Shaodong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/60576/publications.pdf

Version: 2024-02-01

		117625	161849
58	5,621	34	54
papers	citations	h-index	g-index
58	58	58	7583
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The P300 acetyltransferase inhibitor C646 promotes membrane translocation of insulin receptor protein substrate and interaction with the insulin receptor. Journal of Biological Chemistry, 2022, 298, 101621.	3.4	6
2	Mechanistic Investigation of GHS-R Mediated Glucose-Stimulated Insulin Secretion in Pancreatic Islets. Biomolecules, 2022, 12, 407.	4.0	3
3	Estrogen Protects Cardiac Function and Energy Metabolism in Dilated Cardiomyopathy Induced by Loss of Cardiac IRS1 and IRS2. Circulation: Heart Failure, 2022, 15, 101161CIRCHEARTFAILURE121008758.	3.9	7
4	Amino Acids in Autophagy: Regulation and Function. Advances in Experimental Medicine and Biology, 2021, 1332, 51-66.	1.6	17
5	Heme Oxygenase-1 Regulates Ferrous Iron and Foxo1 in Control of Hepatic Gluconeogenesis. Diabetes, 2021, 70, 696-709.	0.6	15
6	\hat{l}^2 Cell GHS-R Regulates Insulin Secretion and Sensitivity. International Journal of Molecular Sciences, 2021, 22, 3950.	4.1	11
7	GHS-R in brown fat potentiates differential thermogenic responses under metabolic and thermal stresses. PLoS ONE, 2021, 16, e0249420.	2.5	2
8	Metformin Targets Foxo1 to Control Glucose Homeostasis. Biomolecules, 2021, 11, 873.	4.0	8
9	Metabolic and inflammatory functions of cannabinoid receptor type 1 are differentially modulated by adiponectin. World Journal of Diabetes, 2021, 12, 1750-1764.	3.5	1
10	Protective Effects of Ghrelin on Fasting-Induced Muscle Atrophy in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 621-630.	3.6	56
11	Obesity-Induced Regulator of Calcineurin 1 Overexpression Leads to β-Cell Failure Through Mitophagy Pathway Inhibition. Antioxidants and Redox Signaling, 2020, 32, 413-428.	5.4	11
12	Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK. Cell Reports, 2019, 29, 1511-1523.e5.	6.4	244
13	A Simple High Efficiency Protocol for Pancreatic Islet Isolation from Mice. Journal of Visualized Experiments, 2019, , .	0.3	13
14	Phosphorylation of Forkhead Protein FoxO1 at S253 Regulates Glucose Homeostasis in Mice. Endocrinology, 2019, 160, 1333-1347.	2.8	26
15	Epigallocatechin Gallate Inhibits Hepatic Glucose Production in Primary Hepatocytes via Downregulating PKA Signaling Pathways and Transcriptional Factor FoxO1. Journal of Agricultural and Food Chemistry, 2019, 67, 3651-3661.	5.2	27
16	Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine, 2019, 44, 665-674.	6.1	66
17	Etiology of Metabolic Syndrome and Dietary Intervention. International Journal of Molecular Sciences, 2019, 20, 128.	4.1	133
18	Estrogen Improves Insulin Sensitivity and Suppresses Gluconeogenesis via the Transcription Factor Foxo1. Diabetes, 2019, 68, 291-304.	0.6	160

#	Article	IF	CITATIONS
19	Glucagon regulates hepatic mitochondrial function and biogenesis through FOXO1. Journal of Endocrinology, 2019, 241, 265-278.	2.6	24
20	Mice lacking adenosine 2A receptor reveal increased severity of MCD-induced NASH. Journal of Endocrinology, 2019, 243, 199-209.	2.6	16
21	DPP-4 Inhibitors Improve Diabetic Wound Healing via Direct and Indirect Promotion of Epithelial-Mesenchymal Transition and Reduction of Scarring. Diabetes, 2018, 67, 518-531.	0.6	56
22	Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology, 2018, 68, 48-61.	7. 3	57
23	Plasma Asprosin Levels Are Associated with Glucose Metabolism, Lipid, and Sex Hormone Profiles in Females with Metabolic-Related Diseases. Mediators of Inflammation, 2018, 2018, 1-12.	3.0	71
24	Ghrelin Signaling in Immunometabolism and Inflamm-Aging. Advances in Experimental Medicine and Biology, 2018, 1090, 165-182.	1.6	15
25	Novel Mechanism of Foxo1 Phosphorylation in Glucagon Signaling in Control of Glucose Homeostasis. Diabetes, 2018, 67, 2167-2182.	0.6	61
26	Echocardiographic assessment of Gâ€protein coupled estrogen receptor (GPER) activation on coronary blood flow and cardiac function in mice. FASEB Journal, 2018, 32, .	0.5	0
27	A structural and functional analogue of a Bowman–Birk-type protease inhibitor from <i>Odorrana schmackeri</i> . Bioscience Reports, 2017, 37, .	2.4	14
28	Nanoâ€curcumin safely prevents streptozotocinâ€induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. British Journal of Pharmacology, 2017, 174, 2074-2084.	5.4	77
29	Obestatin stimulates glucose-induced insulin secretion through ghrelin receptor GHS-R. Scientific Reports, 2017, 7, 979.	3.3	26
30	Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. Journal of Endocrinology, 2017, 233, R131-R143.	2.6	70
31	Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nature Communications, 2017, 8, 131.	12.8	59
32	Suppression of GHS-R in AgRP Neurons Mitigates Diet-Induced Obesity by Activating Thermogenesis. International Journal of Molecular Sciences, 2017, 18, 832.	4.1	42
33	Ex Vivo Smooth Muscle Pharmacological Effects of a Novel Bradykinin-Related Peptide, and Its Analogue, from Chinese Large Odorous Frog, Odorrana livida Skin Secretions. Toxins, 2016, 8, 283.	3.4	7
34	Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus. Scientific Reports, 2016, 6, 25399.	3.3	43
35	Cardiac Myocyte KLF5 Regulates <i>Ppara</i> Expression and Cardiac Function. Circulation Research, 2016, 118, 241-253.	4.5	88
36	Insulin Resistance in Obesity. , 2016, , 479-504.		2

#	Article	IF	Citations
37	Activation of AMPK restricts coxsackievirus B3 replication by inhibiting lipid accumulation. Journal of Molecular and Cellular Cardiology, 2015, 85, 155-167.	1.9	40
38	Activation of Foxo1 by Insulin Resistance Promotes Cardiac Dysfunction and $\hat{l}^2\hat{a}$ "Myosin Heavy Chain Gene Expression. Circulation: Heart Failure, 2015, 8, 198-208.	3.9	68
39	Novel Mechanism of Blood Pressure Regulation By Forkhead Box Class O1–Mediated Transcriptional Control of Hepatic Angiotensinogen. Hypertension, 2014, 64, 1131-1140.	2.7	30
40	Decoding insulin resistance and metabolic syndrome for promising therapeutic intervention. Journal of Endocrinology, 2014, 220, E1-E3.	2.6	284
41	APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor. Cell Reports, 2014, 7, 1227-1238.	6.4	107
42	Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. Journal of Endocrinology, 2014, 220, T1-T23.	2.6	468
43	Mechanisms of Heart Failure in Type 2 Diabetes Mellitus. , 2014, 1, .		0
44	Myocardial Loss of IRS1 and IRS2 Causes Heart Failure and Is Controlled by p38α MAPK During Insulin Resistance. Diabetes, 2013, 62, 3887-3900.	0.6	138
45	Molecular basis of insulin resistance: the role of IRS and Foxo1 in the control of diabetes mellitus and its complications. Drug Discovery Today Disease Mechanisms, 2013, 10, e27-e33.	0.8	45
46	Hepatic Suppression of Foxo1 and Foxo3 Causes Hypoglycemia and Hyperlipidemia in Mice. Endocrinology, 2012, 153, 631-646.	2.8	143
47	The Irs1 Branch of the Insulin Signaling Cascade Plays a Dominant Role in Hepatic Nutrient Homeostasis. Molecular and Cellular Biology, 2009, 29, 5070-5083.	2.3	132
48	Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nature Medicine, 2009, 15, 1307-1311.	30.7	273
49	Inactivation of Hepatic Foxo1 by Insulin Signaling Is Required for Adaptive Nutrient Homeostasis and Endocrine Growth Regulation. Cell Metabolism, 2008, 8, 65-76.	16.2	400
50	The Reciprocal Stability of FOXO1 and IRS2 Creates a Regulatory Circuit that Controls Insulin Signaling. Molecular Endocrinology, 2006, 20, 3389-3399.	3.7	51
51	Identification of Calcium-modulating Cyclophilin Ligand (CAML) as Transducer of Angiotensin II-mediated Nuclear Factor of Activated T Cells (NFAT) Activation. Journal of Biological Chemistry, 2005, 280, 12536-12541.	3.4	48
52	Phosphorylation of Serine 256 Suppresses Transactivation by FKHR (FOXO1) by Multiple Mechanisms. Journal of Biological Chemistry, 2002, 277, 45276-45284.	3.4	265
53	Gene- and Activation-specific Mechanisms for Insulin Inhibition of Basal and Glucocorticoid-induced Insulin-like Growth Factor Binding Protein-1 and Phosphoenolpyruvate Carboxykinase Transcription. Journal of Biological Chemistry, 2001, 276, 33705-33710.	3.4	95
54	Insulin Suppresses Transactivation by CAAT/Enhancer-binding Proteins \hat{l}^2 (C/EBP \hat{l}^2). Journal of Biological Chemistry, 2001, 276, 8516-8523.	3.4	75

SHAODONG GUO

#	Article	IF	CITATIONS
55	Regulation of Glucose-6-phosphatase Gene Expression by Protein Kinase Bα and the Forkhead Transcription Factor FKHR. Journal of Biological Chemistry, 2000, 275, 36324-36333.	3.4	295
56	Phosphorylation of the Transcription Factor Forkhead Family Member FKHR by Protein Kinase B. Journal of Biological Chemistry, 1999, 274, 17179-17183.	3.4	639
57	Phosphorylation of Serine 256 by Protein Kinase B Disrupts Transactivation by FKHR and Mediates Effects of Insulin on Insulin-like Growth Factor-binding Protein-1 Promoter Activity through a Conserved Insulin Response Sequence. Journal of Biological Chemistry, 1999, 274, 17184-17192.	3.4	491
58	A Recurring Chemogenetic Switch for Chimeric Antigen Receptor T Cells. Angewandte Chemie, 0, , .	2.0	0