Catherine Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6060105/publications.pdf

Version: 2024-02-01

279798 243625 2,892 51 23 44 citations h-index g-index papers 51 51 51 3624 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Conception and Evaluation of Fluorescent Phosphineâ€Gold Complexes: From Synthesis to inâ€vivo Investigations. ChemMedChem, 2022, , .	3.2	3
2	Impact of Lipid Metabolism on Antitumor Immune Response. Cancers, 2022, 14, 1850.	3.7	18
3	Protein Kinase Inhibitor-Mediated Immunoprophylactic and Immunotherapeutic Control of Colon Cancer. Frontiers in Immunology, 2022, 13, 875764.	4.8	2
4	Development of an Easily Bioconjugatable Water-Soluble Single-Photon Emission-Computed Tomography/Optical Imaging Bimodal Imaging Probe Based on the aza-BODIPY Fluorophore. Journal of Medicinal Chemistry, 2021, 64, 11063-11073.	6.4	12
5	Near-infrared emitting fluorescent homobimetallic gold(I) complexes displaying promising inÂvitro and inÂvivo therapeutic properties. European Journal of Medicinal Chemistry, 2021, 220, 113483.	5.5	11
6	Senescence and Cancer: Role of Nitric Oxide (NO) in SASP. Cancers, 2020, 12, 1145.	3.7	14
7	Protein kinase inhibitor-based cancer therapies: Considering the potential of nitric oxide (NO) to improve cancer treatment. Biochemical Pharmacology, 2020, 176, 113855.	4.4	11
8	FRI-335-Lect2, a new hepatokine regulating cholesterol metabolism in liver during non-alcoholic fatty liver disease. Journal of Hepatology, 2019, 70, e543.	3.7	O
9	Polysaccharide Chain Length of Lipopolysaccharides From Salmonella Minnesota Is a Determinant of Aggregate Stability, Plasma Residence Time and Proinflammatory Propensity in vivo. Frontiers in Microbiology, 2019, 10, 1774.	3.5	20
10	Rapid Synthesis and Antiproliferative Properties of Polyazamacrocycleâ€Based Bi―and Tetraâ€Gold(I) Phosphine Dithiocarbamate Complexes. ChemBioChem, 2019, 20, 2255-2261.	2.6	7
11	A Promising Family of Fluorescent Water-Soluble aza-BODIPY Dyes for <i>in Vivo</i> Molecular Imaging. Bioconjugate Chemistry, 2019, 30, 1061-1066.	3.6	49
12	PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncolmmunology, 2018, 7, e1433981.	4.6	167
13	Highly antiproliferative neutral Ru(<scp>ii</scp>)-arene phosphine complexes. New Journal of Chemistry, 2018, 42, 8105-8112.	2.8	8
14	Tumor-derived granzyme B-expressing neutrophils acquire antitumor potential after lipid A treatment. Oncotarget, 2018, 9, 28364-28378.	1.8	33
15	Gold(I)–Coumarin–Caffeineâ€Based Complexes as New Potential Antiâ€Inflammatory and Anticancer Trackable Agents. ChemMedChem, 2018, 13, 2408-2414.	3.2	24
16	Design of a multifunctionalizable BODIPY platform for the facile elaboration of a large series of gold(i)-based optical theranostics. Dalton Transactions, 2018, 47, 11203-11218.	3.3	14
17	Exploration of Fas S-Nitrosylation by the Biotin Switch Assay. Methods in Molecular Biology, 2017, 1557, 199-206.	0.9	3
18	Gold(<scp>i</scp>)–BODIPY–imidazole bimetallic complexes as new potential anti-inflammatory and anticancer trackable agents. Dalton Transactions, 2017, 46, 8051-8056.	3.3	32

#	Article	IF	CITATIONS
19	Precision medicine in breast cancer: reality or utopia?. Journal of Translational Medicine, 2017, 15, 139.	4.4	56
20	Nitric Oxide and Platinum-Derivative-Based Regimens for Cancer Treatment: From Preclinical Studies to Clinical Trials., 2017,, 91-103.		2
21	Clinical significance of T-bet, GATA-3, and Bcl-6 transcription factor expression in bladder carcinoma. Journal of Translational Medicine, 2016, 14, 144.	4.4	14
22	Coumarinâ€Phosphineâ€Based Smart Probes for Tracking Biologically Relevant Metal Complexes: From Theoretical to Biological Investigations. European Journal of Inorganic Chemistry, 2016, 2016, 545-553.	2.0	18
23	TLR4/IFN \hat{l}^3 pathways induce tumor regression via NOS II-dependent NO and ROS production in murine breast cancer models. Oncolmmunology, 2016, 5, e1123369.	4.6	23
24	Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart―Probe Answer!. Journal of Medicinal Chemistry, 2015, 58, 4521-4528.	6.4	39
25	S-Nitrosylation in Cancer Cells: To Prevent or to Cause?. , 2015, , 97-109.		0
26	Gold–phosphine–porphyrin as potential metal-based theranostics. Journal of Biological Inorganic Chemistry, 2015, 20, 143-154.	2.6	18
27	Towards the elaboration of new gold-based optical theranostics. Dalton Transactions, 2015, 44, 4874-4883.	3.3	32
28	H89 enhances the sensitivity of cancer cells to glyceryl trinitrate through a purinergic receptor-dependent pathway. Oncotarget, 2015, 6, 6877-6886.	1.8	12
29	Senescence of tumor cells induced by oxaliplatin increases the efficiency of a lipid A immunotherapy via the recruitment of neutrophils. Oncotarget, 2014, 5, 11442-11451.	1.8	16
30	Phase I study of OM-174, a lipid A analogue, with assessment of immunological response, in patients with refractory solid tumors. BMC Cancer, 2013, 13, 172.	2.6	38
31	S-Nitrosylation of the Death Receptor Fas Promotes Fas Ligand–Mediated Apoptosis in Cancer Cells. Gastroenterology, 2011, 140, 2009-2018.e4.	1.3	83
32	Fine-tuning nucleophosmin in macrophage differentiation and activation. Blood, 2011, 118, 4694-4704.	1.4	39
33	Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27). Experimental Cell Research, 2010, 316, 1535-1552.	2.6	80
34	Innate immune response triggered by triacyl lipid A is dependent on phospholipid transfer protein (PLTP) gene expression. FASEB Journal, 2010, 24, 3544-3554.	0.5	12
35	Nitric Oxide Is a Promising Enhancer for Cancer Therapy. , 2010, , 253-263.		0
36	Toll-like Receptor 2 and 4 in Cancer Immunotherapy: Is Nitric Oxide a Mediator?. Forum on Immunopathological Diseases and Therapeutics, 2010, 1, 307-315.	0.1	0

3

#	Article	IF	Citations
37	Lipid A-Induced Responses In Vivo. Advances in Experimental Medicine and Biology, 2009, 667, 69-80.	1.6	11
38	Nitric oxide-induced resistance or sensitization to death in tumor cells. Nitric Oxide - Biology and Chemistry, 2008, 19, 158-163.	2.7	31
39	Effect of Plasma Phospholipid Transfer Protein Deficiency on Lethal Endotoxemia in Mice. Journal of Biological Chemistry, 2008, 283, 18702-18710.	3.4	58
40	Identification and relative quantification of adenosine to inosine editing in serotonin 2c receptor mRNA by CE. Electrophoresis, 2007, 28, 2843-2852.	2.4	13
41	Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods, 2005, 35, 126-138.	3.8	105
42	Hsp27 as a Negative Regulator of Cytochrome <i>c</i> Release. Molecular and Cellular Biology, 2002, 22, 816-834.	2.3	403
43	Small Stress Proteins: Novel Negative Modulators of Apoptosis Induced Independently of Reactive Oxygen Species. Progress in Molecular and Subcellular Biology, 2002, 28, 185-204.	1.6	58
44	Small Stress Proteins: Modulation of Intracellular Redox State and Protection Against Oxidative Stress. Progress in Molecular and Subcellular Biology, 2002, 28, 171-184.	1.6	33
45	Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress–mediated apoptosis: possible implication in asthma. Cell Stress and Chaperones, 2002, 7, 269.	2.9	53
46	Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli. Cell Stress and Chaperones, 2001, 6, 49.	2.9	151
47	Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene, 2000, 19, 4855-4863.	5.9	135
48	Regulation of Hsp27 Oligomerization, Chaperone Function, and Protective Activity against Oxidative Stress/Tumor Necrosis Factor \hat{l}_{\pm} by Phosphorylation. Journal of Biological Chemistry, 1999, 274, 18947-18956.	3.4	661
49	Small Hsps as regulators of apoptosis. Biology of the Cell, 1999, 91, 545-545.	2.0	0
50	Analysis of the anti-apoptotic effect of the human protein chaperone HSP27. Biology of the Cell, 1999, 91, 560-560.	2.0	0
51	Mammalian Small Stress Proteins Protect against Oxidative Stress through Their Ability to Increase Glucose-6-phosphate Dehydrogenase Activity and by Maintaining Optimal Cellular Detoxifying Machinery. Experimental Cell Research, 1999, 247, 61-78.	2.6	270