
Hiroshi Inaba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6060706/publications.pdf Version: 2024-02-01

HIDOSHI INABA

#	Article	IF	CITATIONS
1	Light responsive metal–organic frameworks as controllable CO-releasing cell culture substrates. Chemical Science, 2017, 8, 2381-2386.	7.4	96
2	Design of biomaterials for intracellular delivery of carbon monoxide. Biomaterials Science, 2015, 3, 1423-1438.	5.4	61
3	Construction of Robust Bioâ€nanotubes using the Controlled Selfâ€Assembly of Component Proteins of Bacteriophage T4. Small, 2010, 6, 1873-1879.	10.0	41
4	Surveillance of Cancer Stem Cell Plasticity Using an Isoform-Selective Fluorescent Probe for Aldehyde Dehydrogenase 1A1. ACS Central Science, 2018, 4, 1045-1055.	11.3	39
5	Peptide Nanomaterials Designed from Natural Supramolecular Systems. Chemical Record, 2019, 19, 843-858.	5.8	39
6	Dual modification of a triple-stranded \hat{l}^2 -helix nanotube with Ru and Re metal complexes to promote photocatalytic reduction of CO2. Chemical Communications, 2011, 47, 2074.	4.1	37
7	Molecular Encapsulation Inside Microtubules Based on Tauâ€Derived Peptides. Chemistry - A European Journal, 2018, 24, 14958-14967.	3.3	30
8	Light-induced propulsion of a giant liposome driven by peptide nanofibre growth. Scientific Reports, 2018, 8, 6243.	3.3	29
9	Immunological Evaluation of Coâ€Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Selfâ€Adjuvanting Antiâ€Breastâ€Cancer Vaccine Candidates. Angewandte Chemie - International Edition, 2020, 59, 17705-17711.	13.8	27
10	Semi-synthesis of an artificial scandium(iii) enzyme with a β-helical bio-nanotube. Dalton Transactions, 2012, 41, 11424.	3.3	26
11	Modulation of Microtubule Properties and Functions by Encapsulation of Nanomaterials Using a Tau-Derived Peptide. Bulletin of the Chemical Society of Japan, 2021, 94, 2100-2112.	3.2	25
12	Construction of Ribonuclease-Decorated Artificial Virus-like Capsid by Peptide Self-assembly. Journal of Organic Chemistry, 2020, 85, 1668-1673.	3.2	24
13	Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chemical Communications, 2019, 55, 9072-9075.	4.1	22
14	Magnetic Force-Induced Alignment of Microtubules by Encapsulation of CoPt Nanoparticles Using a Tau-Derived Peptide. Nano Letters, 2020, 20, 5251-5258.	9.1	20
15	Fluorescent Tau-derived Peptide for Monitoring Microtubules in Living Cells. ACS Omega, 2019, 4, 11245-11250.	3.5	18
16	A metal carbonyl–protein needle composite designed for intracellular CO delivery to modulate NF-κB activity. Molecular BioSystems, 2015, 11, 3111-3118.	2.9	16
17	Construction of Artificial Viral Capsids Encapsulating Short DNAs via Disulfide Bonds and Controlled Release of DNAs by Reduction. Chemistry Letters, 2019, 48, 544-546.	1.3	16
18	Cyclic Tau-derived peptides for stabilization of microtubules. Polymer Journal, 2020, 52, 1143-1151.	2.7	15

Hiroshi Inaba

#	Article	IF	CITATIONS
19	Directional Propulsion of DNA Microspheres Based on Light-Induced Asymmetric Growth of Peptide Nanofibers. ACS Applied Bio Materials, 2021, 4, 5425-5434.	4.6	14
20	Encapsulation of mRNA into Artificial Viral Capsids via Hybridization of a β-Annulus-dT20 Conjugate and the Poly(A) Tail of mRNA. Applied Sciences (Switzerland), 2020, 10, 8004.	2.5	13
21	Enveloped artificial viral capsids self-assembled from anionic β-annulus peptide and cationic lipid bilayer. Chemical Communications, 2020, 56, 7092-7095.	4.1	13
22	Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif. Molecular BioSystems, 2014, 10, 2677.	2.9	10
23	Intracellular Protein Delivery System with Protein Needle–GFP Construct. Chemistry Letters, 2014, 43, 1505-1507.	1.3	10
24	Protein Needles as Molecular Templates for Artificial Metalloenzymes. Israel Journal of Chemistry, 2015, 55, 40-50.	2.3	10
25	Horseradish Peroxidase-Decorated Artificial Viral Capsid Constructed from β-Annulus Peptide via Interaction between His-Tag and Ni-NTA. Processes, 2020, 8, 1455.	2.8	7
26	Structural Changes of Microtubules by Encapsulation of Gold Nanoparticles Using a Tau-derived Peptide. Chemistry Letters, 2022, 51, 348-351.	1.3	7
27	Embedding a membrane protein into an enveloped artificial viral replica. RSC Chemical Biology, 2022, 3, 231-241.	4.1	6
28	Anticancer Activity of Reconstituted Ribonuclease Sâ€Đecorated Artificial Viral Capsid. ChemBioChem, 2022, 23, .	2.6	6
29	Live-Cell Fluorescence Imaging of Microtubules by Using a Tau-Derived Peptide. Methods in Molecular Biology, 2021, 2274, 169-179.	0.9	5
30	Turn-On Fluorescent Probe Based on a Dansyl Triarginine Peptide for Ganglioside Imaging. ACS Organic & Inorganic Au, 0, , .	4.0	5
31	Artificial bio-nanomachines based on protein needles derived from bacteriophage T4. Biophysical Reviews, 2018, 10, 641-658.	3.2	4
32	Fluorescence Correlation Spectroscopy Analysis of Effect of Molecular Crowding on Self-Assembly of β-Annulus Peptide into Artificial Viral Capsid. International Journal of Molecular Sciences, 2021, 22, 4754.	4.1	3
33	Encapsulation of Nanomaterials Inside Microtubules by Using a Tau-Derived Peptide. Methods in Molecular Biology, 2022, 2430, 243-260.	0.9	3
34	Inorganic Design of Protein Assemblies as Supramolecular Platforms. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 50-60.	3.7	2
35	Functional Peptide Nanocapsules Self-Assembled from β-Annulus Peptides. Methods in Molecular Biology, 2021, 2208, 101-121.	0.9	1
36	Protein engineering: Construction of Robust Bio-nanotubes using the Controlled Self-Assembly of Component Proteins of Bacteriophage T4 (Small 17/2010). Small, 2010, 6, n/a-n/a.	10.0	0

2.0

0

#	Article	IF	CITATIONS
37	Modulation of Cellular Functions by Protein Needles. Seibutsu Butsuri, 2015, 55, 089-091.	0.1	ο

Immunological Evaluation of Coâ€Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Selfâ€Adjuvanting Antiâ€Breastâ€Cancer Vaccine Candidates. Angewandte Chemie, 2020, 132, 17858-17864.