
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6057471/publications.pdf Version: 2024-02-01

AMADOLI K S CAMADA

#	Article	IF	CITATIONS
1	Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function. Antioxidants and Redox Signaling, 2009, 11, 1373-1414.	2.5	409
2	Potential Therapeutic Benefits of Strategies Directed to Mitochondria. Antioxidants and Redox Signaling, 2010, 13, 279-347.	2.5	162
3	Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury. Frontiers in Physiology, 2011, 2, 13.	1.3	132
4	Sevoflurane Exposure Generates Superoxide but Leads to Decreased Superoxide During Ischemia and Reperfusion in Isolated Hearts. Anesthesia and Analgesia, 2003, 96, 949-955.	1.1	108
5	Reduced reactive O2 species formation and preserved mitochondrial NADH and [Ca2+] levels during short-term 17 °C ischemia in intact hearts. Cardiovascular Research, 2004, 61, 580-590.	1.8	108
6	Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Research in Cardiology, 2017, 112, 27.	2.5	98
7	Mitochondria in Health and Diseases. Cells, 2020, 9, 1177.	1.8	94
8	Altered NADH and improved function by anesthetic and ischemic preconditioning in guinea pig intact hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H53-H60.	1.5	88
9	Hypothermia augments reactive oxygen species detected in the guinea pig isolated perfused heart. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1289-H1299.	1.5	74
10	Dual Exposure to Sevoflurane Improves Anesthetic Preconditioning in Intact Hearts. Anesthesiology, 2004, 100, 569-574.	1.3	47
11	Cyclosporin A Increases Mitochondrial Buffering of Calcium: An Additional Mechanism in Delaying Mitochondrial Permeability Transition Pore Opening. Cells, 2019, 8, 1052.	1.8	38
12	Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role. Journal of Molecular Medicine, 2021, 99, 57-73.	1.7	38
13	ROS scavenging before 27°C ischemia protects hearts and reduces mitochondrial ROS, Ca2+ overload, and changes in redox state. American Journal of Physiology - Cell Physiology, 2007, 292, C2021-C2031.	2.1	37
14	Anesthetic Preconditioning. Anesthesiology, 2003, 99, 385-391.	1.3	35
15	Reversible Blockade of Complex I or Inhibition of PKCÎ ² Reduces Activation and Mitochondria Translocation of p66Shc to Preserve Cardiac Function after Ischemia. PLoS ONE, 2014, 9, e113534.	1.1	26
16	Mg2+ differentially regulates two modes of mitochondrial Ca2+ uptake in isolated cardiac mitochondria: implications for mitochondrial Ca2+ sequestration. Journal of Bioenergetics and Biomembranes, 2016, 48, 175-188.	1.0	26
17	Telomerase Deficiency Predisposes to Heart Failure and Ischemia-Reperfusion Injury. Frontiers in Cardiovascular Medicine, 2019, 6, 31.	1.1	26
18	Comparison of cumulative planimetry versus manual dissection to assess experimental infarct size in isolated hearts. Journal of Pharmacological and Toxicological Methods, 2009, 60, 275-280.	0.3	22

#	Article	IF	CITATIONS
19	Modeling the detailed kinetics of mitochondrial cytochrome <i>c</i> oxidase: Catalytic mechanism and nitric oxide inhibition. Journal of Applied Physiology, 2016, 121, 1196-1207.	1.2	21
20	Structural basis of complex formation between mitochondrial anion channel VDAC1 and Hexokinase-II. Communications Biology, 2021, 4, 667.	2.0	20
21	Optical Metabolic Imaging for Assessment of Radiation-Induced Injury to Rat Kidney and Mitigation by Lisinopril. Annals of Biomedical Engineering, 2019, 47, 1564-1574.	1.3	18
22	Integrated computational model of the bioenergetics of isolated lung mitochondria. PLoS ONE, 2018, 13, e0197921.	1.1	14
23	Slow Ca2+ Efflux by Ca2+/H+ Exchange in Cardiac Mitochondria Is Modulated by Ca2+ Re-uptake via MCU, Extra-Mitochondrial pH, and H+ Pumping by FOF1-ATPase. Frontiers in Physiology, 2018, 9, 1914.	1.3	14
24	LETM1: A Single Entity With Diverse Impact on Mitochondrial Metabolism and Cellular Signaling. Frontiers in Physiology, 2021, 12, 637852.	1.3	14
25	Optical metabolic imaging of irradiated rat heart exposed to ischemia–reperfusion injury. Journal of Biomedical Optics, 2018, 23, 1.	1.4	12
26	Total Matrix Ca2+ Modulates Ca2+ Efflux via the Ca2+/H+ Exchanger in Cardiac Mitochondria. Frontiers in Physiology, 2020, 11, 510600.	1.3	12
27	Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells. Journal of Innovative Optical Health Sciences, 2018, 11, .	0.5	11
28	Differences in Expression of Mitochondrial Complexes Due to Genetic Variants May Alter Sensitivity to Radiation-Induced Cardiac Dysfunction. Frontiers in Cardiovascular Medicine, 2020, 7, 23.	1.1	11
29	PPARÎ ³ -Independent Side Effects of Thiazolidinediones on Mitochondrial Redox State in Rat Isolated Hearts. Cells, 2020, 9, 252.	1.8	10
30	Repetitive Mild Traumatic Brain Injury in Rats Impairs Cognition, Enhances Prefrontal Cortex Neuronal Activity, and Reduces Pre-synaptic Mitochondrial Function. Frontiers in Cellular Neuroscience, 2021, 15, 689334.	1.8	9
31	Three-dimensional vascular and metabolic imaging using inverted autofluorescence. Journal of Biomedical Optics, 2021, 26, .	1.4	7
32	Stretch-induced increase in cardiac contractility is independent of myocyte Ca ²⁺ while block of stretch channels by streptomycin improves contractility after ischemic stunning. Physiological Reports, 2015, 3, e12486.	0.7	4
33	Knockout of VDAC1 in H9c2 Cells Promotes Oxidative Stress-Induced Cell Apoptosis through Decreased Mitochondrial Hexokinase II Binding and Enhanced Glycolytic Stress. Cellular Physiology and Biochemistry, 2020, 54, 853-874.	1.1	3
34	Cardiac mitochondrial Ca ²⁺ â€dependent big K ⁺ channels are open during early reperfusion. FASEB Journal, 2007, 21, A1224.	0.2	2
35	Editorial: Mitochondrial Exchangers and Transporters in Cell Survival and Death. Frontiers in Physiology, 2021, 12, 745353.	1.3	1
36	Knockout of VDAC1 in H9c2 Cells Promotes tBHPâ€induced Cell Apoptosis Through Decreased Mitochondrial HK II Binding and Enhanced Glycolytic Stress. FASEB Journal, 2020, 34, 1-1.	0.2	1

#	Article	IF	CITATIONS
37	Transfer entropy is a better indicator of changes in AV coupling than standard measures of AV conduction. FASEB Journal, 2006, 20, A321.	0.2	1
38	Activation of Mitochondrial Ca ²⁺ Sensitive Potassium Channels Enhances Mitochondrial Reactive Oxygen Species Production. FASEB Journal, 2006, 20, A315.	0.2	1
39	Modeling the roles of Ca uniporter, Na/Ca exchanger and Na/H exchanger in regulating Ca, Na and pH flux in cardiac mitochondria using in vitro spectrofluorometry. FASEB Journal, 2007, 21, A1352.	0.2	1
40	Resveratrol or 32°C hypothermia applied during reperfusion after cardiac ischemia reduces mitochondrial translocation of p66shc. FASEB Journal, 2012, 26, 678.18.	0.2	1
41	Cyclosporineâ€A Enhances Mitochondrial Calcium Buffering to Delay mPTP Opening. FASEB Journal, 2019, 33, 660.9.	0.2	1
42	Hypothermia Prevents Cardiac Dysfunction during Acute Ischemia Reperfusion by Maintaining Mitochondrial Bioenergetics and by Promoting Hexokinase II Binding to Mitochondria. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-19.	1.9	1
43	Editorial: Genetic Modification of Cardiac Tissue. Frontiers in Cardiovascular Medicine, 2019, 6, 93.	1.1	Ο
44	3D Optical Method: A Novel Approach to Quantify Renal Mitochondrial Dysfunction. Methods in Molecular Biology, 2021, 2276, 259-270.	0.4	0
45	Acidotic perfusion protects against ischemic injury by improving mitochondrial redox balance. FASEB Journal, 2006, 20, A742.	0.2	0
46	Improved return of left ventricular function and myoplasmic [Ca ²⁺] after ischemia reperfusion injury in hearts from old vs. young guinea pigs. FASEB Journal, 2006, 20, A384.	0.2	0
47	Ten hour preservation of guinea pig isolated hearts perfused at low flow with airâ€saturated Lifor® solution at room temperature. FASEB Journal, 2007, 21, A1255.	0.2	0
48	Improved mitochondrial Ca ²⁺ handling and functional recovery after ischemia reperfusion injury in hearts from old vs. young guinea pigs. FASEB Journal, 2007, 21, A1223.	0.2	0
49	Na + /H + exchange inhibition protects against ischemic injury by preserving mitochondrial redox state, and by reducing mitochondrial Ca 2+ overload and ROS production. FASEB Journal, 2007, 21, A1221.	0.2	0
50	Blocking mitochondrial Ca 2+ uniport activity during activated Na + /H + exchange reduces mCa 2+ loading but does little to better protect function on reperfusion. FASEB Journal, 2008, 22, 730.24.	0.2	0
51	Regulation of mitochondrial free Ca2+ by metabolite and pHâ€dependent Ca2+ buffering in the matrix: analysis by a computational model of mitochondrial Ca2+ handling. FASEB Journal, 2008, 22, 756.7.	0.2	Ο
52	Modeling Regulation of Mitochondrial Free Ca 2+ by Metabolite Dependent Ca 2+ Buffering. FASEB Journal, 2009, 23, 994.2.	0.2	0
53	Isoflurane Enhances Mitochondrial Free Ca 2+ in Response to Ca 2+ but not ADP: Possible Role of Isoflurane in Activating Mitochondrial Ca 2+ Uniporter. FASEB Journal, 2010, 24, 1048.7.	0.2	0
54	lsoflurane Increases Mitochondrial Free Ca 2+ by Attenuating the Na + /Ca 2+ Exchanger Activity. FASEB Journal, 2012, 26, 888.4.	0.2	0

#	Article	IF	CITATIONS
55	Mitochondrial handling of excess Ca 2+ is substrateâ€dependent with implications on ROS generation. FASEB Journal, 2012, 26, 678.17.	0.2	Ο
56	Tyrosine nitration of voltage dependent anion channels induced by peroxynitrite alters protein structure and function in vitro. FASEB Journal, 2012, 26, 678.19.	0.2	0
57	Identification, localization, and electrophysiologic characterization of small Ca 2+ â€sensitive K + channels in cardiac mitochondria. FASEB Journal, 2012, 26, 695.8.	0.2	Ο
58	Modeling Dynamic Regulation of Mitochondrial free Ca 2+ : Effects of Ca 2+ Sequestration and Precipitation. FASEB Journal, 2012, 26, 585.4.	0.2	0
59	Differential effects of low pH on Ca 2+ â€induced ROS emission from mitochondrial complexes I and III. FASEB Journal, 2013, 27, .	0.2	Ο
60	Characterization of Different Modes of Ca 2+ Uptake under Physiological Conditions in Heart Mitochondria. FASEB Journal, 2013, 27, 1209.20.	0.2	0
61	Acute Administration of PPARÎ ³ Agonist Rosiglitazone in Isolated Hearts Differentially Aggravates Cardiac Ischemia Reperfusion Injury in a Consomic Rat Model. FASEB Journal, 2013, 27, 917.4.	0.2	0
62	Attenuating complex I activity decreases p66 shc phosphorylation and translocation to mitochondria during cardiac ischemia reperfusion injury. FASEB Journal, 2013, 27, 1144.2.	0.2	0
63	Ca 2+ â€induced mitochondrial permeability transition pore opening is substrateâ€dependent. FASEB Journal, 2013, 27, 1209.1.	0.2	0
64	Putative small conductance Ca2+â€sensitive K+ channels isoforms and splice variants in mitochondria of guinea pig cardiac ventricular myocytes. FASEB Journal, 2013, 27, 1209.12.	0.2	0
65	Resistance of guinea pig cardiac cytochrome c oxidase (complex IV) to extended ischemic time during global ischemia and reperfusion. FASEB Journal, 2013, 27, lb438.	0.2	0
66	Postâ€ŧranslationally modified cardiac mitochondrial VDAC1 gating kinetics analyzed using continuousâ€ŧime MCMC model. FASEB Journal, 2013, 27, 1209.15.	0.2	0
67	Substrate â€dependent Action of Isoflurane on Electron Transport Chain Complexes. FASEB Journal, 2013, 27, 1209.9.	0.2	0
68	Differential effects of small and big Ca 2+ â€sensitive K + channel agonists and antagonists during cardiac ischemia and reperfusion injury (648.10). FASEB Journal, 2014, 28, 648.10.	0.2	0
69	PPARγâ€Independent Side Effects of Thiazolidinediones on Mitochondrial Redox State in Rat Isolated Hearts. FASEB Journal, 2015, 29, 979.2.	0.2	0
70	Differential Effects of Buffer pH, CaCl 2 , and Superoxide Dismutase on Ca 2+ â€Induced H 2 O 2 Release from Mitochondrial Complexes I and III. FASEB Journal, 2015, 29, 979.1.	0.2	0
71	Preventing Nitration of Specific Tyrosine Sites in Adenine Nucleotide Translocase Differentially Protects Against Cell Oxidative Stress Injury. FASEB Journal, 2015, 29, 635.5.	0.2	0
72	Subnormothermic Regulated Hepatic Reperfusion Preserves Mitochondrial Function in Swine Liver Procured after Cardiac Death. FASEB Journal, 2018, 32, lb161.	0.2	0

#	Article	IF	CITATIONS
73	Dissociation of Hexokinase II Binding to VDAC Increases State 3 Respiration and Reduces Membrane Potential Repolarization Time in Mitochondria Isolated From Brain and Heart. FASEB Journal, 2018, 32, 618.5.	0.2	0
74	Calcium Regulation of Mitochondrial Respiration is Substrate Dependent and Tissue Specific. FASEB Journal, 2018, 32, .	0.2	0
75	K + influx triggers slow K + /H + exchange detected by biphasic changes in matrix pH in Guinea pig cardiomyocyte mitochondria. FASEB Journal, 2019, 33, 660.7.	0.2	0
76	Prevention of mitochondrial pH gradient dissipation: a novel role for cyclosporin A on inhibiting calciumâ€hydrogen exchange activity in cardiac isolated mitochondria. FASEB Journal, 2019, 33, 660.12.	0.2	0
77	Exerciseâ€induced Increase in Hexokinase Ilâ€mitochondria Association Reduces Cardiac Ischemiaâ€Reperfusion Injury in Rats. FASEB Journal, 2020, 34, 1-1.	0.2	0