 1873-1879.	10.0	41

#	Article	lF	CITATIONS
37	Protein engineering: Construction of Robust Bio-nanotubes using the Controlled Self-Assembly of Component Proteins of Bacteriophage T4 (Small 17/2010). Small, 2010, 6, n/a-n/a.	10.0	O
38	Turn-On Fluorescent Probe Based on a Dansyl Triarginine Peptide for Ganglioside Imaging. ACS Organic & Inorganic Au, 0, , .	4.0	5