Fabio Polticelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6059957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulin-Degrading Enzyme Is a Non Proteasomal Target of Carfilzomib and Affects the 20S Proteasome Inhibition by the Drug. Biomolecules, 2022, 12, 315.	4.0	3
2	FGDB: a comprehensive graph database of ligand fragments from the Protein Data Bank. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	3.0	2
3	Molecular Characterization of Kunitz-Type Protease Inhibitors from Blister Beetles (Coleoptera,) Tj ETQq1 1 0.7	84314 rgB 4.0	T /Qverlock 10
4	Binding of direct oral anticoagulants to the FA1 site of human serum albumin. Journal of Molecular Recognition, 2021, 34, e2877.	2.1	6
5	In Silico Analysis of Huntingtin Homologs in Lower Eukaryotes. International Journal of Molecular Sciences, 2021, 22, 3214.	4.1	1
6	Inhibition by Thyroid Hormones of Cell Migration Activated by IGF-1 and MCP-1 in THP-1 Monocytes: Focus on Signal Transduction Events Proximal to Integrin αvl²3. Frontiers in Cell and Developmental Biology, 2021, 9, 651492.	3.7	3
7	Computational studies of the mitochondrial carrier family SLC25. Present status and future perspectives. Bio-Algorithms and Med-Systems, 2021, 17, 65-78.	2.4	2
8	Structural determinants of ligands recognition by the human mitochondrial basic amino acids transporter SLC25A29. Insights from molecular dynamics simulations of the c-state. Computational and Structural Biotechnology Journal, 2021, 19, 5600-5612.	4.1	6
9	Modelling of the Citrus CCD4 Family Members: In Silico Analysis of Membrane Binding and Substrate Preference. International Journal of Molecular Sciences, 2021, 22, 13616.	4.1	2
10	Neonicotinoid trapping by the FA1 site of human serum albumin. IUBMB Life, 2020, 72, 716-723.	3.4	7
11	Uncovering the structure and function of Pseudomonas aeruginosa periplasmic proteins by an in silico approach. Journal of Biomolecular Structure and Dynamics, 2020, 38, 4508-4520.	3.5	1
12	Contaminations in (meta)genome data: An open issue for the scientific community. IUBMB Life, 2020, 72, 698-705.	3.4	13
13	Haptoglobin and the related haptoglobin protein: the N-terminus makes the difference. Journal of Biomolecular Structure and Dynamics, 2020, , 1-10.	3.5	2
14	Dynamical Behavior of the Human Ferroportin Homologue from Bdellovibrio bacteriovorus: Insight into the Ligand Recognition Mechanism. International Journal of Molecular Sciences, 2020, 21, 6785.	4.1	4
15	DockingApp RF: A State-of-the-Art Novel Scoring Function for Molecular Docking in a User-Friendly Interface to AutoDock Vina. International Journal of Molecular Sciences, 2020, 21, 9548.	4.1	21
16	Computational Methods for the Identification of Molecular Targets of Toxic Food Additives. Butylated Hydroxytoluene as a Case Study. Molecules, 2020, 25, 2229.	3.8	11
17	Mycobacterial and Human Nitrobindins: Structure and Function. Antioxidants and Redox Signaling, 2020, 33, 229-246.	5.4	17
18	Structural Basis of Drug Recognition by Human Serum Albumin. Current Medicinal Chemistry, 2020, 27, 4907-4931	2.4	40

#	Article	IF	CITATIONS
19	Computational methods and tools for binding site recognition between proteins and small molecules: from classical geometrical approaches to modern machine learning strategies. Journal of Computer-Aided Molecular Design, 2019, 33, 887-903.	2.9	18
20	In silico Selection and Experimental Validation of FDA-Approved Drugs as Anti-quorum Sensing Agents. Frontiers in Microbiology, 2019, 10, 2355.	3.5	38
21	Ruxolitinib binding to human serum albumin: bioinformatics, biochemical and functional characterization in JAK2V617F+ cell models. Scientific Reports, 2019, 9, 16379.	3.3	6
22	Fragment-Based Ligand-Protein Contact Statistics: Application to Docking Simulations. International Journal of Molecular Sciences, 2019, 20, 2499.	4.1	7
23	The Four FAD-Dependent Histone Demethylases of Arabidopsis Are Differently Involved in the Control of Flowering Time. Frontiers in Plant Science, 2019, 10, 669.	3.6	21
24	Cytochrome c: An extreme multifunctional protein with a key role in cell fate. International Journal of Biological Macromolecules, 2019, 136, 1237-1246.	7.5	134
25	Oxygen dissociation from ferrous oxygenated human hemoglobin:haptoglobin complexes confirms that in the R-state \hat{I}_{\pm} and \hat{I}^2 chains are functionally heterogeneous. Scientific Reports, 2019, 9, 6780.	3.3	8
26	Exploring the activity of polyamine analogues on polyamine and spermine oxidase: methoctramine, a potent and selective inhibitor of polyamine oxidase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 740-752.	5.2	12
27	Identification of lipid A deacylase as a novel, highly conserved and protective antigen against enterohemorrhagic Escherichia coli. Scientific Reports, 2019, 9, 17014.	3.3	4
28	NBS1 interacts with HP1 to ensure genome integrity. Cell Death and Disease, 2019, 10, 951.	6.3	15
29	Bioinformatics analysis of Ras homologue enriched in the striatum, a potential target for Huntington's disease therapy. International Journal of Molecular Medicine, 2019, 44, 2223-2233.	4.0	9
30	Fipronil recognition by the FA1 site of human serum albumin. Journal of Molecular Recognition, 2018, 31, e2713.	2.1	9
31	The ferroportin-ceruloplasmin system and the mammalian iron homeostasis machine: regulatory pathways and the role of lactoferrin. BioMetals, 2018, 31, 399-414.	4.1	47
32	LIBRA-WA: a web application for ligand binding site detection and protein function recognition. Bioinformatics, 2018, 34, 878-880.	4.1	22
33	Reductive nitrosylation of ferric human hemoglobin bound to human haptoglobin 1-1 and 2-2. Journal of Biological Inorganic Chemistry, 2018, 23, 437-445.	2.6	13
34	A comprehensive <i>in silico</i> analysis of huntingtin and its interactome. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3155-3171.	3.5	6
35	Characterization of three novel pathogenic SLC40A1 mutations and genotype/phenotype correlations in 7 Italian families with type 4 hereditary hemochromatosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 464-470.	3.8	6
36	No Lanthanidesâ€based Catalysis in Eukaryotes. IUBMB Life, 2018, 71, 398-399.	3.4	4

#	Article	IF	CITATIONS
37	Human nitrobindin: the first example of an allâ€Î²â€barrel ferric hemeâ€protein that catalyzes peroxynitrite detoxification. FEBS Open Bio, 2018, 8, 2002-2010.	2.3	17
38	Lanthanidesâ€based catalysis in eukaryotes. IUBMB Life, 2018, 70, 1067-1075.	3.4	5
39	Identification of FDA-Approved Drugs as Antivirulence Agents Targeting the <i>pqs</i> Quorum-Sensing System of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	82
40	Human Serum Albumin Is an Essential Component of the Host Defense Mechanism Against Clostridium difficile Intoxication. Journal of Infectious Diseases, 2018, 218, 1424-1435.	4.0	45
41	Protein-ligand binding site detection as an alternative route to molecular docking and drug repurposing. Bio-Algorithms and Med-Systems, 2018, 14, .	2.4	1
42	The plastoquinol–plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations. Photosynthesis Research, 2017, 131, 15-30.	2.9	18
43	DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina. Journal of Computer-Aided Molecular Design, 2017, 31, 213-218.	2.9	85
44	Structural evidence of quercetin multi-target bioactivity: A reverse virtual screening strategy. European Journal of Pharmaceutical Sciences, 2017, 106, 393-403.	4.0	33
45	Multiple functions of insulin-degrading enzyme: a metabolic crosslight?. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 554-582.	5.2	73
46	Nitrophorins and nitrobindins: structure and function. Biomolecular Concepts, 2017, 8, 105-118.	2.2	19
47	Cantharidin inhibits competitively hemeâ€ <scp>F</scp> e(III) binding to the <scp>FA</scp> 1 site of human serum albumin. Journal of Molecular Recognition, 2017, 30, e2641.	2.1	10
48	Human serum albumin: A modulator of cannabinoid drugs. IUBMB Life, 2017, 69, 834-840.	3.4	17
49	<i>In silico</i> study of the structure and function of <i>Streptococcus mutans</i> plasmidic proteins. Bio-Algorithms and Med-Systems, 2017, 13, 51-61.	2.4	Ο
50	Neuroglobin and friends. Journal of Molecular Recognition, 2017, 30, e2654.	2.1	20
51	Spectroscopic and calorimetric characterization of spermine oxidase and its association forms. Biochemical Journal, 2017, 474, 4253-4268.	3.7	3
52	The key role played by charge in the interaction of cytochrome c with cardiolipin. Journal of Biological Inorganic Chemistry, 2017, 22, 19-29.	2.6	40
53	An improved structural model of the human iron exporter ferroportin. Insight into the role of pathogenic mutations in hereditary hemochromatosis type 4. Bio-Algorithms and Med-Systems, 2017, 13, 215-222.	2.4	6
54	Small and Random Peptides: An Unexplored Reservoir of Potentially Functional Primitive Organocatalysts. The Case of Seryl-Histidine. Life, 2017, 7, 19.	2.4	38

#	Article	IF	CITATIONS
55	Staphylococcus aureus Esx Factors Control Human Dendritic Cell Functions Conditioning Th1/Th17 Response. Frontiers in Cellular and Infection Microbiology, 2017, 7, 330.	3.9	21
56	Identification of the Autochaperone Domain in the Type Va Secretion System (T5aSS): Prevalent Feature of Autotransporters with a Î ² -Helical Passenger. Frontiers in Microbiology, 2017, 8, 2607.	3.5	17
57	Selective binding of estrogen receptor $\hat{I}\pm$ to ubiquitin chains. IUBMB Life, 2016, 68, 569-577.	3.4	10
58	Molecular Evolution of Alternative Oxidase Proteins: A Phylogenetic and Structure Modeling Approach. Journal of Molecular Evolution, 2016, 82, 207-218.	1.8	27
59	Multiple allosteric sites are involved in the modulation of insulinâ€degradingâ€enzyme activity by somatostatin. FEBS Journal, 2016, 283, 3755-3770.	4.7	18
60	Peptidomimetic Targeting of Ca _v β2 Overcomes Dysregulation of the L-Type Calcium Channel Density and Recovers Cardiac Function. Circulation, 2016, 134, 534-546.	1.6	42
61	Molecular models of human visual pigments: insight into the atomic bases of spectral tuning. Bio-Algorithms and Med-Systems, 2016, 12, 141-146.	2.4	0
62	Nitrobindin: An Ubiquitous Family of All <i>β</i> â€Barrel Hemeâ€proteins. IUBMB Life, 2016, 68, 423-428.	3.4	20
63	Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase. Amino Acids, 2016, 48, 2283-2291.	2.7	11
64	The human iron exporter ferroportin. Insight into the transport mechanism by molecular modeling. Bio-Algorithms and Med-Systems, 2016, 12, 1-7.	2.4	3
65	Resveratrol and its methoxy-derivatives as modulators of DNA damage induced by ionising radiation. Mutagenesis, 2016, 31, 433-441.	2.6	19
66	All- trans -retinoic acid and retinol binding to the FA1 site of human serum albumin competitively inhibits heme-Fe(III) association. Archives of Biochemistry and Biophysics, 2016, 590, 56-63.	3.0	13
67	Different disulfide bridge connectivity drives alternative folds in highly homologous <i>Brassicaceae</i> trypsin inhibitors. IUBMB Life, 2015, 67, 966-970.	3.4	0
68	Functional and Spectroscopic Characterization of Chlamydomonas reinhardtii Truncated Hemoglobins. PLoS ONE, 2015, 10, e0125005.	2.5	13
69	A bacterial homologue of the human iron exporter ferroportin. FEBS Letters, 2015, 589, 3829-3835.	2.8	12
70	Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution. Amino Acids, 2015, 47, 949-961.	2.7	2
71	Enhanced heme accessibility in horse heart mini-myoglobin: Insights from molecular modelling and reactivity studies. Archives of Biochemistry and Biophysics, 2015, 585, 1-9.	3.0	3
72	Cardiolipin-cytochrome <i>c</i> complex: Switching cytochrome <i>c</i> from an electron-transfer shuttle to a myoglobin- and a peroxidase-like heme-protein. IUBMB Life, 2015, 67, 98-109.	3.4	45

#	Article	IF	CITATIONS
73	LIBRA: LIgand Binding site Recognition Application. Bioinformatics, 2015, 31, 4020-4022.	4.1	21
74	Structure/Function/Dynamics of Photosystem II Plastoquinone Binding Sites. Current Protein and Peptide Science, 2014, 15, 285-295.	1.4	56
75	The Glu216/Ser218 pocket is a major determinant of spermine oxidase substrate specificity. Biochemical Journal, 2014, 461, 453-459.	3.7	11
76	Role of Intermediate States in Protein Folding and Misfolding. , 2014, , 433-455.		0
77	Imatinib binding to human serum albumin modulates heme association and reactivity. Archives of Biochemistry and Biophysics, 2014, 560, 100-112.	3.0	25
78	ASSIST: a fast versatile local structural comparison tool. Bioinformatics, 2014, 30, 1022-1024.	4.1	13
79	A structural model of human ferroportin and of its iron binding site. FEBS Journal, 2014, 281, 2851-2860.	4.7	35
80	Cardiolipin modulates allosterically the nitrite reductase activity of horse heart cytochrome c. Journal of Biological Inorganic Chemistry, 2014, 19, 1195-1201.	2.6	18
81	Polar Localization of PhoN2, a Periplasmic Virulence-Associated Factor of Shigella flexneri, Is Required for Proper IcsA Exposition at the Old Bacterial Pole. PLoS ONE, 2014, 9, e90230.	2.5	27
82	Role of Cardiolipin in Mitochondrial Diseases and Apoptosis. Current Medicinal Chemistry, 2014, 21, 2702-2714.	2.4	28
83	Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World Journal of Biological Chemistry, 2014, 5, 204-15.	4.3	63
84	Structure–Function Relationships in the Evolutionary Framework of Spermine Oxidase. Journal of Molecular Evolution, 2013, 76, 365-370.	1.8	21
85	Inhibition of acetylpolyamine and spermine oxidases by the polyamine analogue chlorhexidine. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 463-467.	5.2	13
86	Design and biophysical characterization of atrazine-sensing peptides mimicking the Chlamydomonas reinhardtii plastoquinone binding niche. Physical Chemistry Chemical Physics, 2013, 15, 13108.	2.8	12
87	Reactivity of the human hemoglobin "Dark side― IUBMB Life, 2013, 65, 121-126.	3.4	5
88	Non-covalent and covalent modifications modulate the reactivity of monomeric mammalian globins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1750-1756.	2.3	27
89	Role of Lysines in Cytochrome <i>c</i> –Cardiolipin Interaction. Biochemistry, 2013, 52, 4578-4588.	2.5	83
90	Automatic Protein Abbreviations Discovery and Resolution from Full-Text Scientific Papers: The PRAISED Framework. Bio-Algorithms and Med-Systems, 2012, 8, 13.	2.4	13

Fabio Polticelli

#	Article	IF	CITATIONS
91	A Knowledge Discovery Methodology for Semantic Categorization of Unstructured Textual Sources. , 2012, , .		3
92	GA/GB Fold switching may modulate fatty acid transfer from human serum albumin to bacteria. IUBMB Life, 2012, 64, 885-888.	3.4	10
93	Recombinant expression and insecticidal properties of a Conus ventricosus conotoxin-GST fusion protein. Toxicon, 2012, 60, 744-751.	1.6	15
94	Conversion of cytochrome c into a peroxidase: Inhibitory mechanisms and implication for neurodegenerative diseases. Archives of Biochemistry and Biophysics, 2012, 522, 62-69.	3.0	36
95	Molecular evolution of the polyamine oxidase gene family in Metazoa. BMC Evolutionary Biology, 2012, 12, 90.	3.2	38
96	Cyanide binding to human plasma heme–hemopexin: A comparative study. Biochemical and Biophysical Research Communications, 2012, 428, 239-244.	2.1	2
97	Cupricyclins, Novel Redox-Active Metallopeptides Based on Conotoxins Scaffold. PLoS ONE, 2012, 7, e30739.	2.5	6
98	Resveratrol acts as a topoisomerase II poison in human glioma cells. International Journal of Cancer, 2012, 131, E173-8.	5.1	36
99	Spermine oxidase: ten years after. Amino Acids, 2012, 42, 441-450.	2.7	71
100	Do Natural Proteins Differ from Random Sequences Polypeptides? Natural vs. Random Proteins Classification Using an Evolutionary Neural Network. PLoS ONE, 2012, 7, e36634.	2.5	25
101	A framework for semi-automatic identification, disambiguation and storage of protein-related abbreviations in scientific literature. , 2011, , .		7
102	PS1-045. The conserved acidic cluster domain of HIV-1 Nef is required to induces a proinflammatory state in primary macrophages: involvement of TNF alpha Receptor Associated Factor 2. Cytokine, 2011, 56, 28.	3.2	0
103	Computational Biology, Protein Engineering, and Biosensor Technology: a Close Cooperation for Herbicides Monitoring. , 2011, , .		6
104	The structure of maize polyamine oxidase K300M mutant in complex with the natural substrates provides a snapshot of the catalytic mechanism of polyamine oxidation. FEBS Journal, 2011, 278, 809-821.	4.7	14
105	The effects of ATP and sodium chloride on the cytochrome c–cardiolipin interaction: The contrasting behavior of the horse heart and yeast proteins. Journal of Inorganic Biochemistry, 2011, 105, 1365-1372.	3.5	27
106	Probing mammalian spermine oxidase enzyme–substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization. Amino Acids, 2011, 40, 1115-1126.	2.7	35
107	Cardiolipin drives cytochrome <i>c</i> proapoptotic and antiapoptotic actions. IUBMB Life, 2011, 63, 160-165.	3.4	33
108	Experimentation of an automatic resolution method for protein abbreviations in full-text papers. , 2011, , .		4

2011,,.

#	Article	IF	CITATIONS
109	Xenosensors CAR and PXR at Work: Impact on Statin Metabolism. Current Drug Metabolism, 2011, 12, 300-311.	1.2	10
110	An Automatic Identification and Resolution System for Protein-Related Abbreviations in Scientific Papers. Lecture Notes in Computer Science, 2011, , 171-176.	1.3	10
111	Directed Evolution and In Silico Analysis of Reaction Centre Proteins Reveal Molecular Signatures of Photosynthesis Adaptation to Radiation Pressure. PLoS ONE, 2011, 6, e16216.	2.5	21
112	HIV-1 Nef Induces Proinflammatory State in Macrophages through Its Acidic Cluster Domain: Involvement of TNF Alpha Receptor Associated Factor 2. PLoS ONE, 2011, 6, e22982.	2.5	36
113	Cytochromes: Reactivity of the "dark side―of the heme. Biophysical Chemistry, 2010, 152, 21-27.	2.8	19
114	Extended cardiolipin anchorage to cytochrome c: a model for protein–mitochondrial membrane binding. Journal of Biological Inorganic Chemistry, 2010, 15, 689-700.	2.6	105
115	Spermine oxidase (SMO) activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm. BMC Cancer, 2010, 10, 555.	2.6	39
116	Role of External Loops of Human Ceruloplasmin in Copper Loading by ATP7B and Ccc2p. Journal of Biological Chemistry, 2010, 285, 20507-20513.	3.4	11
117	Dominant Mutants of Ceruloplasmin Impair the Copper Loading Machinery in Aceruloplasminemia. Journal of Biological Chemistry, 2009, 284, 4545-4554.	3.4	39
118	Massive non-natural proteins structure prediction using grid technologies. BMC Bioinformatics, 2009, 10, S22.	2.6	13
119	<i>In silico</i> Structural Study of Random Amino Acid Sequence Proteins Not Present in Nature. Chemistry and Biodiversity, 2009, 6, 2311-2336.	2.1	10
120	Structureâ€based design of novel <i>Chlamydomonas reinhardtii</i> D1â€D2 photosynthetic proteins for herbicide monitoring. Protein Science, 2009, 18, 2139-2151.	7.6	57
121	Cupryphans, metal-binding, redox active, redesigned conopeptides. Protein Science, 2009, 18, NA-NA.	7.6	5
122	ATP Acts as a Regulatory Effector in Modulating Structural Transitions of Cytochrome <i>c</i> : Implications for Apoptotic Activity. Biochemistry, 2009, 48, 3279-3287.	2.5	55
123	Spermine Metabolism and Anticancer Therapy. Current Cancer Drug Targets, 2009, 9, 118-130.	1.6	48
124	Human haptoglobin structure and function – a molecular modelling study. FEBS Journal, 2008, 275, 5648-5656.	4.7	78
125	S-Glutathionylation of metallothioneins by nitrosative/oxidative stress. Experimental Gerontology, 2008, 43, 415-422.	2.8	15
126	The R215W mutation in NBS1 impairs γ-H2AX binding and affects DNA repair: molecular bases for the severe phenotype of 657del5/R215W Nijmegen breakage syndrome patients. Biochemical and Biophysical Research Communications, 2008, 369, 835-840.	2.1	23

#	Article	IF	CITATIONS
127	<i>Conus ventricosus </i> venom peptides profiling by HPLCâ€MS: A new insight in the intraspecific variation. Journal of Separation Science, 2008, 31, 488-498.	2.5	40
128	Characterization of a Lysine-Specific Histone Demethylase from Arabidopsis thaliana. Biochemistry, 2008, 47, 4936-4947.	2.5	36
129	Never born proteins as a test case for ab initio protein structures prediction. Bioinformation, 2008, 3, 177-179.	0.5	6
130	Probing the Effect of Mutations on Cytochrome c Stability. Protein and Peptide Letters, 2007, 14, 335-339.	0.9	4
131	The Pseudomonas Quorum-Sensing Regulator RsaL Belongs to the Tetrahelical Superclass of H-T-H Proteins. Journal of Bacteriology, 2007, 189, 1922-1930.	2.2	45
132	Nanoscopic and Redox Characterization of Engineered Horse Cytochrome c Chemisorbed on a Bare Gold Electrode. Protein Journal, 2007, 26, 271-279.	1.6	4
133	Inhibition of polyamine and spermine oxidases by polyamine analogues. FEBS Journal, 2006, 273, 1115-1123.	4.7	60
134	Nitrosative/oxidative modifications and ageing. Mechanisms of Ageing and Development, 2006, 127, 544-551.	4.6	13
135	Investigation ofde novo Totally Random Biosequences, Part II. Chemistry and Biodiversity, 2006, 3, 840-859.	2.1	56
136	The Production ofde novo Folded Proteins by a Stepwise Chain Elongation: A Model for Prebiotic Chemical Evolution of Macromolecular Sequences. Chemistry and Biodiversity, 2006, 3, 1202-1210.	2.1	20
137	Heterologous Expression and Biochemical Characterization of a Polyamine Oxidase from Arabidopsis Involved in Polyamine Back Conversion. Plant Physiology, 2006, 141, 1519-1532.	4.8	144
138	The Quorum-Sensing Negative Regulator RsaL of Pseudomonas aeruginosa Binds to the lasl Promoter. Journal of Bacteriology, 2006, 188, 815-819.	2.2	97
139	Two short protein domains are responsible for the nuclear localization of the mouse spermine oxidase µ isoform. FEBS Journal, 2005, 272, 3052-3059.	4.7	20
140	Allosteric modulation of monomeric proteins. Biochemistry and Molecular Biology Education, 2005, 33, 169-176.	1.2	32
141	Lys300 Plays a Major Role in the Catalytic Mechanism of Maize Polyamine Oxidaseâ€. Biochemistry, 2005, 44, 16108-16120.	2.5	48
142	Probing the Cruzain S2Recognition Subsite: A Kinetic and Binding Energy Calculation Studyâ€. Biochemistry, 2005, 44, 2781-2789.	2.5	15
143	Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neuroscience Letters, 2005, 384, 254-259.	2.1	81
144	ATP specifically drives refolding of non-native conformations of cytochrome c. Protein Science, 2005, 14, 1049-1058.	7.6	47

#	Article	IF	CITATIONS
145	Structural Consensus Rules for Cysteine Protease Inhibition by NO(-Donors). Current Enzyme Inhibition, 2005, 1, 231-238.	0.4	2
146	Mouse spermine oxidase gene splice variants. FEBS Journal, 2004, 271, 760-770.	0.2	60
147	Proteolytic activity of bovine lactoferrin. BioMetals, 2004, 17, 249-255.	4.1	23
148	1H NMR relaxometric characterization of bovine lactoferrin. Journal of Inorganic Biochemistry, 2004, 98, 1421-1426.	3.5	5
149	Proteolytic activity of bovine lactoferrin. BioMetals, 2004, 17, 745-745.	4.1	0
150	Solution structure of the cyclic peptide contryphan-Vn, a Ca2+-dependent K+channel modulator. Biopolymers, 2004, 74, 189-198.	2.4	22
151	Molecular Basis for the Binding of Competitive Inhibitors of Maize Polyamine Oxidaseâ€. Biochemistry, 2004, 43, 3426-3435.	2.5	46
152	Interleukin-1β up-regulates iron efflux in rat C6 glioma cells through modulation of ceruloplasmin and ferroportin-1 synthesis. Neuroscience Letters, 2004, 363, 182-186.	2.1	37
153	The Rhodococcus sp. Cocaine Esterase: A Bacterial Candidate for Novel Pharmacokinetic-based Therapies for Cocaine Abuse. IUBMB Life, 2003, 55, 397-402.	3.4	3
154	AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. FEBS Journal, 2003, 270, 2593-2604.	0.2	181
155	Contryphan-Vn: a modulator of Ca2+-dependent K+ channels. Biochemical and Biophysical Research Communications, 2003, 303, 238-246.	2.1	48
156	Heterologous Expression and Characterization of Mouse Spermine Oxidase. Journal of Biological Chemistry, 2003, 278, 5271-5276.	3.4	86
157	Contryphan-Vn: A Novel Peptide from the Venom of the Mediterranean Snail Conus ventricosus. Biochemical and Biophysical Research Communications, 2001, 288, 908-913.	2.1	49
158	Structural determinants of miniâ€protein stability. Biochemistry and Molecular Biology Education, 2001, 29, 16-20.	1.2	5
159	Inhibition ofSaccharomyces cerevisiaePhosphomannose Isomerase by the NO-donor S-nitroso-acetyl-penicillamine. Journal of Enzyme Inhibition and Medicinal Chemistry, 2001, 16, 287-292.	0.5	2
160	Modulation of the catalytic activity of cruzipain, the major cysteine proteinase fromTrypanosoma cruzi, by temperature and pH. FEBS Journal, 2001, 268, 3253-3258.	0.2	26
161	A barley polyamine oxidase isoform with distinct structural features and subcellular localization. FEBS Journal, 2001, 268, 3816-3830.	0.2	59
162	Structural determinants of mini-protein stability. Biochemistry and Molecular Biology Education, 2001, 29, 16-20.	1.2	7

#	Article	IF	CITATIONS
163	Time-resolved X-ray crystallography: uncovering reaction intermediates in biochemical processes. Biochemistry and Molecular Biology Education, 2001, 29, 31-32.	1.2	1
164	Inhibition of Cysteine Protease Activity by NO-donors. Current Protein and Peptide Science, 2001, 2, 137-153.	1.4	68
165	Serine proteinase inhibition by the active site titrant N α-(N,N-dimethylcarbamoyl)-α-azaornithine p-nitrophenyl ester. FEBS Journal, 2000, 267, 1239-1246.	0.2	3
166	Characterization of five new low-molecular-mass trypsin inhibitors from white mustard (Sinapis) Tj ETQq0 0 0 rgB	T /Overloc 0.2	k 10 Tf 50 6 18
167	A Chimeric Mini-Trypsin Inhibitor Derived from the Oil Rape Proteinase Inhibitor Type III. Biochemical and Biophysical Research Communications, 2000, 275, 817-820.	2.1	7
168	Modulation of the Nitric Oxide Pathway by Copper in Glial Cells. Biochemical and Biophysical Research Communications, 2000, 275, 776-782.	2.1	11
169	Re-Evaluation of Amino Acid Sequence and Structural Consensus Rules for Cysteine-Nitric Oxide Reactivity. Biological Chemistry, 2000, 381, 623-627.	2.5	68
170	The T-Knot Motif Revisited. Biological Chemistry, 1999, 380, 1247-1250.	2.5	8
171	Nitric Oxide Inhibits the HIV-1 Reverse Transcriptase Activity. Biochemical and Biophysical Research Communications, 1999, 258, 624-627.	2.1	41
172	Structural determinants of trypsin affinity and specificity for cationic inhibitors. Protein Science, 1999, 8, 2621-2629.	7.6	27
173	Structure/Function Relationships in Ceruloplasmin. Advances in Experimental Medicine and Biology, 1999, 448, 175-182.	1.6	16
174	Role of the electrostatic loop charged residues in Cu, Zn superoxide dismutase. Protein Science, 1998, 7, 2354-2358.	7.6	35
175	Effect of Val 73 → Trp Mutation on the Reaction of "Cambialistic―Superoxide Dismutase fromPropionibacterium shermaniiwith Hydrogen Peroxide. Archives of Biochemistry and Biophysics, 1997, 345, 156-159.	3.0	12
176	Characterization of Cu,Zn Superoxide Dismutase from the Bathophile Fish, Lampanyctus crocodilus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 117, 403-407.	1.6	11
177	Amino Acid Sequence of Chicken Cu, Zn-Containing Superoxide Dismutase and Identification of Glutathionyl Adducts at Exposed Cysteine Residues. FEBS Journal, 1996, 237, 433-439.	0.2	45
178	Identification of the residues responsible for the alkaline inhibition of Cu, Zn superoxide dismutase: A siteâ€directed mutagenesis approach. Protein Science, 1996, 5, 248-253.	7.6	11
179	Effect of Lys→Arg mutation on the thermal stability of Cu,Zn superoxide dismutase: influence on the monomer–dimer equilibrium. Protein Engineering, Design and Selection, 1996, 9, 323-325.	2.1	19
180	Modelling the three-dimensional structure and the electrostatic potential field of two Cu,Zn superoxide dismutase variants from tomato leaves. Protein Engineering, Design and Selection, 1995, 8, 551-556.	2.1	8

#	Article	IF	CITATIONS
181	Low-temperature optical spectroscopy of cobalt in Cu,Co superoxide dismutase: a structural dynamics study of the solvent-unaccessible metal site. Biochemistry, 1995, 34, 16313-16319.	2.5	13
182	Modulation of the Catalytic Rate of Cu,Zn Superoxide Dismutase in Single and Double Mutants of Conserved Positively and Negatively Charged Residues. Biochemistry, 1995, 34, 6043-6049.	2.5	48
183	Identification of the Residues Responsible for the Alkaline Inhibition of the Activity of Cu,Zn Superoxide Dismutase: A Study of Native and Chemically Modified Enzymes. Archives of Biochemistry and Biophysics, 1995, 321, 123-126.	3.0	12
184	Simulation of superoxide-superoxide dismutase association rate for six natural variants. Comparison with the experimental catalytic rate. The Journal of Physical Chemistry, 1994, 98, 10554-10557.	2.9	28
185	Molecular Modeling and Electrostatic Potential Calculations on Chemically Modified Cu,Zn Superoxide Dismutases from Bos taurus and Shark Prionace glauca: Role of Lys134 in Electrostatically Steering the Substrate to the Active Site. Archives of Biochemistry and Biophysics, 1994, 312, 22-30.	3.0	18
186	Crystallographic Study of Azide-inhibited Bovine Cu,Zn Superoxide Dismutase. Journal of Molecular Biology, 1994, 240, 179-183.	4.2	32
187	Crystal structure of the cyanide-inhibitedXenopus laevisCu,Zn superoxide dismutase at 98 K. FEBS Letters, 1994, 349, 93-98.	2.8	35
188	Mutation of Lys-120 and Lys-134 drastically reduces the catalytic rate of Cu,Zn superoxide dismutase. FEBS Letters, 1994, 352, 76-78.	2.8	23
189	Low-Temperature Optical Spectroscopy of Native and Azide-Reacted Bovine Cu,Zn Superoxide Dismutase. A Structural Dynamics Study. Biochemistry, 1994, 33, 15103-15109.	2.5	20
190	Electrostatic Recognition in Redox Copper Proteins: A 1H NMR Study of the Protonation Behavior of His 19 in Oxidized and Reduced Cu,Zn Superoxide Dismutase. Archives of Biochemistry and Biophysics, 1993, 301, 244-250.	3.0	5
191	Crystallization and Preliminary Crystallographic Analysis of Recombinant Xenopus laevis Cu, Zn Superoxide Dismutase b. Biochemical and Biophysical Research Communications, 1993, 194, 1008-1011.	2.1	10
192	Evolutionary conservativeness of electric field in the Cu,Zn superoxide dismutase active site. Journal of Molecular Biology, 1992, 223, 337-342.	4.2	81
193	An electrostatic enzyme-substrate recognition: the case of Cu, Zn superoxide dismutase. Computational and Theoretical Chemistry, 1992, 256, 153-160.	1.5	3
194	Involvement of the Copper in the Inhibition of Cu, Zn Superoxide Dismutase Activity at high pH. Free Radical Research Communications, 1991, 12, 305-312.	1.8	2
195	The Cu,Zn superoxide dismutase isoenzymes of Xenopus laevis: Purification, identification of a heterodimer and differential heat sensitivity. Biochemical and Biophysical Research Communications, 1990, 173, 1186-1193.	2.1	20
196	Substitution of arginine for lysine 134 alters electrostatic parameters of the active site in shark Cu,Zn superoxide dismutase. FEBS Letters, 1989, 250, 49-52.	2.8	19