
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6058686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrostatically induced pKa shifts in oligopeptides: the upshot of neighboring side chains. Amino Acids, 2022, 54, 277.	2.7	4
2	Binding affinity of aniline-substituted dodecaborates to cyclodextrins. Chemical Communications, 2022, 58, 2363-2366.	4.1	6
3	Supramolecular Catalysis of a Catalysis-Resistant Diels–Alder Reaction: Almost Theoretical Acceleration of Cyclopentadiene Dimerization inside Cucurbit[7]uril. ACS Catalysis, 2022, 12, 2261-2269.	11.2	21
4	Boron clusters as broadband membrane carriers. Nature, 2022, 603, 637-642.	27.8	62
5	Discrete, Cationic Palladium(II)â€Oxo Clusters via fâ€Metal Ion Incorporation and their Macrocyclic Hostâ€Guest Interactions with Sulfonatocalixarenes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
6	Dynamic Interconversions of Single Molecules Probed by Recognition Tunneling at Cucurbit[7]urilâ€Functionalized Supramolecular Junctions. Angewandte Chemie, 2022, 134, .	2.0	4
7	Dynamic Interconversions of Single Molecules Probed by Recognition Tunneling at Cucurbit[7]urilâ€Functionalized Supramolecular Junctions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
8	Protonâ€Gradientâ€Driven Sensitivity Enhancement of Liposomeâ€Encapsulated Supramolecular Chemosensors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
9	An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysineâ€rich Peptides and Proteins. Angewandte Chemie - International Edition, 2021, 60, 1875-1882.	13.8	18
10	An Amphiphilic Sulfonatocalix[5]arene as an Activator for Membrane Transport of Lysineâ€rich Peptides and Proteins. Angewandte Chemie, 2021, 133, 1903-1910.	2.0	2
11	Reversible covalent locking of a supramolecular hydrogel <i>via</i> UV-controlled anthracene dimerization. Polymer Chemistry, 2021, 12, 307-315.	3.9	17
12	A reference scale of cucurbit[7]uril binding affinities. Organic and Biomolecular Chemistry, 2021, 19, 8521-8529.	2.8	21
13	Carbon Dot Blinking Enables Accurate Molecular Counting at Nanoscale Resolution. Analytical Chemistry, 2021, 93, 3968-3975.	6.5	13
14	Permeation eines 5.1â€kDaâ€Peptides durch einen Proteinkanal: Molekulare Basis der Translokation von Protamin durch CymA aus Klebsiella Oxytoca **. Angewandte Chemie, 2021, 133, 8170-8175.	2.0	2
15	Largeâ€Peptide Permeation Through a Membrane Channel: Understanding Protamine Translocation Through CymA from <i>Klebsiella Oxytoca</i> **. Angewandte Chemie - International Edition, 2021, 60, 8089-8094.	13.8	15
16	Cucurbituril Ameliorates Liver Damage Induced by Microcystis aeruginosa in a Mouse Model. Frontiers in Chemistry, 2021, 9, 660927.	3.6	1
17	Membrane Permeability and Its Activation Energies in Dependence on Analyte, Lipid, and Phase Type Obtained by the Fluorescent Artificial Receptor Membrane Assay. ACS Sensors, 2021, 6, 175-182.	7.8	16
18	Self-assembled theranostic microcarrier targeting tumor cells with high metastatic potential. Materials and Design, 2021, 212, 110196.	7.0	2

#	Article	IF	CITATIONS
19	Efficient Hydro―and Organogelation by Minimalistic Diketopiperazines Containing a Highly Insoluble Aggregationâ€Induced, Blueâ€&hifted Emission Luminophore**. Chemistry - A European Journal, 2021, 27, 16488-16497.	3.3	3
20	Host–Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO ₂ Reduction. ACS Catalysis, 2020, 10, 751-761.	11.2	43
21	Real-Time Parallel Artificial Membrane Permeability Assay Based on Supramolecular Fluorescent Artificial Receptors. Frontiers in Chemistry, 2020, 8, 597927.	3.6	17
22	Fluorescent artificial receptor-based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability. Communications Biology, 2020, 3, 383.	4.4	32
23	Interaction of Cucurbit[7]uril With Protease Substrates: Application to Nanosecond Time-Resolved Fluorescence Assays. Frontiers in Chemistry, 2020, 8, 806.	3.6	4
24	Reliably Probing the Conductance of a Molecule in a Cavity via van der Waals Contacts. Journal of Physical Chemistry C, 2020, 124, 16143-16148.	3.1	15
25	Hostâ€Guest Complexation Affects Peryleneâ€Based Dye Aggregation. ChemistrySelect, 2020, 5, 5850-5854.	1.5	8
26	Faceâ€Fusion of Icosahedral Boron Hydride Increases Affinity to γâ€Cyclodextrin: closo , closo â€[B 21 H 18] â°' as an Anion with Very Low Free Energy of Dehydration. ChemPhysChem, 2020, 21, 971-976.	2.1	14
27	Augmenting Peptide Flexibility by Inserting Gamma-Aminobutyric Acid (GABA) in Their Sequence. International Journal of Peptide Research and Therapeutics, 2020, 26, 2633-2640.	1.9	4
28	Encapsulation of ionic liquids inside cucurbiturils. Organic and Biomolecular Chemistry, 2020, 18, 2120-2128.	2.8	4
29	High-Affinity Binding of Metallacarborane Cobalt Bis(dicarbollide) Anions to Cyclodextrins and Application to Membrane Translocation. Journal of Organic Chemistry, 2019, 84, 11790-11798.	3.2	58
30	Labelâ€Free Fluorescent Kinase and Phosphatase Enzyme Assays with Supramolecular Hostâ€Dye Pairs. ChemistryOpen, 2019, 8, 1350-1354.	1.9	14
31	Coassembly of Gold Nanoclusters with Nucleic Acids: Sensing, Bioimaging, and Gene Transfection. Particle and Particle Systems Characterization, 2019, 36, 1900281.	2.3	11
32	A Selective Cucurbit[8]urilâ€₽eptide Beacon Ensemble for the Ratiometric Fluorescence Detection of Peptides. Chemistry - A European Journal, 2019, 25, 13088-13093.	3.3	18
33	Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology. Frontiers in Chemistry, 2019, 7, 619.	3.6	118
34	Synthesis and photophysical properties of inclusion complexes between conjugated polyazomethines with Î ³ -cyclodextrin and its tris-O-methylated derivative. European Polymer Journal, 2019, 113, 236-243.	5.4	12
35	Cucurbit[7]urilâ€Threaded Poly(3,4â€ethylenedioxythiophene): A Novel Processable Conjugated Polyrotaxane. European Journal of Organic Chemistry, 2019, 2019, 3442-3450.	2.4	11
36	Ratiometric DNA sensing with a host–guest FRET pair. Chemical Communications, 2019, 55, 671-674.	4.1	39

#	Article	IF	CITATIONS
37	Selective Detection of Nitroexplosives Using Molecular Recognition within Self-Assembled Plasmonic Nanojunctions. Journal of Physical Chemistry C, 2019, 123, 15769-15776.	3.1	31
38	Fluorescence Monitoring of Peptide Transport Pathways into Large and Giant Vesicles by Supramolecular Host–Dye Reporter Pairs. Journal of the American Chemical Society, 2019, 141, 20137-20145.	13.7	69
39	A supramolecular five-component relay switch that exposes the mechanistic competition of dissociative <i>versus</i> associative binding to cucurbiturils by ratiometric fluorescence monitoring. Chemical Communications, 2019, 55, 14123-14126.	4.1	15
40	Versatile, one-pot introduction of nonahalogenated 2-ammonio-decaborate ions as boron cluster scaffolds into organic molecules; host–guest complexation with γ-cyclodextrin. Chemical Communications, 2019, 55, 13669-13672.	4.1	11
41	Binding affinities of cucurbit[<i>n</i>]urils with cations. Chemical Communications, 2019, 55, 14131-14134.	4.1	64
42	Preferential binding of unsaturated hydrocarbons in aryl-bisimidazolium•cucurbit[8]uril complexes furbishes evidence for small-molecule ï€â€"ï€ interactions. Chemical Science, 2019, 10, 10240-10246.	7.4	12
43	Orthogonal Molecular Recognition of Chaotropic and Hydrophobic Guests Enables Supramolecular Architectures. ChemNanoMat, 2019, 5, 124-129.	2.8	12
44	Chapter 6. Cucurbituril-based Sensors and Assays. Monographs in Supramolecular Chemistry, 2019, , 121-149.	0.2	2
45	Cucurbituril Properties and the Thermodynamic Basis of Host–Guest Binding. Monographs in Supramolecular Chemistry, 2019, , 54-85.	0.2	3
46	Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding. Journal of Physical Chemistry B, 2018, 122, 4445-4456.	2.6	10
47	Supramolecular assemblies through host–guest complexation between cucurbiturils and an amphiphilic guest molecule. Chemical Communications, 2018, 54, 1734-1737.	4.1	35
48	The chaotropic effect as an orthogonal assembly motif for multi-responsive dodecaborate-cucurbituril supramolecular networks. Chemical Communications, 2018, 54, 2098-2101.	4.1	62
49	Structural Effects on Guest Binding in Cucurbit[8]urilâ€Perylenemonoimide Hostâ€Guest Complexes. ChemistrySelect, 2018, 3, 4699-4704.	1.5	11
50	Two Orders of Magnitude Variation of Diffusion-Enhanced Förster Resonance Energy Transfer in Polypeptide Chains. Polymers, 2018, 10, 1079.	4.5	2
51	Cavitation energies can outperform dispersion interactions. Nature Chemistry, 2018, 10, 1252-1257.	13.6	60
52	Precise supramolecular control of surface coverage densities on polymer micro- and nanoparticles. Chemical Science, 2018, 9, 8575-8581.	7.4	17
53	A Supramolecular Approach for Enhanced Antibacterial Activity and Extended Shelf-life of Fluoroquinolone Drugs with Cucurbit[7]uril. Scientific Reports, 2018, 8, 13925.	3.3	48
54	Rational design of boron-dipyrromethene (BODIPY) reporter dyes for cucurbit[7]uril. Beilstein Journal of Organic Chemistry, 2018, 14, 1961-1971.	2.2	14

#	Article	IF	CITATIONS
55	The Chaotropic Effect as an Assembly Motif in Chemistry. Angewandte Chemie - International Edition, 2018, 57, 13968-13981.	13.8	231
56	Der chaotrope Effekt als Aufbaumotiv in der Chemie. Angewandte Chemie, 2018, 130, 14164-14177.	2.0	42
57	Host–Guest Chemistry of Carboranes: Synthesis of Carboxylate Derivatives and Their Binding to Cyclodextrins. Chemistry - A European Journal, 2018, 24, 12970-12975.	3.3	24
58	Hierarchical host–guest assemblies formed on dodecaborate-coated gold nanoparticles. Chemical Communications, 2017, 53, 4616-4619.	4.1	40
59	Binary twinned-icosahedral [B ₂₁ H ₁₈] ^{â^'} interacts with cyclodextrins as a precedent for its complexation with other organic motifs. Physical Chemistry Chemical Physics, 2017, 19, 11748-11752.	2.8	26
60	Gold nanoparticle aggregation enables colorimetric sensing assays for enzymatic decarboxylation. Analytical Methods, 2017, 9, 2784-2787.	2.7	14
61	Deep-Red Fluorescent Gold Nanoclusters for Nucleoli Staining: Real-Time Monitoring of the Nucleolar Dynamics in Reverse Transformation of Malignant Cells. ACS Applied Materials & Interfaces, 2017, 9, 17799-17806.	8.0	46
62	Polyrotaxanes based on PEG-amine with cucurbit[7]uril, α-cyclodextrin and its tris-O-methylated derivative. European Polymer Journal, 2017, 93, 323-333.	5.4	15
63	A Label-Free Continuous Fluorescence-Based Assay for Monitoring Ornithine Decarboxylase Activity with a Synthetic Putrescine Receptor. SLAS Discovery, 2017, 22, 906-914.	2.7	23
64	Phosphorylationâ€Responsive Membrane Transport of Peptides. Angewandte Chemie - International Edition, 2017, 56, 15742-15745.	13.8	49
65	Phosphorylierung reguliert den Membrantransport von Peptiden. Angewandte Chemie, 2017, 129, 15948-15951.	2.0	10
66	A fluorescent, supramolecular chemosensor to follow steroid depletion in bacterial cultures. Analytical and Bioanalytical Chemistry, 2017, 409, 6485-6494.	3.7	14
67	Intracavity folding of a perylene dye affords a high-affinity complex with cucurbit[8]uril. Chemical Communications, 2017, 53, 9242-9245.	4.1	18
68	Helicityâ€Dependent Regiodifferentiation in the Excitedâ€State Quenching and Chiroptical Properties of Inward/Outward Helical Coumarins. Chemistry - A European Journal, 2017, 23, 14797-14805.	3.3	25
69	Comparison of Complexation-Induced p <i>K</i> _a Shifts in the Ground and Excited States of Dyes as Well as Different Macrocyclic Hosts and Their Manifestation in Host-Retarded Excited-Dye Deprotonation. Journal of Physical Chemistry B, 2017, 121, 11390-11398.	2.6	24
70	HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions. Journal of Physical Chemistry B, 2017, 121, 11144-11162.	2.6	62
71	Tuning protonation states of tripelennamine antihistamines by cucurbit[7]uril. Journal of Physical Organic Chemistry, 2016, 29, 101-106.	1.9	22
72	Chitin-acetate/DMSO as a supramolecular green CO ₂ -phile. RSC Advances, 2016, 6, 22090-22093.	3.6	32

#	Article	IF	CITATIONS
73	Cucurbit[7]uril-based fluorene polyrotaxanes. European Polymer Journal, 2016, 83, 256-264.	5.4	10
74	Nanomolar Binding of Steroids to Cucurbit[<i>n</i>]urils: Selectivity and Applications. Journal of the American Chemical Society, 2016, 138, 13022-13029.	13.7	143
75	High-affinity host–guest chemistry of large-ring cyclodextrins. Organic and Biomolecular Chemistry, 2016, 14, 7702-7706.	2.8	80
76	Active tumor-targeting luminescent gold clusters with efficient urinary excretion. Chemical Communications, 2016, 52, 9232-9235.	4.1	33
77	Inclusion of neutral guests by water-soluble macrocyclic hosts – a comparative thermodynamic investigation with cyclodextrins, calixarenes and cucurbiturils. Supramolecular Chemistry, 2016, 28, 384-395.	1.2	45
78	Dodecaborate-Functionalized Anchor Dyes for Cyclodextrin-Based Indicator Displacement Applications. Organic Letters, 2016, 18, 932-935.	4.6	65
79	Photophysical properties of neutral and dissociated forms of rosmarinic acid. Journal of Luminescence, 2016, 175, 50-56.	3.1	24
80	Water Structure Recovery in Chaotropic Anion Recognition: Highâ€Affinity Binding of Dodecaborate Clusters to γ yclodextrin. Angewandte Chemie - International Edition, 2015, 54, 6852-6856.	13.8	214
81	Rücktitelbild: Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to γ-Cyclodextrin (Angew. Chem. 23/2015). Angewandte Chemie, 2015, 127, 7046-7046.	2.0	1
82	Energy and Electron Transfer Dynamics within a Series of Perylene Diimide/Cyclophane Systems. Journal of the American Chemical Society, 2015, 137, 15299-15307.	13.7	64
83	Synthesis, Photophysical, and Morphological Properties of Azomethineâ€Persylilated αâ€Cyclodextrin Mainâ€Chain Polyrotaxane. Macromolecular Chemistry and Physics, 2015, 216, 662-670.	2.2	12
84	Indicator Displacement Assays Inside Live Cells. Angewandte Chemie - International Edition, 2015, 54, 792-795.	13.8	104
85	Cucurbiturils as supramolecular inhibitors of DNA restriction by type II endonucleases. Organic and Biomolecular Chemistry, 2015, 13, 2866-2869.	2.8	32
86	Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular host–guest interactions. Organic and Biomolecular Chemistry, 2015, 13, 3048-3057.	2.8	21
87	Thermoresponsive Interplay of Water Insoluble Poly(2-alkyl-2-oxazoline)s Composition and Supramolecular Host–Guest Interactions. International Journal of Molecular Sciences, 2015, 16, 7428-7444.	4.1	12
88	Associative chemosensing by fluorescent macrocycle–dye complexes – a versatile enzyme assay platform beyond indicator displacement. Chemical Communications, 2015, 51, 4977-4980.	4.1	57
89	Coulomb Repulsion in Short Polypeptides. Journal of Physical Chemistry B, 2015, 119, 33-43.	2.6	17
90	Molecular wire formation from poly[2,7-(9,9-dioctylfluorene)-alt-(5,5′-bithiophene/cucurbit[7]uril)] polyrotaxane copolymer. European Polymer Journal, 2015, 62, 124-129.	5.4	13

#	Article	IF	CITATIONS
91	Triple Emission from <i>p</i> â€Dimethylaminobenzonitrile–Cucurbit[8]uril Triggers the Elusive Excimer Emission. Chemistry - A European Journal, 2015, 21, 691-696.	3.3	44
92	Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chemical Society Reviews, 2015, 44, 394-418.	38.1	1,100
93	Chemosensing Ensembles for Monitoring Biomembrane Transport in Real Time. Angewandte Chemie - International Edition, 2014, 53, 2762-2765.	13.8	97
94	Nichtkovalente ChiralitÃæsensorikâ€Ensembles zur Detektion und Reaktionsverfolgung von Aminosären, Peptiden, Proteinen und aromatischen Wirkstoffen. Angewandte Chemie, 2014, 126, 5802-5807.	2.0	40
95	Noncovalent Chirality Sensing Ensembles for the Detection and Reaction Monitoring of Amino Acids, Peptides, Proteins, and Aromatic Drugs. Angewandte Chemie - International Edition, 2014, 53, 5694-5699.	13.8	193
96	The Hydrophobic Effect Revisited—Studies with Supramolecular Complexes Imply Highâ€Energy Water as a Noncovalent Driving Force. Angewandte Chemie - International Edition, 2014, 53, 11158-11171.	13.8	502
97	Dynamically Analyte-Responsive Macrocyclic Host–Fluorophore Systems. Accounts of Chemical Research, 2014, 47, 2150-2159.	15.6	319
98	A Simple Assay for Quality Binders to Cucurbiturils. Chemistry - A European Journal, 2014, 20, 9897-9901.	3.3	39
99	Cucurbiturils as fluorophilic receptors. Supramolecular Chemistry, 2014, 26, 657-669.	1.2	45
100	Excited-state properties of fluorenones: influence of substituents, solvent and macrocyclic encapsulation. Physical Chemistry Chemical Physics, 2014, 16, 16436-16445.	2.8	38
101	Efficient Host–Guest Energy Transfer in Polycationic Cyclophane–Perylene Diimide Complexes in Water. Journal of the American Chemical Society, 2014, 136, 9053-9060.	13.7	97
102	Cucurbit[8]uril and Blue-Box: High-Energy Water Release Overwhelms Electrostatic Interactions. Journal of the American Chemical Society, 2013, 135, 14879-14888.	13.7	174
103	Diffusion-Enhanced Förster Resonance Energy Transfer and the Effects of External Quenchers and the Donor Quantum Yield. Journal of Physical Chemistry B, 2013, 117, 185-198.	2.6	28
104	Chemistry inside molecular containers in the gas phase. Nature Chemistry, 2013, 5, 376-382.	13.6	144
105	The "True―Affinities of Metal Cations to <i>p</i> â€Sulfonatocalix[4]arene: A Thermodynamic Study at Neutral pH Reveals a Pitfall Due to Salt Effects in Microcalorimetry. Chemistry - A European Journal, 2013, 19, 17809-17820.	3.3	45
106	Cucurbiturils in Drug Delivery And For Biomedical Applications. Monographs in Supramolecular Chemistry, 2013, , 164-212.	0.2	23
107	Corynebacterium jeikeium jk0268 Constitutes for the 40 Amino Acid Long PorACj, Which Forms a Homooligomeric and Anion-Selective Cell Wall Channel. PLoS ONE, 2013, 8, e75651.	2.5	14
108	Halogen Bonding inside a Molecular Container. Journal of the American Chemical Society, 2012, 134, 19935-19941.	13.7	119

#	Article	IF	CITATIONS
109	In-cage and out-of-cage combinations of benzylic radical pairs in the glassy and melted states of poly(alkyl methacrylate)s. Photochemical and Photobiological Sciences, 2012, 11, 914-924.	2.9	7
110	Release of High-Energy Water as an Essential Driving Force for the High-Affinity Binding of Cucurbit[<i>n</i>]urils. Journal of the American Chemical Society, 2012, 134, 15318-15323.	13.7	471
111	Validation of Drug-Like Inhibitors against Mycobacterium Tuberculosis L-Aspartate α-Decarboxylase Using Nuclear Magnetic Resonance (1H NMR). PLoS ONE, 2012, 7, e45947.	2.5	10
112	Monitoring Stepwise Proteolytic Degradation of Peptides by Supramolecular Domino Tandem Assays and Mass Spectrometry for Trypsin and Leucine Aminopeptidase. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	10
113	Interactions of Amino Acids and Polypeptides with Metal Oxide Nanoparticles Probed by Fluorescent Indicator Adsorption and Displacement. ACS Nano, 2012, 6, 5668-5679.	14.6	49
114	Strongly Fluorescent, Switchable Perylene Bis(diimide) Host–Guest Complexes with Cucurbit[8]uril In Water. Angewandte Chemie - International Edition, 2012, 51, 7739-7743.	13.8	199
115	Supramolecular Tandem Enzyme Assays. Chemistry - A European Journal, 2012, 18, 3444-3459.	3.3	130
116	A Fluorescenceâ€Based Supramolecular Tandem Assay for Monitoring Lysine Methyltransferase Activity in Homogeneous Solution. Chemistry - A European Journal, 2012, 18, 3521-3528.	3.3	74
117	The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Advanced Drug Delivery Reviews, 2012, 64, 764-783.	13.7	310
118	Effect of α-cyclodextrin on the optical and surface-morphological properties of pyrene–triazole azomethine oligomers. Chemical Physics Letters, 2012, 535, 120-125.	2.6	16
119	Monitoring stepwise proteolytic degradation of peptides by supramolecular domino tandem assays and mass spectrometry for trypsin and leucine aminopeptidase. Natural Product Communications, 2012, 7, 343-8.	0.5	11
120	Determining Protease Substrate Selectivity and Inhibition by Label-Free Supramolecular Tandem Enzyme Assays. Journal of the American Chemical Society, 2011, 133, 7528-7535.	13.7	176
121	Conformational Discrepancies Between Molecular Dynamics Force Fields and Vibrational Spectroscopy in Short Alanine-Based Peptides. Biophysical Journal, 2011, 100, 518a.	0.5	1
122	Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chemical Science, 2011, 2, 1722.	7.4	229
123	Steady-state photochemistry (Pschorr cyclization) and nanosecond transient absorption spectroscopy of twisted 2-bromoaryl ketones. Pure and Applied Chemistry, 2011, 83, 841-860.	1.9	3
124	Effect of cucurbit[n]urils on tropicamide and potential application in ocular drug delivery. Supramolecular Chemistry, 2011, 23, 650-656.	1.2	40
125	Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution. Chemical Reviews, 2011, 111, 7941-7980.	47.7	975
126	A coumarin-based fluorescent PET sensor utilizing supramolecular pKa shifts. Tetrahedron Letters, 2011, 52, 5249-5254.	1.4	33

8

#	Article	IF	CITATIONS
127	Deep Inside Cucurbiturils: Physical Properties and Volumes of their Inner Cavity Determine the Hydrophobic Driving Force for Host–Guest Complexation. Israel Journal of Chemistry, 2011, 51, 559-577.	2.3	319
128	The World of Cucurbiturils — From Peculiarity to Commodity. Israel Journal of Chemistry, 2011, 51, 492-494.	2.3	31
129	Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Canadian Journal of Chemistry, 2011, 89, 139-147.	1.1	133
130	A photoinduced pH jump applied to drug release from cucurbit[7]uril. Chemical Communications, 2011, 47, 8793.	4.1	82
131	Solvent Polarity Affects H Atom Abstractions from C–H Donors. Organic Letters, 2011, 13, 2694-2697.	4.6	9
132	Effect of Rotaxane Formation on the Photophysical, Morphological, and Adhesion Properties of Poly[2,7â€(9,9â€dioctylfluorene)â€ <i>alt</i> â€(5,5'â€bithiophene)] Mainâ€Chain Polyrotaxanes. Macromolecula Chemistry and Physics, 2011, 212, 1022-1031.	r 2.2	22
133	Transitionâ€Metalâ€Promoted Chemoselective Photoreactions at the Cucurbituril Rim. Angewandte Chemie - International Edition, 2011, 50, 545-548.	13.8	103
134	Strong Binding of Hydrocarbons to Cucurbituril Probed by Fluorescent Dye Displacement: A Supramolecular Gas‧ensing Ensemble. Angewandte Chemie - International Edition, 2011, 50, 9338-9342.	13.8	157
135	Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. Organic and Biomolecular Chemistry, 2010, 8, 2037.	2.8	342
136	Molecular Encapsulation of Fluorescent Dyes Affords Efficient Narrowâ€band Dye Laser Operation in Water. ChemPhysChem, 2010, 11, 3333-3338.	2.1	63
137	Effect of Lowerâ€Rim Alkylation of <i>p</i> â€Sulfonatocalix[4]arene on the Thermodynamics of Host–Guest Complexation. European Journal of Organic Chemistry, 2010, 2010, 1704-1710.	2.4	36
138	Under control. Nature Chemistry, 2010, 2, 248-250.	13.6	61
139	Investigating Conformational Ensembles in Alanine Based Peptides Using Vibrational and Ecd Spectroscopy. Biophysical Journal, 2010, 98, 31a-32a.	0.5	0
140	Discrepancies between Conformational Distributions of a Polyalanine Peptide in Solution Obtained from Molecular Dynamics Force Fields and Amide l′ Band Profiles. Journal of Physical Chemistry B, 2010, 114, 17201-17208.	2.6	38
141	Phase-Dependent Lateral Diffusion of α-Tocopherol in DPPC Liposomes Monitored by Fluorescence Quenching. Langmuir, 2010, 26, 14723-14729.	3.5	12
142	Selective time-resolved binding of copper(ii) by pyropheophorbide-a methyl ester. Photochemical and Photobiological Sciences, 2010, 9, 649-654.	2.9	9
143	Implementation of anion-receptor macrocycles in supramolecular tandem assays for enzymes involving nucleotides as substrates, products, and cofactors. Organic and Biomolecular Chemistry, 2010, 8, 1033.	2.8	64
144	Supramolecular logic with macrocyclic input and competitive reset. Chemical Communications, 2010, 46, 2635.	4.1	98

#	Article	IF	CITATIONS
145	Modulation of Spectrokinetic Properties of <i>o</i> â€Quinonoid Reactive Intermediates by Electronic Factors: Timeâ€Resolved Laser Flash and Steadyâ€State Photolysis Investigations of Photochromic 6―and 7â€Arylchromenes. Chemistry - A European Journal, 2009, 15, 4289-4300.	3.3	33
146	Modulation of Excited‧tate Proton Transfer of 2â€{2′â€Hydroxyphenyl)benzimidazole in a Macrocyclic Cucurbit[7]uril Host Cavity: Dual Emission Behavior and p <i>K</i> _a Shift. Chemistry - A European Journal, 2009, 15, 12362-12370.	3.3	91
147	Polyrotaxanes of Pyrene–Triazole Conjugated Azomethine and <i>α</i> yclodextrin with High Fluorescence Properties. Macromolecular Chemistry and Physics, 2009, 210, 1440-1449.	2.2	24
148	Substrate-Selective Supramolecular Tandem Assays: Monitoring Enzyme Inhibition of Arginase and Diamine Oxidase by Fluorescent Dye Displacement from Calixarene and Cucurbituril Macrocycles. Journal of the American Chemical Society, 2009, 131, 11558-11570.	13.7	203
149	Cucurbituril-Mediated Supramolecular Acid Catalysis. Organic Letters, 2009, 11, 2595-2598.	4.6	115
150	Effect of bridgehead substitution on the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-enes by solvents and antioxidants. Photochemical and Photobiological Sciences, 2009, 8, 1694-1700.	2.9	3
151	Supramolecular Tandem Enzyme Assays for Multiparameter Sensor Arrays and Enantiomeric Excess Determination of Amino Acids. Chemistry - A European Journal, 2008, 14, 6069-6077.	3.3	176
152	Activation and Stabilization of Drugs by Supramolecular p <i>K</i> _a Shifts: Drugâ€Đelivery Applications Tailored for Cucurbiturils. Angewandte Chemie - International Edition, 2008, 47, 5398-5401.	13.8	238
153	Novel fluorescent pH sensor based on coumarin with piperazine and imidazole substituents. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 818-822.	3.9	46
154	Morphology and properties of a polyrotaxane based on Î ³ -cyclodextrin and a polyfluorene copolymer. Chemical Physics Letters, 2008, 465, 96-101.	2.6	20
155	Salt-induced guest relocation from a macrocyclic cavity into a biomolecular pocket: interplay between cucurbit[7]uril and albumin. Chemical Communications, 2008, , 3681.	4.1	125
156	Complexation of acridine orange by cucurbit[7]uril and β-cyclodextrin: photophysical effects and pKa shifts. Photochemical and Photobiological Sciences, 2008, 7, 408-414.	2.9	161
157	Design of a Fluorescent Dye for Indicator Displacement from Cucurbiturils: A Macrocycle-Responsive Fluorescent Switch Operating through a p <i>K</i> _a Shift. Organic Letters, 2008, 10, 4089-4092.	4.6	171
158	Triple Molecular Recognition as a Directing Element in the Formation of Hostâ^'Guest Complexes with <i>p</i> -Sulfonatocalix[4]arene and β-Cyclodextrin. Journal of Organic Chemistry, 2008, 73, 5305-5310.	3.2	19
159	Intramolecular Oâ^'H···O Hydrogen-Bond-Mediated Reversal in the Partitioning of Conformationally Restricted Triplet 1,4-Biradicals and Amplification of Diastereodifferentiation in Their Lifetimes. Journal of the American Chemical Society, 2008, 130, 13608-13617.	13.7	24
160	Squeezing Fluorescent Dyes into Nanoscale Containers—The Supramolecular Approach to Radiative Decay Engineering. Springer Series on Fluorescence, 2007, , 185-211.	0.8	20
161	The Epr SpectroscopicDParameter of Localized Triplet Diradicals as Probe for Electronic Effects in Benzyl-Type Monoradicals. Advances in Photochemistry, 2007, , 205-254.	0.4	12
162	Selective Sensing of Citrate by a Supramolecular 1,8-Naphthalimide/Calix[4]arene Assembly via Complexation-Modulated pKaShifts in a Ternary Complex. Journal of Organic Chemistry, 2007, 72, 3889-3895.	3.2	65

#	Article	IF	CITATIONS
163	Effects of cucurbit[7]uril on enzymatic activity. Chemical Communications, 2007, , 1614.	4.1	57
164	Single-Label Kinase and Phosphatase Assays for Tyrosine Phosphorylation Using Nanosecond Time-Resolved Fluorescence Detection. Journal of the American Chemical Society, 2007, 129, 15927-15934.	13.7	47
165	A 10-Ã Spectroscopic Ruler Applied to Short Polyprolines. Journal of the American Chemical Society, 2007, 129, 9762-9772.	13.7	87
166	Kinetic Solvent Effects on Hydrogen Abstraction Reactions. Organic Letters, 2007, 9, 2899-2902.	4.6	31
167	Temperature Dependence of Looping Rates in a Short Peptide. Journal of Physical Chemistry B, 2007, 111, 2639-2646.	2.6	23
168	Tetrahydro-1,8-naphthyridinol Analogues of α-Tocopherol as Antioxidants in Lipid Membranes and Low-Density Lipoproteins. Journal of the American Chemical Society, 2007, 129, 10211-10219.	13.7	98
169	Cucurbituril Encapsulation of Fluorescent Dyes. Supramolecular Chemistry, 2007, 19, 55-66.	1.2	250
170	New Insights into the Mechanism of Triplet Radical-Pair Combinations. The Persistent Radical Effect Masks the Distinction between In-Cage and Out-of-Cage Processes. Journal of the American Chemical Society, 2007, 129, 5012-5022.	13.7	20
171	Phosphorylation-Induced Conformational Changes in Short Peptides Probed by Fluorescence Resonance Energy Transfer in the 10 Ã Domain. ChemBioChem, 2007, 8, 567-573.	2.6	24
172	Efficient Fluorescence Enhancement and Cooperative Binding of an Organic Dye in a Supra-biomolecular Host–Protein Assembly. Angewandte Chemie - International Edition, 2007, 46, 4120-4122.	13.8	206
173	Supramolecular Dye Laser with Cucurbit[7]uril in Water. ChemPhysChem, 2007, 8, 54-56.	2.1	96
174	Design of peptide substrates for nanosecond time-resolved fluorescence assays of proteases: 2,3-Diazabicyclo[2.2.2]oct-2-ene as a noninvasive fluorophore. Analytical Biochemistry, 2007, 360, 255-265.	2.4	25
175	Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nature Methods, 2007, 4, 629-632.	19.0	397
176	Absolute Rate Constants for the Quenching of Reactive Excited States by Melanin and Related 5,6-Dihydroxyindole Metabolites: Implications for Their Antioxidant Activity. Photochemistry and Photobiology, 2007, 71, 524-533.	2.5	8
177	Bridgehead carboxy-substituted 2,3-diazabicyclo[2.2.2]oct-2-enes: synthesis, fluorescent properties, and host-guest complexation. Arkivoc, 2007, 2007, 341-357.	0.5	7
178	Hostâ^'Guest Complexation of Neutral Red with Macrocyclic Host Molecules:Â Contrasting pKaShifts and Binding Affinities for Cucurbit[7]uril and β-Cyclodextrin. Journal of Physical Chemistry B, 2006, 110, 5132-5138.	2.6	266
179	Distance Distributions of Short Polypeptides Recovered by Fluorescence Resonance Energy Transfer in the 10 Ã Domain. Journal of the American Chemical Society, 2006, 128, 8118-8119.	13.7	68
180	Reaction of Singlet-Excited 2,3-Diazabicyclo[2.2.2]oct-2-ene andtert-Butoxyl Radicals with Aryl-Substituted Benzofuranones. Journal of Organic Chemistry, 2006, 71, 1977-1983.	3.2	31

#	Article	IF	CITATIONS
181	Temperature-dependent loop formation kinetics in flexible peptides studied by time-resolved fluorescence spectroscopy. International Journal of Photoenergy, 2006, 2006, 1-9.	2.5	7
182	Investigation of Polar and Stereoelectronic Effects on Pure Excited-state Hydrogen Atom Abstractions from Phenols and Alkylbenzenesâ€. Photochemistry and Photobiology, 2006, 82, 310.	2.5	21
183	Analysis of Host-Assisted Guest Protonation Exemplified forp-Sulfonatocalix[4]arene—Towards Enzyme-Mimetic pKa Shifts. Chemistry - A European Journal, 2006, 12, 4799-4807.	3.3	112
184	Diastereomeric Discrimination in the Lifetimes of Norrish Type II Triplet 1,4-Biradicals and Stereocontrolled Partitioning of Their Reactivity (Yang Cyclization versus Type II Fragmentation). Chemistry - A European Journal, 2006, 12, 8744-8749.	3.3	11
185	Nanosecond Time-Resolved Fluorescence Protease Assays. ChemBioChem, 2006, 7, 733-737.	2.6	29
186	Dynamically Self-Assembling Metalloenzyme Models Based on Calixarenes. Angewandte Chemie - International Edition, 2006, 45, 7400-7404.	13.8	81
187	Fluorescence Regeneration as a Signaling Principle for Choline and Carnitine Binding: A Refined Supramolecular Sensor System Based on a Fluorescent Azoalkane. Advanced Functional Materials, 2006, 16, 237-242.	14.9	126
188	Chiral discrimination in the complexation of heptakis-(2,6-di-O-methyl)-Î ² -cyclodextrin with 2,3-diazabicyclo[2.2.2]oct-2-ene derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173, 340-348.	3.9	28
189	Photochemical techniques for studying the flexibility of polypeptides. Research on Chemical Intermediates, 2005, 31, 717-726.	2.7	12
190	Ultrastable Rhodamine with Cucurbituril. Angewandte Chemie - International Edition, 2005, 44, 3750-3754.	13.8	256
191	Taming fluorescent dyes with cucurbituril. International Journal of Photoenergy, 2005, 7, 133-141.	2.5	175
192	Spherical Shape Complementarity as an Overriding Motif in the Molecular Recognition of Noncharged Organic Guests byp-Sulfonatocalix[4]arene:Â Complexation of Bicyclic Azoalkanes. Journal of Organic Chemistry, 2005, 70, 9960-9966.	3.2	65
193	Binding of inorganic cations by p-sulfonatocalix[4]arene monitored through competitive fluorophore displacement in aqueous solution. Chemical Communications, 2005, , 5411.	4.1	68
194	Induced Circular Dichroism and Structural Assignment of the Cyclodextrin Inclusion Complexes of Bicyclic Azoalkanes. Journal of Organic Chemistry, 2005, 70, 39-46.	3.2	69
195	Effect of Temperature, Cholesterol Content, and Antioxidant Structure on the Mobility of Vitamin E Constituents in Biomembrane Models Studied by Laterally Diffusion-Controlled Fluorescence Quenching. Journal of the American Chemical Society, 2005, 127, 15575-15584.	13.7	29
196	Substituent Electronic Effects on the Persistence and Absorption Spectra of (Z)-o-Xylylenols. A Nanosecond Laser Flash Photolysis Study. Journal of Organic Chemistry, 2005, 70, 7439-7442.	3.2	5
197	Chiral Resolution through Precipitation of Diastereomeric Capsules in the Form of 2:1 β-Cyclodextrinâ~'Guest Complexes. Journal of Organic Chemistry, 2005, 70, 4506-4509.	3.2	18
198	Diastereomer-Differentiating Photochemistry of β-Arylbutyrophenones: Yang Cyclization versus Type II Elimination. Journal of the American Chemical Society, 2005, 127, 14375-14382.	13.7	23

#	Article	IF	CITATIONS
199	Photoreactivity of n,Ï \in *-Excited Azoalkanes and Ketones. , 2005, , 75-129.		4
200	Ascorbic Acid as a Free Radical Scavenger in Porcine and Bovine Aqueous Humour. Ophthalmic Research, 2004, 36, 38-42.	1.9	16
201	Cucurbiturils: Molecular Nanocapsules for Time-Resolved Fluorescence-Based Assays. IEEE Transactions on Nanobioscience, 2004, 3, 39-45.	3.3	149
202	Intramolecular singlet–singlet energy transfer in antenna-substituted azoalkanes. Photochemical and Photobiological Sciences, 2004, 3, 305-310.	2.9	6
203	Structural and Dynamic Properties of the CAGQW Peptide in Water:  A Molecular Dynamics Simulation Study Using Different Force Fields. Journal of Physical Chemistry B, 2004, 108, 18734-18742.	2.6	16
204	Kinetics of End-to-End Collision in Short Single-Stranded Nucleic Acids. Journal of the American Chemical Society, 2004, 126, 808-813.	13.7	78
205	Diffusion of α-Tocopherol in Membrane Models: Probing the Kinetics of Vitamin E Antioxidant Action by Fluorescence in Real Time. Journal of the American Chemical Society, 2004, 126, 5482-5492.	13.7	41
206	Primary and Secondary Structure Dependence of Peptide Flexibility Assessed by Fluorescence-Based Measurement of End-to-End Collision Rates. Journal of the American Chemical Society, 2004, 126, 16665-16675.	13.7	57
207	Refractive index effects on the oscillator strength and radiative decay rate of 2,3-diazabicyclo[2.2.2]oct-2-ene. Photochemical and Photobiological Sciences, 2004, 3, 1026.	2.9	98
208	Mechanism of Hostâ~'Guest Complexation by Cucurbituril. Journal of the American Chemical Society, 2004, 126, 5806-5816.	13.7	429
209	A Conformational Flexibility Scale for Amino Acids in Peptides. Angewandte Chemie, 2003, 115, 2371-2374.	2.0	18
210	A Conformational Flexibility Scale for Amino Acids in Peptides. Angewandte Chemie - International Edition, 2003, 42, 2269-2272.	13.8	181
211	Fluorescence quenching kinetics in short polymer chains: Dependence on chain length. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 95, 560-570.	0.6	15
212	Selective Fluorescence Quenching of 2,3-Diazabicyclo[2.2.2]oct-2-ene by Nucleotides. Organic Letters, 2003, 5, 3911-3914.	4.6	46
213	Exploiting Long-Lived Molecular Fluorescence. Chimia, 2003, 57, 161-167.	0.6	22
214	Quenching of n,ï€*-Excited States in the Gas Phase:  Variations in Absolute Reactivity and Selectivity. Journal of the American Chemical Society, 2002, 124, 11349-11357.	13.7	20
215	Spiroiminodihydantoin Is a Major Product in the Photooxidation of 2â€~-Deoxyguanosine by the Triplet States and Oxyl Radicals Generated from Hydroxyacetophenone Photolysis and Dioxetane Thermolysis. Organic Letters, 2002, 4, 537-540.	4.6	79
216	A Fluorescence-Based Method for Direct Measurement of Submicrosecond Intramolecular Contact Formation in Biopolymers:  An Exploratory Study with Polypeptides. Journal of the American Chemical Society, 2002, 124, 556-564.	13.7	167

#	Article	IF	CITATIONS
217	Photochemistry ofN-Isopropoxy-Substituted 2(1H)-Pyridone and 4-p-Tolylthiazole-2(3H)-thione:Â Alkoxyl-Radical Release (Spin-Trapping, EPR, and Transient Spectroscopy) and Its Significance in the Photooxidative Induction of DNA Strand Breaks. Journal of Organic Chemistry, 2002, 67, 6041-6049.	3.2	34
218	A Comparative Photomechanistic Study (Spin Trapping, EPR Spectroscopy, Transient Kinetics,) Tj ETQq0 0 0 rgB1 the Radicals Generated from α-Oxy-Substituted Derivatives through Norrish-Type I Cleavage. Journal of the American Chemical Society, 2002, 124, 3893-3904.	Verlock 13.7	29 10 Tf 50 71
219	Increased Antioxidant Reactivity of Vitamin C at Low pH in Model Membranes. Journal of the American Chemical Society, 2002, 124, 11252-11253.	13.7	47
220	Excited state quenching via"unsuccessful―chemical reactions. Photochemical and Photobiological Sciences, 2002, 1, 537-546.	2.9	36
221	A Joint Structural, Kinetic, and Thermodynamic Investigation of Substituent Effects on Hostâ "Guest Complexation of Bicyclic Azoalkanes by β-Cyclodextrin. Journal of the American Chemical Society, 2002, 124, 254-263.	13.7	100
222	Structure–reactivity relationships in the photoreduction of n,ï€*-excited ketones and azoalkanes: the effect of reaction thermodynamics, excited-state electrophilicity, and antibonding character in the transition state. Photochemical and Photobiological Sciences, 2002, 1, 141-147.	2.9	23
223	Biomolecular and Supramolecular Kinetics in the Submicrosecond Time Range: the Fluorazophore Approach. ChemPhysChem, 2002, 3, 393.	2.1	39
224	Photophysical properties and fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene in zeolites. Chemical Physics Letters, 2002, 359, 289-294.	2.6	2
225	Co-conformational Variability of Cyclodextrin Complexes Studied by Induced Circular Dichroism of Azoalkanes. Journal of the American Chemical Society, 2001, 123, 5240-5248.	13.7	57
226	Switch-Over in Photochemical Reaction Mechanism from Hydrogen Abstraction to Exciplex-Induced Quenching:Â Interaction of Triplet-Excited versus Singlet-Excited Acetone versus Cumyloxyl Radicals with Amines. Journal of the American Chemical Society, 2001, 123, 9727-9737.	13.7	73
227	Kinetics of One- and Two-Directional Charge Hopping in One-Dimensional Systems: Application to DNA. ChemPhysChem, 2001, 2, 761.	2.1	8
228	Two Mechanisms of Slow Host-Guest Complexation between Cucurbit[6]uril and Cyclohexylmethylamine: pH-Responsive Supramolecular Kinetics. Angewandte Chemie - International Edition, 2001, 40, 3155-3160.	13.8	188
229	Fluorescence Quenching by Sequential Hydrogen, Electron, and Proton Transfer in the Proximity of a Conical Intersection. Angewandte Chemie - International Edition, 2001, 40, 4185-4189.	13.8	35
230	Polarizabilities Inside Molecular Containers This work was supported by the Swiss National Science Foundation (projects 620-58000.99 and 4047-057552) within the program NFP 47 "Supramolecular Functional Materialsâ€. Angewandte Chemie - International Edition, 2001, 40, 4387.	13.8	172
231	A long-lived amphiphilic fluorescent probe studied in POPC air–water monolayer and solution bilayer systems. Chemistry and Physics of Lipids, 2001, 113, 1-9.	3.2	17
232	Lipid peroxidation in porcine irises: Dependence on pigmentation. Current Eye Research, 2001, 22, 229-234.	1.5	5
233	Structure-dependent reactivity of oxyfunctionalized acetophenones in the photooxidation of DNA: base oxidation and strand breaks through photolytic radical formation (spin trapping, EPR) Tj ETQq1 1 0.784314	rgBT /Ove 14.5	erlock 10 Tf 5
234	Chromophore Alignment in a Chiral Host Provides a Sensitive Test for the Orientation - Intensity Rule of Induced Circular Dichroism. Angewandte Chemie - International Edition, 2000, 39, 544-547.	13.8	63

#	Article	IF	CITATIONS
235	Conical Intersections in Charge-Transfer Induced Quenching. Angewandte Chemie - International Edition, 2000, 39, 4582-4586.	13.8	39
236	Aryl substituent effects and solvent effects on the decarbonylation of phenacetyl radicals. Journal of Physical Organic Chemistry, 2000, 13, 634-639.	1.9	20
237	Quenching of n,?*-excited azoalkanes by amines: structural and electronic effects on charge transfer. Journal of Physical Organic Chemistry, 2000, 13, 640-647.	1.9	14
238	Wavelength-Selective Photodenitrogenation of Azoalkanes to High-Spin Polyradicals with Cyclopentane-1,3-diyl Spin-Carrying Units and Their Photobleaching:A EPR/UV Spectroscopy and Product Studies of the Matrix-Isolated Species. Journal of Organic Chemistry, 2000, 65, 8790-8796.	3.2	3
239	Intramolecular and Intermolecular Reactivity of Localized Singlet Diradicals:Â The Exceedingly Long-Lived 2,2-Diethoxy-1,3-diphenylcyclopentane-1,3-diyl. Journal of the American Chemical Society, 2000, 122, 2019-2026.	13.7	73
240	Fluorescence Quenching of n,Ï€*-Excited Azoalkanes by Amines:Â What Is a Sterically Hindered Amine?. Journal of the American Chemical Society, 2000, 122, 2027-2034.	13.7	76
241	Absolute Rate Constants for the Quenching of Reactive Excited States by Melanin and Related 5,6-Dihydroxyindole Metabolites: Implications for Their Antioxidant Activity. Photochemistry and Photobiology, 2000, 71, 524.	2.5	51
242	"Inverted―Solvent Effect on Charge Transfer in the Excited State. Angewandte Chemie - International Edition, 1999, 38, 2885-2888.	13.8	20
243	An Exceedingly Long-Lived Fluorescent State as a Distinct Structural and Dynamic Probe for Supramolecular Association:Â An Exploratory Study of Hostâ^'Guest Complexation by Cyclodextrins. Journal of the American Chemical Society, 1999, 121, 8022-8032.	13.7	114
244	Fluorescence of 2,3-Diazabicyclo[2.2.2]oct-2-ene Revisited:Â Solvent-Induced Quenching of the n,ï€*-Excited State by an Aborted Hydrogen Atom Transfer. Journal of Physical Chemistry A, 1999, 103, 1579-1584.	2.5	53
245	1,3-Cyclopentanediyl Diradicals:Â Substituent and Temperature Dependence of Tripletâ~'Singlet Intersystem Crossing. Journal of the American Chemical Society, 1999, 121, 9265-9275.	13.7	53
246	A Photoactivable Fluorophore Based on Thiadiazolidinedione as Caging Group. Organic Letters, 1999, 1, 603-606.	4.6	3
247	Pathways for the photochemical hydrogen abstraction by n, ï€ [*] â€excited states. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 476-485.	0.9	17
248	Discrimination between hydrogen atom and proton abstraction in the quenching of n, ï€ [*] singletâ€excited states by protic solvents. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 486-492.	0.9	24
249	The Mechanism for Hydrogen Abstraction by n,Ï€* Excited Singlet States: Evidence for Thermal Activation and Deactivation through a Conical Intersection. Angewandte Chemie - International Edition, 1998, 37, 98-101.	13.8	40
250	Oxidative DNA Damage by Radicals Generated in the Thermolysis of Hydroxymethyl-Substituted 1,2-Dioxetanes through the α Cleavage of Chemiexcited Ketones. Journal of the American Chemical Society, 1998, 120, 3549-3559.	13.7	17
251	A Fluorescent Probe for Antioxidants. Journal of the American Chemical Society, 1998, 120, 12614-12618.	13.7	50
252	Photochemical Generation and Methanol Trapping of Localized 1,3 and 1,4 Singlet Diradicals Derived from a Spiroepoxy-Substituted Cyclopentane-1,3-diyl. Journal of the American Chemical Society, 1998, 120, 11304-11310.	13.7	53

#	Article	IF	CITATIONS
253	Localized triplet diradicals as a probe for electronic substituent effects in benzyl-type radicals: The ΔD scale. Pure and Applied Chemistry, 1997, 69, 91-96.	1.9	21
254	About monoradicals, triplet diradicals and higher spin states: Understanding electronic substituent effects through EPR and time-resolved UV spectroscopy. Pure and Applied Chemistry, 1997, 69, 735-742.	1.9	8
255	Photoreduction of Azoalkanes by Direct Hydrogen Abstraction from 1,4-Cyclohexadiene, Alcohols, Stannanes, and Silanes. Journal of Organic Chemistry, 1997, 62, 8082-8090.	3.2	14
256	Absolute Rate Constants for the Reactions of Sulfur (3PJ) Atoms in Solution. Journal of the American Chemical Society, 1997, 119, 1961-1970.	13.7	10
257	Electronic Effects ofpara- andmeta-Substituents on the EPRDParameter in 1,3-Arylcyclopentane-1,3-diyl Triplet Diradicals. A New Spectroscopic Measure of α Spin Densities and Radical Stabilization Energies in Benzyl-Type Monoradicals. Journal of Organic Chemistry, 1997, 62, 1419-1426.	3.2	28
258	Charge-Transfer-Induced Photoreduction of Azoalkanes by Amines. Journal of the American Chemical Society, 1997, 119, 6749-6756.	13.7	20
259	Correlation of Oxidation and Ionization Potentials for Azoalkanes. Journal of Organic Chemistry, 1997, 62, 5128-5132.	3.2	10
260	Solvent Effect on Product Distribution in Photochemical Pathways of α Câ^'N versus β Câ^'C Cleavage of n,ï€* Triplet-Excited Azoalkanes. Journal of the American Chemical Society, 1997, 119, 5550-5555.	13.7	14
261	Organic Tri- and Tetraradicals with High-Spin or Low-Spin States. Angewandte Chemie International Edition in English, 1997, 36, 2445-2448.	4.4	14
262	Organische Tri―und Tetraradikale in Highâ€Spinâ€oder Lowâ€Spinâ€Zustäden. Angewandte Chemie, 1997, 10 2551-2554.	⁾⁹ 2.0	3
263	AN ELECTRONEGATIVITY MODEL FOR POLAR GROUND-STATE EFFECTS ON BOND DISSOCIATION ENERGIES. Journal of Physical Organic Chemistry, 1997, 10, 445-455.	1.9	31
264	EPR Characterization of the Quintet State for a Hydrocarbon Tetraradical with Two Localized 1,3-Cyclopentanediyl Biradicals Linked bymeta-Phenylene as a Ferromagnetic Couplerâ€. Journal of the American Chemical Society, 1996, 118, 3974-3975.	13.7	27
265	The D Parameter (EPR Zero-Field Splitting) of Localized 1,3-Cyclopentanediyl Triplet Diradicals as a Measure of Electronic Substituent Effects on the Spin Densities in Para-Substituted Benzyl-Type Radicals. Journal of Organic Chemistry, 1996, 61, 7056-7065.	3.2	19
266	Reactivity and Efficiency of Singlet- and Triplet-Excited States in Intermolecular Hydrogen Abstraction Reactions. Journal of the American Chemical Society, 1996, 118, 2275-2282.	13.7	54
267	Singlet Oxygen Production from Excited Azoalkanes. Journal of the American Chemical Society, 1996, 118, 2742-2743.	13.7	22
268	The D parameter (zero-field splitting) as a direct measure of structural end electronic effects in localized triplet 1,3-diradicals. Journal of the Chemical Society Perkin Transactions II, 1996, , 2085.	0.9	8
269	Computational Assessment of Polar Ground-State Effects on the Bond Dissociation Energies of Benzylic and Related Bonds. Journal of Organic Chemistry, 1996, 61, 8312-8314.	3.2	24
270	Photoreduction of Azoalkane Triplet States by Hydrogen Atom and Charge Transfer. Journal of Organic Chemistry, 1996, 61, 8722-8723.	3.2	11

#	Article	IF	CITATIONS
271	Fluorescence quenching of azoalkanes by solvent-assisted radiationless deactivation involving Cî—,H bonds. Chemical Physics Letters, 1996, 253, 92-96.	2.6	21
272	Oxygen Quenching of Excited Aliphatic Ketones and Diketones. The Journal of Physical Chemistry, 1996, 100, 11360-11367.	2.9	86
273	Matrix isolation Raman spectroscopy and semiempirical calculations of 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH) and its photoproduct bicyclo[2.1.0]-pentane (BCP). Journal of Molecular Structure, 1995, 348, 333-336.	3.6	4
274	Vibrational spectra and conformational behaviour of carbonyl isothiocyanates Xî—,COî—,NCS, Xî—»F, Cl, Br, MeO, EtO, and acetyl isothiocyanate CH3î—,COî—,NCS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 787-798.	3.9	16
275	Effect of Donor-Acceptor Substitution on Intersystem Crossing Rates of 1,3-Diaryl-1,3-cyclopentanediyl Triplet Biradicals. Journal of the American Chemical Society, 1995, 117, 8670-8671.	13.7	19
276	Phosphorescence and Transient Absorption of Azoalkane Triplet States. Journal of the American Chemical Society, 1995, 117, 12578-12592.	13.7	55
277	The infrared and Raman spectra of carbonyl diisocyanate. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994, 50, 1039-1046.	0.1	7
278	Spectroscopy of acyl and carbonyl isocyanates. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994, 50, 307-316.	0.1	10
279	Variable temperature infrared spectroscopy of chlorocarbonyl isocyanate Cl-CO-NCO and the effect of polarizable substituents on the conformations of carbonyl isocyanates and isothiocyanates. Journal of Molecular Structure, 1994, 317, 59-67.	3.6	10
280	Electronic Substituent Effects on the Acid-Catalyzed [4+ + 2] Cycloaddition of Isopyrazoles with Cyclopentadiene and the Photochemical and Thermal Denitrogenation of the Resulting 1,4-Diaryl-7,7-dimethyl-2,3-diazabicyclo[2.2.1]hept-2-ene Azoalkanes to Bicyclo[2.1.0]pentanes. Journal of Organic Chemistry, 1994, 59, 3786-3797.	3.2	37
281	4-Halo-4H-pyrazoles: Cycloaddition with Cyclopentadiene to Azoalkanes of the 2,3-Diazabicyclo[2.2.1]hept-2-ene Type versus Electrophilic Addition with Cyclopentene. Journal of Organic Chemistry, 1994, 59, 7067-7071.	3.2	13
282	Radical Stabilization and Ground State Polar Substituent Effects in the Thermal Decomposition of Azoalkanes. Journal of the American Chemical Society, 1994, 116, 10972-10982.	13.7	37
283	Temperature Dependence of the .alpha. versus .beta. Bond Cleavage in the Direct and Triplet-Sensitized Photolysis of Azoalkanes of the 2,3-Diazabicyclo[2.2.1]hept-2-ene Type. Journal of the American Chemical Society, 1994, 116, 7049-7054.	13.7	19
284	Substituent Effects on the Zero-Field Splitting Parameters of Localized Triplet, 1,3-Cyclopentanediyl Biradicals. Angewandte Chemie International Edition in English, 1993, 32, 1339-1340.	4.4	17
285	Substituenteneinflüsse auf die Nullfeldparameter von lokalisierten Triplettâ€1,3â€Cyclopentandiylâ€Diradikalen. Angewandte Chemie, 1993, 105, 1383-1384.	2.0	1
286	Vibrational spectra of acetyl isocyanate and mono-, di- and trichloroacetyl isocyanates. Journal of Molecular Structure, 1993, 299, 21-28.	3.6	15
287	Conformational properties of carbonyl isocyanates—stereoelectronic effects favouring the cisoid conformation. Journal of Molecular Structure, 1993, 299, 29-41.	3.6	13
288	The infrared and Raman spectra of methoxycarbonyl and thiomethoxycarbonyl isocyanates. Canadian Journal of Chemistry, 1993, 71, 1627-1631.	1.1	7

#	Article	IF	CITATIONS
289	Identification of a remarkably long-lived azoalkane triplet state. Journal of the American Chemical Society, 1993, 115, 12571-12572.	13.7	18
290	Effects of symmetrical diaryl substitution on intersystem crossing in 1,3-cyclopentanediyl triplet biradicals. Journal of the American Chemical Society, 1993, 115, 9824-9825.	13.7	7
291	1 Host-guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as Hybrid System in CO2 Reduction. , 0, , .		0
292	Host-guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as Hybrid System in CO2 Reduction. , 0, , .		0
293	Discrete, Cationic Palladium(II)â€Oxo Clusters viaÂfâ€Metal Ion Incorporation and their Macrocyclic Hostâ€Guest Interactions with Sulfonatocalixarenes. Angewandte Chemie, 0, , .	2.0	4
294	Protonâ€Gradientâ€Ðriven Sensitivity Enhancement of Liposomeâ€Encapsulated Supramolecular Chemosensors. Angewandte Chemie, 0, , .	2.0	0