Ugo D'Oro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6060265/publications.pdf Version: 2024-02-01

LICO D'ORO

#	Article	IF	CITATIONS
1	Antibody avidity, persistence, and response to antigen recall: comparison of vaccine adjuvants. Npj Vaccines, 2021, 6, 78.	6.0	34
2	Serafino Zappacosta: An Enlightened Mentor and Educator. Frontiers in Immunology, 2020, 11, 217.	4.8	1
3	Design of a novel vaccine nanotechnology-based delivery system comprising CpGODN-protein conjugate anchored to liposomes. Journal of Controlled Release, 2020, 323, 125-137.	9.9	36
4	Vaccine Evolution and Its Application to Fight Modern Threats. Frontiers in Immunology, 2019, 10, 1722.	4.8	32
5	Adjuvant effect of TLR7 agonist adsorbed on aluminum hydroxide (AS37): A phase I randomized, dose escalation study of an AS37-adjuvanted meningococcal C conjugated vaccine. Clinical Immunology, 2019, 209, 108275.	3.2	18
6	Co-administration of GM-CSF expressing RNA is a powerful tool to enhance potency of SAM-based vaccines. Vaccine, 2019, 37, 4204-4213.	3.8	18
7	Mixed mucosal-parenteral immunizations with the broadly conserved pathogenic Escherichia coli antigen SslE induce a robust mucosal and systemic immunity without affecting the murine intestinal microbiota. Vaccine, 2019, 37, 314-324.	3.8	11
8	Src Family Kinases Regulate Interferon Regulatory Factor 1 K63 Ubiquitination following Activation by TLR7/8 Vaccine Adjuvant in Human Monocytes and B Cells. Frontiers in Immunology, 2018, 9, 330.	4.8	12
9	Alum/Toll-Like Receptor 7 Adjuvant Enhances the Expansion of Memory B Cell Compartment Within the Draining Lymph Node. Frontiers in Immunology, 2018, 9, 641.	4.8	20
10	Exosome-delivered microRNAs promote IFN-α secretion by human plasmacytoid DCs via TLR7. JCI Insight, 2018, 3, .	5.0	96
11	Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. OncoImmunology, 2017, 6, e1279372.	4.6	100
12	Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine, 2017, 35, 5256-5263.	3.8	46
13	Vaccine adjuvant MF59 promotes the intranodal differentiation of antigen-loaded and activated monocyte-derived dendritic cells. PLoS ONE, 2017, 12, e0185843.	2.5	36
14	The adjuvant effect of TLR7 agonist conjugated to a meningococcal serogroup C glycoconjugate vaccine. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 110-119.	4.3	20
15	Novel adjuvant Alum-TLR7 significantly potentiates immune response to glycoconjugate vaccines. Scientific Reports, 2016, 6, 29063.	3.3	45
16	Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. Journal of Experimental Medicine, 2016, 213, 469-481.	8.5	299
17	Incorporation of Phosphonate into Benzonaphthyridine Toll-like Receptor 7 Agonists for Adsorption to Aluminum Hydroxide. Journal of Medicinal Chemistry, 2016, 59, 5868-5878.	6.4	38
18	Ultrastructural Visualization of Vaccine Adjuvant Uptake In Vitro and In Vivo. Microscopy and Microanalysis, 2015, 21, 791-795.	0.4	5

Ugo D'Oro

#	Article	IF	CITATIONS
19	<scp>CD</scp> 8 Tâ€cell priming upon <scp>mRNA</scp> vaccination is restricted to boneâ€marrowâ€derived antigenâ€presenting cells and may involve antigen transfer from myocytes. Immunology, 2015, 146, 312-326.	4.4	60
20	Development and Application of a Novel SPE-Method for Bioassay-Guided Fractionation of Marine Extracts. Marine Drugs, 2015, 13, 5736-5749.	4.6	59
21	Vaccine Adjuvant MF59 Promotes Retention of Unprocessed Antigen in Lymph Node Macrophage Compartments and Follicular Dendritic Cells. Journal of Immunology, 2015, 194, 1717-1725.	0.8	54
22	A new TLR2 agonist promotes cross-presentation by mouse and human antigen presenting cells. Human Vaccines and Immunotherapeutics, 2015, 11, 2038-2050.	3.3	24
23	The potential of adjuvants to improve immune responses against TdaP vaccines: A preclinical evaluation of MF59 and monophosphoryl lipid A. International Journal of Pharmaceutics, 2015, 492, 169-176.	5.2	15
24	The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles. Molecular and Cellular Proteomics, 2015, 14, 2138-2149.	3.8	51
25	Modulation of Endotoxicity of Shigella Generalized Modules for Membrane Antigens (GMMA) by Genetic Lipid A Modifications. Journal of Biological Chemistry, 2014, 289, 24922-24935.	3.4	77
26	Genetically detoxified pertussis toxin (PT-9K/129G): implications for immunization and vaccines. Expert Review of Vaccines, 2014, 13, 1191-1204.	4.4	36
27	Rational design of small molecules as vaccine adjuvants. Science Translational Medicine, 2014, 6, 263ra160.	12.4	153
28	Surface molecules on stimulated plasmacytoid dendritic cells are sufficient to cross-activate resting myeloid dendritic cells. Human Immunology, 2011, 72, 1018-1021.	2.4	7
29	A Point Mutation in the Amino Terminus of TLR7 Abolishes Signaling without Affecting Ligand Binding. Journal of Immunology, 2011, 186, 4213-4222.	0.8	25
30	Adjuvanticity of the oil-in-water emulsion MF59 is independent of NIrp3 inflammasome but requires the adaptor protein MyD88. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11169-11174.	7.1	149
31	Differential IL-17 Production and Mannan Recognition Contribute to Fungal Pathogenicity and Commensalism. Journal of Immunology, 2010, 184, 4258-4268.	0.8	59
32	DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells. Immunome Research, 2010, 6, 10.	0.1	23
33	Src Kinases Are Required for a Balanced Production of IL-12/IL-23 in Human Dendritic Cells Activated by Toll-Like Receptor Agonists. PLoS ONE, 2010, 5, e11491.	2.5	17
34	Immunology of TLR-independent vaccine adjuvants. Current Opinion in Immunology, 2009, 21, 339-345.	5.5	107
35	Introduction of Zwitterionic Motifs into Bacterial Polysaccharides Generates TLR2 Agonists Able to Activate APCs. Journal of Immunology, 2007, 179, 8208-8215.	0.8	46
36	Activation of naive B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18544-18549.	7.1	266

Ugo D'Oro

#	Article	IF	CITATIONS
37	Cyclic AMP Modulates the Functional Plasticity of Immature Dendritic Cells by Inhibiting Src-like Kinases through Protein Kinase A-mediated Signaling. Journal of Biological Chemistry, 2004, 279, 32507-32514.	3.4	46
38	T cell costimulation by the hepatitis C virus envelope protein E2 binding to CD81 is mediated by Lck. European Journal of Immunology, 2003, 33, 455-464.	2.9	57
39	Activation of src-family tyrosine kinases by LPS regulates cytokine production in dendritic cells by controlling AP-1 formation. European Journal of Immunology, 2003, 33, 2832-2841.	2.9	60
40	Regulation of Constitutive TCR Internalization by the ζ-Chain. Journal of Immunology, 2002, 169, 6269-6278.	0.8	76
41	Inhibition of Natural Killer Cells through Engagement of CD81 by the Major Hepatitis C Virus Envelope Protein. Journal of Experimental Medicine, 2002, 195, 35-42.	8.5	420
42	Optimizing anti-CD3 affinity for effective T cell targeting against tumor cells. European Journal of Immunology, 2002, 32, 3102-3107.	2.9	50
43	Modulation of CD45 tyrosine phosphatase activity by antigen. European Journal of Immunology, 2001, 31, 777-782.	2.9	4
44	CD45 and Src-family kinases: and now for something completely different. Trends in Immunology, 1999, 20, 412-416.	7.5	86
45	Activation of the Lck Tyrosine Kinase Targets Cell Surface T Cell Antigen Receptors for Lysosomal Degradation. Immunity, 1997, 7, 619-628.	14.3	126
46	HLA class II molecules transduce accesory signals affecting the CD3 but not the interleukin-2 activation pathway in T blasts. Human Immunology, 1993, 38, 251-260.	2.4	9
47	HLA class II molecules on monocytes regulate T cell proliferation through physical interaction in the CD3 activation pathway. European Journal of Immunology, 1991, 21, 29-33.	2.9	13