Bruce M Spiegelman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6060557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Cell Metabolism, 2022, 34, 140-157.e8.	16.2	27
2	Measurement of Futile Creatine Cycling Using Respirometry. Methods in Molecular Biology, 2022, 2448, 141-153.	0.9	3
3	SnapShot: Regulation and biology of PGC-1α. Cell, 2022, 185, 1444-1444.e1.	28.9	25
4	Role of Mitochondrial TNAP in Thermogenesis and Obesity. FASEB Journal, 2022, 36, .	0.5	0
5	Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature, 2021, 590, 480-485.	27.8	102
6	Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature, 2021, 593, 580-585.	27.8	64
7	Exercise hormone irisin is a critical regulator of cognitive function. Nature Metabolism, 2021, 3, 1058-1070.	11.9	134
8	lsthmin-1 is an adipokine that promotes glucose uptake and improves glucose tolerance and hepatic steatosis. Cell Metabolism, 2021, 33, 1836-1852.e11.	16.2	56
9	No evidence for brown adipose tissue activation after creatine supplementation in adult vegetarians. Nature Metabolism, 2021, 3, 107-117.	11.9	15
10	Obesity-Linked PPARÎ ³ S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3. Cell Metabolism, 2020, 32, 665-675.e6.	16.2	53
11	Mechanism of futile creatine cycling in thermogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E947-E949.	3.5	3
12	Facultative protein selenation regulates redox sensitivity, adipose tissue thermogenesis, and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10789-10796.	7.1	30
13	Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism. Nature Metabolism, 2020, 2, 278-289.	11.9	87
14	CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell, 2020, 182, 563-577.e20.	28.9	156
15	A Plasma Protein Network Regulates PM20D1 and N-Acyl Amino Acid Bioactivity. Cell Chemical Biology, 2020, 27, 1130-1139.e4.	5.2	11
16	Confounding issues in the â€~humanized' BAT of mice. Nature Metabolism, 2020, 2, 303-304.	11.9	12
17	γδT cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature, 2020, 578, 610-614.	27.8	117
18	Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo. ELife, 2020, 9, .	6.0	68

#	Article	IF	CITATIONS
19	H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature, 2019, 571, 515-520.	27.8	183
20	Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nature Medicine, 2019, 25, 1739-1747.	30.7	100
21	An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. Cell Metabolism, 2019, 30, 190-200.e6.	16.2	45
22	Innervation of thermogenic adipose tissue via a calsynteninÂ3β–S100b axis. Nature, 2019, 569, 229-235.	27.8	136
23	Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nature Metabolism, 2019, 1, 360-370.	11.9	103
24	New Advances in Adaptive Thermogenesis: UCP1 and Beyond. Cell Metabolism, 2019, 29, 27-37.	16.2	451
25	Tumor-Derived Ligands Trigger Tumor Growth and Host Wasting via Differential MEK Activation. Developmental Cell, 2019, 48, 277-286.e6.	7.0	59
26	Irisin Mediates Effects on Bone via $\hat{I}\pm V$ Integrin Receptors. FASEB Journal, 2019, 33, 15.2.	0.5	0
27	Noncanonical agonist PPARÎ ³ ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 561-566.	7.1	45
28	Discovery of Hydrolysis-Resistant Isoindoline <i>N</i> -Acyl Amino Acid Analogues that Stimulate Mitochondrial Respiration. Journal of Medicinal Chemistry, 2018, 61, 3224-3230.	6.4	20
29	Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell, 2018, 175, 1756-1768.e17.	28.9	372
30	Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science, 2018, 361, .	12.6	536
31	Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6937-E6945.	7.1	43
32	Brown Adipose Tissue Controls Skeletal Muscle Function via the Secretion of Myostatin. Cell Metabolism, 2018, 28, 631-643.e3.	16.2	147
33	Do Adipocytes Emerge from Mural Progenitors?. Cell Stem Cell, 2017, 20, 585-586.	11.1	20
34	UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7981-7986.	7.1	136
35	Mitochondrial Patch Clamp of Beige Adipocytes Reveals UCP1-Positive and UCP1-Negative Cells Both Exhibiting Futile Creatine Cycling. Cell Metabolism, 2017, 25, 811-822.e4.	16.2	174
36	Crosstalk between KCNK3-Mediated Ion Current and Adrenergic Signaling Regulates Adipose Thermogenesis and Obesity. Cell, 2017, 171, 836-848.e13.	28.9	69

#	Article	IF	CITATIONS
37	Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. Cell Metabolism, 2017, 26, 660-671.e3.	16.2	187
38	Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms. Journal of Biological Chemistry, 2017, 292, 16810-16816.	3.4	77
39	Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature, 2016, 532, 112-116.	27.8	341
40	The Cancer Drug Dasatinib Increases PGC-1α in Adipose Tissue but Has Adverse Effects on Glucose Tolerance in Obese Mice. Endocrinology, 2016, 157, 4184-4191.	2.8	5
41	Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation. Genes and Development, 2016, 30, 1822-1836.	5.9	73
42	Cell biology of fat storage. Molecular Biology of the Cell, 2016, 27, 2523-2527.	2.1	162
43	Cachexia and Brown Fat: A Burning Issue in Cancer. Trends in Cancer, 2016, 2, 461-463.	7.4	65
44	The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria. Cell, 2016, 166, 424-435.	28.9	188
45	PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer. Cell Metabolism, 2016, 23, 315-323.	16.2	234
46	A Secreted Slit2 Fragment Regulates Adipose Tissue Thermogenesis and Metabolic Function. Cell Metabolism, 2016, 23, 454-466.	16.2	122
47	Brown and Beige Fat: Molecular Parts of a Thermogenic Machine. Diabetes, 2015, 64, 2346-2351.	0.6	220
48	Appearance and disappearance of the mRNA signature characteristic of T _{reg} cells in visceral adipose tissue: Age, diet, and PPARγ effects. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 482-487.	7.1	156
49	Combined Training Enhances Skeletal Muscle Mitochondrial Oxidative Capacity Independent of Age. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1654-1663.	3.6	94
50	The future of brown adipose tissues in the treatment of type 2 diabetes. Diabetologia, 2015, 58, 1704-1707.	6.3	36
51	A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat. Cell, 2015, 163, 643-655.	28.9	575
52	Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry. Cell Metabolism, 2015, 22, 734-740.	16.2	414
53	Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metabolism, 2015, 22, 546-559.	16.2	763
54	An ERK/Cdk5 axis controls the diabetogenic actions of PPARÎ ³ . Nature, 2015, 517, 391-395.	27.8	251

#	Article	IF	CITATIONS
55	Ablation of PRDM16 and Beige Adipose Causes Metabolic Dysfunction and a Subcutaneous to Visceral Fat Switch. Cell, 2014, 156, 304-316.	28.9	719
56	A Smooth Muscle-Like Origin for Beige Adipocytes. Cell Metabolism, 2014, 19, 810-820.	16.2	373
57	What We Talk About When We Talk About Fat. Cell, 2014, 156, 20-44.	28.9	1,789
58	β-Aminoisobutyric Acid Induces Browning of White Fat and Hepatic β-Oxidation and Is Inversely Correlated with Cardiometabolic Risk Factors. Cell Metabolism, 2014, 19, 96-108.	16.2	489
59	G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15756-15761.	7.1	95
60	Irisin ERKs the Fat. Diabetes, 2014, 63, 381-383.	0.6	30
61	Thrap3 docks on phosphoserine 273 of PPARÎ ³ and controls diabetic gene programming. Genes and Development, 2014, 28, 2361-2369.	5.9	52
62	Adipsin Is an Adipokine that Improves \hat{I}^2 Cell Function in Diabetes. Cell, 2014, 158, 41-53.	28.9	284
63	Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature, 2014, 513, 100-104.	27.8	515
64	IRF4 Is a Key Thermogenic Transcriptional Partner of PGC-1α. Cell, 2014, 158, 69-83.	28.9	239
65	Response to Comment on Wu and Spiegelman. Irisin ERKs the Fat. Diabetes 2014;63:381-383. Diabetes, 2014, 63, e17-e17.	0.6	7
66	Meteorin-like Is a Hormone that Regulates Immune-Adipose Interactions to Increase Beige Fat Thermogenesis. Cell, 2014, 157, 1279-1291.	28.9	699
67	Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metabolism, 2013, 18, 649-659.	16.2	925
68	Banting Lecture 2012. Diabetes, 2013, 62, 1774-1782.	0.6	119
69	Fat cells directly sense temperature to activate thermogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12480-12485.	7.1	208
70	Adaptive thermogenesis in adipocytes: Is beige the new brown?. Genes and Development, 2013, 27, 234-250.	5.9	700
71	A novel PGCâ€Iá isoform induced by resistance training regulates skeletal muscle hypertrophy. FASEB Journal, 2013, 27, 940.18.	0.5	1
72	Boström et al. reply. Nature, 2012, 488, E10-E11.	27.8	14

#	Article	IF	CITATIONS
73	A PGC-1α Isoform Induced by Resistance Training Regulates Skeletal Muscle Hypertrophy. Cell, 2012, 151, 1319-1331.	28.9	548
74	TRPV4 Is a Regulator of Adipose Oxidative Metabolism, Inflammation, and Energy Homeostasis. Cell, 2012, 151, 96-110.	28.9	292
75	Zfp423 Expression Identifies Committed Preadipocytes and Localizes to Adipose Endothelial and Perivascular Cells. Cell Metabolism, 2012, 15, 230-239.	16.2	362
76	FGF21 regulates PGC-11 \pm and browning of white adipose tissues in adaptive thermogenesis. Genes and Development, 2012, 26, 271-281.	5.9	1,265
77	Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell, 2012, 150, 366-376.	28.9	2,740
78	PPARÎ ³ agonists Induce a White-to-Brown Fat Conversion through Stabilization of PRDM16 Protein. Cell Metabolism, 2012, 15, 395-404.	16.2	658
79	Elevated PGC-1α Activity Sustains Mitochondrial Biogenesis and Muscle Function without Extending Survival in a Mouse Model of Inherited ALS. Cell Metabolism, 2012, 15, 778-786.	16.2	158
80	A Novel Therapeutic Approach to Treating Obesity through Modulation of TGFÎ ² Signaling. Endocrinology, 2012, 153, 3133-3146.	2.8	94
81	A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012, 481, 463-468.	27.8	3,646
82	Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9635-9640.	7.1	248
83	PGC-1 Coactivators and the Regulation of Skeletal Muscle Fiber-Type Determination. Cell Metabolism, 2011, 13, 351.	16.2	38
84	Antidiabetic actions of a non-agonist PPARÎ ³ ligand blocking Cdk5-mediated phosphorylation. Nature, 2011, 477, 477-481.	27.8	484
85	Molecular mechanisms of cancer development in obesity. Nature Reviews Cancer, 2011, 11, 886-895.	28.4	733
86	Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation, 2011, 121, 96-105.	8.2	1,036
87	Transcriptional control of preadipocyte determination by Zfp423. Nature, 2010, 464, 619-623.	27.8	438
88	Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARÎ ³ by Cdk5. Nature, 2010, 466, 451-456.	27.8	793
89	PGC-1α regulates a HIF2α-dependent switch in skeletal muscle fiber types. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21866-21871.	7.1	121
90	Transcriptional Control of Brown Adipogenesis and Energy Homeostasis. FASEB Journal, 2010, 24, 303.4.	0.5	0

#	Article	IF	CITATIONS
91	Transcriptional control of brown adipocyte development and physiological function—of mice and men. Genes and Development, 2009, 23, 788-797.	5.9	250
92	Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature, 2009, 460, 1154-1158.	27.8	620
93	PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008, 454, 961-967.	27.8	1,997
94	Fat and Beyond: The Diverse Biology of PPARÎ ³ . Annual Review of Biochemistry, 2008, 77, 289-312.	11.1	1,757
95	Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes and Development, 2008, 22, 1397-1409.	5.9	393
96	Regression of Drug-Resistant Lung Cancer by the Combination of Rosiglitazone and Carboplatin. Clinical Cancer Research, 2008, 14, 6478-6486.	7.0	77
97	PGCâ€lα is required for exerciseâ€induced mitochondrial biogenesis, but not fiber type transformation, in skeletal muscle. FASEB Journal, 2008, 22, 754.17.	0.5	Ο
98	PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes and Development, 2007, 21, 770-783.	5.9	307
99	Skeletal Muscle Fiber-type Switching, Exercise Intolerance, and Myopathy in PGC-1α Muscle-specific Knock-out Animals. Journal of Biological Chemistry, 2007, 282, 30014-30021.	3.4	530
100	Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metabolism, 2007, 6, 38-54.	16.2	996
101	Synergy between PPARÎ ³ Ligands and Platinum-Based Drugs in Cancer. Cancer Cell, 2007, 11, 395-406.	16.8	122
102	Rb Intrinsically Promotes Erythropoiesis by Coupling Cell Cycle Exit with Mitochondrial Biogenesis Blood, 2007, 110, 638-638.	1.4	0
103	Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Foundation Symposium, 2007, 287, 60-3; discussion 63-9.	1.1	102
104	Transcriptional control of energy homeostasis through the PGC1 coactivators. Novartis Foundation Symposium, 2007, 286, 3-6; discusssion 6-12, 162-3, 196-203.	1.1	31
105	Peroxisome Proliferator-Activated Receptor γ Coactivator 1 Coactivators, Energy Homeostasis, and Metabolism. Endocrine Reviews, 2006, 27, 728-735.	20.1	986
106	Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism, 2006, 3, 333-341.	16.2	548
107	Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006, 444, 847-853.	27.8	1,810
108	PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16260-16265.	7.1	841

#	Article	IF	CITATIONS
109	Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metabolism, 2005, 1, 259-271.	16.2	608
110	p38 Mitogen-Activated Protein Kinase Is the Central Regulator of Cyclic AMP-Dependent Transcription of the Brown Fat Uncoupling Protein 1 Gene. Molecular and Cellular Biology, 2004, 24, 3057-3067.	2.3	473
111	Rosiglitazone versus placebo for men with prostate carcinoma and a rising serum prostateâ€specific antigen level after radical prostatectomy and/or radiation therapy. Cancer, 2004, 101, 1569-1574.	4.1	126
112	Defects in Adaptive Energy Metabolism with CNS-Linked Hyperactivity in PGC-1α Null Mice. Cell, 2004, 119, 121-135.	28.9	1,074
113	Biological Control through Regulated Transcriptional Coactivators. Cell, 2004, 119, 157-167.	28.9	314
114	Use of the Peroxisome Proliferator-Activated Receptor (PPAR) γ Ligand Troglitazone as Treatment for Refractory Breast Cancer: A Phase II Study. Breast Cancer Research and Treatment, 2003, 79, 391-397.	2.5	212
115	PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 2003, 34, 267-273.	21.4	8,185
116	Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α (PGC-1α): Transcriptional Coactivator and Metabolic Regulator. Endocrine Reviews, 2003, 24, 78-90.	20.1	1,809
117	C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes and Development, 2002, 16, 22-26.	5.9	1,207
118	Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature, 2002, 418, 797-801.	27.8	2,232
119	Obesity and the Regulation of Energy Balance. Cell, 2001, 104, 531-543.	28.9	2,108
120	The role of PPAR-Î ³ in macrophage differentiation and cholesterol uptake. Nature Medicine, 2001, 7, 41-47.	30.7	476
121	Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nature Medicine, 2001, 7, 1128-1132.	30.7	341
122	Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 2001, 413, 131-138.	27.8	1,640
123	CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature, 2001, 413, 179-183.	27.8	1,238
124	Towards a molecular understanding of adaptive thermogenesis. Nature, 2000, 404, 652-660.	27.8	1,434
125	Molecular Regulation of Adipogenesis. Annual Review of Cell and Developmental Biology, 2000, 16, 145-171.	9.4	1,133
126	Degradation of the Peroxisome Proliferator-activated Receptor Î ³ Is Linked to Ligand-dependent Activation. Journal of Biological Chemistry, 2000, 275, 18527-18533.	3.4	327

#	Article	IF	CITATIONS
127	Modulation of Estrogen Receptor- $\hat{l}\pm$ Transcriptional Activity by the Coactivator PGC-1. Journal of Biological Chemistry, 2000, 275, 16302-16308.	3.4	193
128	<i>PAX8-PPAR</i> Î ³ <i>1</i> Fusion in Oncogene Human Thyroid Carcinoma. Science, 2000, 289, 1357-1360.	12.6	798
129	Transcriptional activation of adipogenesis. Current Opinion in Cell Biology, 1999, 11, 689-694.	5.4	127
130	PPARÎ ³ Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro. Molecular Cell, 1999, 4, 611-617.	9.7	1,804
131	Cross-Regulation of C/EBPα and PPARγ Controls the Transcriptional Pathway of Adipogenesis and Insulin Sensitivity. Molecular Cell, 1999, 3, 151-158.	9.7	908
132	Loss-of-Function Mutations in PPARÎ ³ Associated with Human Colon Cancer. Molecular Cell, 1999, 3, 799-804.	9.7	485
133	Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell, 1999, 98, 115-124.	28.9	3,545
134	TNF-Î \pm and insulin resistance: Summary and future prospects. , 1998, 182, 169-175.		242
135	Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nature Medicine, 1998, 4, 1046-1052.	30.7	933
136	Terminal Differentiation of Human Breast Cancer through PPARÎ ³ . Molecular Cell, 1998, 1, 465-470.	9.7	779
137	A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell, 1998, 92, 829-839.	28.9	3,376
138	câ€Fos Deficiency Inhibits Induction of mRNA for Some, but Not All, Neurotransmitter Biosynthetic Enzymes by Immobilization Stress. Journal of Neurochemistry, 1998, 70, 1935-1940.	3.9	14
139	Functional Antagonism between CCAAT/Enhancer Binding Protein-α and Peroxisome Proliferator-activated Receptor-γ on the Leptin Promoter. Journal of Biological Chemistry, 1997, 272, 5283-5290.	3.4	221
140	Opposing activities of c-Fos and Fra-2 on AP-1 regulated transcriptional activity in mouse keratinocytes induced to differentiate by calcium and phorbol esters. Oncogene, 1997, 15, 1337-1346.	5.9	63
141	Regulation of Alternative Pathway Activation and C3a Production by Adipose Cells. Obesity, 1996, 4, 521-522.	4.0	38
142	Adipogenesis and Obesity: Rounding Out the Big Picture. Cell, 1996, 87, 377-389.	28.9	1,212
143	15-Deoxy-Δ12,14-Prostaglandin J2 is a ligand for the adipocyte determination factor PPARÎ ³ . Cell, 1995, 83, 803-812.	28.9	2,811
144	Transgenic Mouse Models of Disease: Altering Adipose Tissue Function in Vivo. Annals of the New York Academy of Sciences, 1995, 758, 297-313.	3.8	2

#	Article	lF	CITATIONS
145	Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell, 1994, 79, 1147-1156.	28.9	3,322
146	Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR7 and RXRa. Nucleic Acids Research, 1994, 22, 5628-5634.	14.5	352
147	Inhibition of complement alternative pathway in mice with Fab antibody to recombinant adipsin/factor D. European Journal of Immunology, 1993, 23, 1389-1392.	2.9	15
148	Identification of a fat cell enhancer: Analysis of requirements for adipose tissue-specific gene expression. Journal of Cellular Biochemistry, 1992, 49, 219-224.	2.6	63
149	DNA-binding activity of jun is increased through its interaction with Fos. Journal of Cellular Biochemistry, 1990, 42, 193-206.	2.6	36
150	1-Butyryl-Glycerol: A novel angiogenesis factor secreted by differentiating adipocytes. Cell, 1990, 61, 223-230.	28.9	124
151	Heparin potentiation of 3T3-adipocyte stimulated angiogenesis: Mechanisms of action on endothelial cells. Journal of Cellular Physiology, 1986, 127, 323-329.	4.1	36
152	Transcriptional Control of Energy Homeostasis through the PGC1 Coactivators. Novartis Foundation Symposium, 0, , 3-12.	1.1	47
153	Chair's Introduction. Novartis Foundation Symposium, 0, , 1-2.	1.1	0